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Abstract 

In this paper we consider the Weibull distribution of two parameters , since has been widely used as a model in many 
areas of applications. Properties of the distribution are introduced .Estimation of the distribution  parameters is obtained by 
the modified moments method  

 The estimator of the shape parameter has so complicated form and it is difficult to find the properties of estimator so 
approximation to the mean and variance  of the estimator is made theoretically by utilizing Taylor series expansion up to 
second order derivative.  
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1 Introduction 

The Weibull distn. has been widely used as a model in many areas of applications, specifically in the studies of failure 
components and as a model for product life. It has also been used as the distn. of strength of certain materials. It is named 
after the Swedish scientist Weibull  who first proposed the distn. in connection with his studies on strength of materials [1]. 
One reason for its popularity is that it has a great variety of shapes, which make it extremely flexible in fitting many kinds 
of empirical data. Kao [2] used it as a model for vacuum tube failure [3], Mann gave a variety of situations in which the 
distn. is used for other types of failure data, Whitmore and Altschalerf used it in studies on the time interval to the 
occurrence of tumors in human population. Bain and Antle [4] used a Maximum Likelihood method to obtain two simple 
estimators of parameters for Weibull distn. . Ishioka and Nonaka [5] presented a stable technique for obtaining the 
maximum Likelihood estimate of Weibull parameters of the life distn.

,s
 of two components that form a series system. Al-Ali 

[6] studied some estimators of parameters and reliability function for Weibull distn. and suggested four methods to 
estimate the shape parameter when the scale parameter is known.. 

Definition (1.1) [7]: 

A continuous r.v. X is said to have a Weibull distn. with parameters   and  , denoted by  𝑋~𝑊(𝛼, 𝜃) , if X has 

the following p.d.f.  

  1; , ,0

0 , . . ; , 0.

xf x x e x

e w where

   

 

   

 

                                                                                (1) 

We note that the Weibull distn. reduces to the Exponential distn. as a special case when 1  , and it reduce to 

Rayleigh distn. when 2  , and similar to Normal curve when (3 4  ) .     

The Weibull distn. depends on two parameters   and   which are called shape and scale parameters 

respectively. The variety of p.d.f. shapes can be generated by fixing the values of   once and letting   vary and fixing 

the values of   and letting   vary. The professional MATLAB computer software is used to give a graphical 

representation of Weibull p.d.f.
,s
. Figure (1) and Figure (2) show respectively some Weibull p.d.f.

,s
 for fixed   with  

varying  and for fixed   with   varying as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1.1) 

Weibull p.d.f.
,s
 with θ=1 and α=0.5,1,1.5,2,3,5  
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In general we note that the Weibull distn. have the following properties :  

1- Have the x-axis as a horizontal asymptote. 

2- Increasing for 

1

1
0 x





 
   

 

and decreasing for 

1

1
x





 
   

 

. 

3- Have a maximum point at 

1

1
x





 
  
 

. 

4- Have two inflection points at 

1

23 5 6 1 3

2
x

  



    
 
 
 

and 

1

23 5 6 1 3

2
x

  



    
 
 
 

. 

5- Concave up for  

1

23 5 6 1 3
0

2
x

  



    
  
 
 

and 

1

23 5 6 1 3

2
x

  



    
    
 
 

 and Concave down 

for 

1 1

2 23 5 6 1 3 3 5 6 1 3

2 2
x

      

 

          
    
   
   

. 

1.2.1 The Cumulative Distribution Function 

The Weibull c.d.f. is defined as 

    1

0

; ,

x x
tF x f t dt t e dt
     



  
 implies    

0, 0

Pr 1 ,0

1,

x

x

F x X x e x

x






      
 


                                       

(2) 

1.4.1 Mean and Variance,[7]: 

 

 

 

f (x) 

x 

Figure (1.2) 

Weibull p.d.f.
,s
 with  α=1 and θ=0.5,1,1.5,2,3,5
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The mean and variance are respectively obtained from eq.(1.5) by setting 1,2 .r   

(i) Mean: 

  1E X     is called the mean of r.v. X (or distn.). It is a measure  of central tendency. 

           
1

1 1
(1 )








                                                                                                                                    (3) 

(ii) Variance: 

     22 2 2Var X E X E X       
 

 is called the variance of r.v. X (or distn.). It is a 

measure of dispersion, where  
2

2 2

1 2
( ) (1 )E X








      

Hence,  

2

2

2 1

1 2 1 1
(1 ) (1 )Var X

 


 

 

 
 

       
 
 

 

And so  

   𝑣𝑎𝑟(𝑋) =
Γ 1+

2

𝛼
 −Γ 1+

1

𝛼
 

𝜃
2
𝛼

                                                                                                                                           (4)                                                 

1.4.2 Other Moments: 

(i) Mode: 

A mode of a distn. is the value x of r.v. X that maximize the p.d.f.  f x . 

For continuous distn.
,s
 the mode x is a solution of  

 
0

df x

dx
  and 

 2

2
0

d f x

dx
 . 

The mode is measure of location. Also we note that the mode may not exist or we may have more than one mode. 

For Weibull case with p.d.f. 

  1 xf x x e
   

 

     
2

1 21xdf x
e x x

dx

       
    

  
                                                       (5) 

Equating eq.(5) to zero, and solving for x, we have 
1 1 0x       which implies the critical point is 

                                   

1
1

( )x 





                                                                                                                (6) 

This critical point satisfy that x is the distn. mode where condition  
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 2

2
0

d f x

dx
  at  

1
1

( )x 





  is hold . 

(ii) Median: 

A median of a distn. is defined to the value x of r.v. X such that    
1

Pr
2

F x X x   . The median is measure 

of location. 

For Weibull case, 

We equate the c.d.f. given by eq.(2) to 
1

2
, that is  

1
1

2

xe
                                                                                                                                                  (7) 

Solving for x in eq.(7) lead to the median  

  

1

ln 2
x





 
  
 

                                                                                                                                                 (8) 

1.5 Estimation of Parameters for Weibull Distribution: 

1.5.3.3 Estimation of Parameters by Modified Moments Method  [7] : 

Let X1, X2, …, Xn be a r.s of size n from a distn. p.d.f. ( , )f x 


where  1 2, ,..., k   


is a vector of k unknown 

parameters.Let 1 2, ,..., nY Y Y represent the arrangement of the sample set  iX in a ascending order of 

magnitude.Let ( )r
r E X  be the 

thr  sample moment about the origin, r=1,2, … . 

In this method we equate ( )r
r E X  with 1r  and ranking  i iE Y Y beginning with 1i   until i k  

this process will gives k eq.
,s 

to provide a unique solution for , 1,2,...,i i k  say ˆ , 1,2,...,i i k  and the 

obtained ˆ
i , this method is called modified moment estimator. 

For Weibull case:  

we have two unknown parameters   and   and if we take a r.s. of size n from   ,W   , we let 1Y  represent the 

first order statistic of the sample.  

From the order statistic theory the p.d.f. of  1Y  is  

                                             
      

1

1 1 1 11
n

g y n F y f y


   

  1 1
1 1 1 1,0

0 , . . ; , 0

n y
g y n y e y

e w



 

   

 

 

This shown that   1 ,Y W n  . 
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Accordingly,  
 

1 1

1 1
(1 )E Y

n 




   . 

Now, we apply the Modified Moment Method by setting 1  X and  1 1E Y Y at ˆ  , ˆ    which leads to  

1

ˆ1 1
1 X

ˆ ˆ

   
     

   
                                                                                                                               (9) 

 

1

ˆ

1

1 1
1 Y

ˆ ˆn

   
     

   
                                                                                                                         (10) 

From eq.
,s
 (9) and (10), the estimators of   and   are respectively  

1

1
ln

ˆ

ln

 
 
 
 
 
 

n

Y

X

                                                                                                                                                 (11) 

ˆ

1

ˆ

1

1 1
1 (1 )

ˆ
ˆ n

X Y








  
    
       
 
 
 
 

                                                                                                                (12)  

 It is difficult to find the distribution of 𝛼  so we shall approximate E(𝛼 )  by considering the mean and variance of the Taylor 

series expansion of the function g (X,Y) at point (μX , μY ) up to second order .     

Remark  

The first order statistics  𝑌1~𝑊(𝛼, 𝑛𝜃)
 

Proof: 

    We have the 𝑖𝑡𝑕  order statistic is given by [7] 

𝑔 𝑦𝑖 =
𝑛!

 𝑖 − 1 !  𝑛 − 𝑖 !
 𝐹 𝑦𝑖  

𝑖−1 1 − 𝐹 𝑦𝑖  
𝑛−𝑖𝑓 𝑦𝑖        − ∞ ≤ 𝑦𝑖 ≤ ∞ 

Where 𝑖 = 1,2,3, … , 𝑛 

In particular for 𝑖 = 1 we have the p.d.f. of the first order statistics which is 

𝑔 𝑦1 = 𝑛 1 − 𝐹 𝑦1  𝑛−1𝑓 𝑦1  

The c.d.f. of the first order statistics is given by  

𝐺 𝑦1 = 1 − [1 − 𝐹 𝑦1 ] 

Using  eq(1) and eq(2) we have  

𝑔 𝑦1 = 𝑛𝛼𝜃𝑦1
𝛼−1𝑒𝑛𝜃 𝑦1

𝛼
    0 ≤ 𝑦1 ≤ ∞ 

          = 0               , 𝑒. 𝑤. 

and hence 𝑌1~𝑊(𝛼, 𝑛𝜃) 
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so 𝐺 𝑦1 =  

0                                     0 < 𝑦1

1 − 𝑒𝑛𝜃 𝑦1
𝛼

           0 < 𝑦1 < ∞

1                                 𝑦1 → ∞

  

Remark: 

1- Since the first order statistics 𝑌1~𝑊(𝛼, 𝑛𝜃)  then the mean and variance of 𝑌1  is given by  

         𝜇𝑦 =
1

𝑛𝜃
1
𝛼

Γ(1 +
1

𝛼
)                                                                                                                                  (13) 

𝑉𝑎𝑟 𝑌1 =
1

 𝑛𝜃  
2
𝛼

Γ  1 +
2

𝛼
 −  

1

 𝑛𝛼  
1
𝛼

Γ  1 +
1

𝛼
  

2

  

so 

𝑉𝑎𝑟 𝑌1 =
Γ 1+

2

𝛼
 − Γ 1+

1

𝛼
  

2

𝑛
2
𝛼𝜃

2
𝛼

                                                                                                                              (14) 

2- The limiting distribution of  𝑌1  is 0 and so 𝑌1  converge stochastically to 0. 

Approximation to the mean and variance of   obtained by modified moment method 

We shall approximate the mean and variance of the estimator 𝛼   of the parameter 𝛼 that obtained by using the 

modified moments method by considering the mean and variance of the Taylor series expansion of the function g (X,Y) at 
point (μX , μY ) up to second order which is given by, [8]: 

E g X, Y  = g μ
X

, μ
Y
 +  1

2
Var[X]

∂2

∂x2
g X, Y  μX

μY

+  1
2

Var[Y]
∂2

∂Y2
g X, Y  μX

μY

+ Cov[X, Y]   
∂2

∂X ∂Y
g X, Y  μX

μY

 …….(23) 

Var g X, Y  = Var[X]   
∂

∂x
g X, Y  μX

μY

 

2

+ Var[Y]   
∂

∂Y
g X, Y  μX

μY

 

2

+  2Cov[X, Y]   
∂

∂x
g X, Y  μX

μY

   
∂

∂Y
g X, Y  μX

μY

 ……..(24) 

By setting 𝑋 = 𝑋 𝑎𝑛𝑑 𝑌 = 𝑌1 in eq.(23) and eq.(24), one can get 

E g X, Y1  ≅ g  μX , μY1
 +  1

2
Var X 

∂2

∂X
2 g X, Y1  μX

μY 1

+  1
2

Var[Y1]
∂2

∂Y1
2 g X, Y1  

 
μX
μY 1

+ Cov[X, Y1]    
∂2

∂X ∂Y1
g X, Y1  μX

μY 1

              (25)  

and  

Var g X, Y1  = Var X   
∂

∂X
g X, Y1  μX

μY 1

 

2

+ Var Y1   
∂

∂Y1
g X, Y1  μX

μY 1

 

2

+ 2Cov[X, Y1]   
∂

∂X
g X, Y1  μX

μY 1

   
∂

∂Y1
g X, Y1  μX

μY 1

       (26) 

        We have the modified method estimator 𝛼   of the parameter 𝛼  given by eq.(11) which is: 

1

1
ln

ˆ

ln

 
 
 
 
 
 

n

Y

X

  

Let 𝑔 𝑋 , 𝑌1 = 𝛼 =
ln⁡(

1

𝑛
)

ln⁡(
𝑌1
𝑋 

)
=

− ln 𝑛

ln 𝑌1−ln 𝑋 
     

It is known that  

𝜇𝑋 = 𝜇 =
1

𝜃
1
𝛼

Γ(1 +
1

𝛼
)                                                                                                                                                         (15) 

and 

𝑉𝑎𝑟 𝑋 =
𝜎2

𝑛
=

Γ 1+
2

𝛼
 − Γ 1+

1

𝛼
  

2

𝑛𝜃
2
𝛼

                                                                                                                                      (16) 

From eq.(13) and eq.(15) one can have: 
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𝑔 𝜇𝑋 , 𝜇𝑌1
 =

− ln 𝑛

ln 
1

 𝑛𝜃  
1
𝛼

𝛤 1+
1

𝛼
   − ln  

1

𝜃
1
𝛼

𝛤 1+
1
𝛼    

=
ln

1

𝑛

ln

 
 
 
 
 

1

 𝑛𝜃  
1
𝛼

𝛤 1+
1
𝛼 

1

𝜃
1
𝛼

𝛤 1+
1
𝛼 

 
 
 
 
 

=
ln

1

𝑛
1

𝛼
ln

1

𝑛
 
= 𝛼                                                                       (17)                                                                                                             

 On the other hand 

𝜕𝑔 𝑋, 𝑌1 

𝜕𝑋
=

− ln 𝑛

𝑋 

[ln 𝑌1 − ln 𝑋 ] 2
 

 𝜕𝑔 𝑋,𝑌1 

𝜕𝑋
 𝜇

𝑋
𝜇𝑌1

=

− ln 𝑛
1

𝜃
1
𝛼

Γ(1+
1
𝛼)

1

𝛼2(ln 𝑛)2
=

𝛼2𝜃
1
𝛼

ln 𝑛 Γ(1+
1

𝛼
)
                                                                                                                               (18)                                                                                                              

𝜕2𝑔 𝑋, 𝑌1 

𝜕𝑋
2 =

ln 𝑛

𝑋 2 [ln 𝑌1 − ln 𝑋 ] 2 − 2
ln 𝑛

𝑋 2 [ln 𝑌1 − ln 𝑋 ] 

[ln 𝑌1 − ln 𝑋 ] 4
=

ln 𝑛

𝑋 2 [ln 𝑌1 − ln 𝑋 − 2] 

[ln 𝑌1 − ln 𝑋 ]3
 

 𝜕
2𝑔 𝑋, 𝑌1 

𝜕𝑋
2  

𝜇𝑋
𝜇𝑌1

=  

ln 𝑛𝜃
2
𝛼

 Γ 1+
1

𝛼
  

2  ln   𝑛𝜃 
−1

𝛼 Γ  1 +
1

𝛼
  − ln  𝜃

−1

𝛼 Γ  1 +
1

𝛼
  − 2 

 ln   𝑛𝜃 
−1

𝛼 Γ  1 +
1

𝛼
   – ln  𝜃

−1

𝛼 Γ  1 +
1

𝛼
     3

 

And hence 

 
𝜕2𝑔 𝑋,𝑌1 

𝜕𝑋
2  =

𝛼3𝜃
2
𝛼

Γ 1+
1
𝛼 

  
1

𝛼
+

2

ln 𝑛Γ 1+
1
𝛼 

 

ln 𝑛
                                                                                                                                             

(19)     

                  =

𝛼3𝜃
2
𝛼    

1

𝛼
+

2

ln 𝑛Γ 1+
1
𝛼 

 

Γ 1+
1

𝛼
 ln 𝑛

                                                                            

𝜕𝑔 𝑋, 𝑌1 

𝜕𝑌1

=

ln 𝑛

𝑌1

(ln 𝑦1 − ln 𝑋 ) 2
 

 𝜕𝑔 𝑋,𝑌1 

𝜕𝑌1
 𝜇

𝑋
𝜇𝑌1

=
𝑛

1
𝛼𝜃

1
𝛼𝛼2

ln 𝑛 Γ 1+
1

𝛼
 
                                                                           

𝜕2𝑔 𝑋, 𝑌1 

𝜕𝑌1
2 =

− ln 𝑛

𝑦1
2  ln 𝑌1 − ln 𝑋 + 2 

 ln 𝑌1 − ln 𝑋  3
 

 𝜕
2𝑔 𝑋,𝑌1 

𝜕𝑌1
2  𝜇

𝑋
𝜇𝑌1

=
𝑛

2
𝛼  𝜃

2
𝛼  𝛼3 

2

ln 𝑛
−

1

𝛼
 

ln 𝑛  Γ 1+
1

𝛼
  

2                                                                                 

and 

𝜕2𝑔 𝑋, 𝑌1 

𝜕𝑥𝜕𝑌1

=

2 ln 𝑛

𝑋 𝑌1

 ln 𝑌1 − ln 𝑋  3
 

 𝜕
2𝑔 𝑋,𝑌1 

𝜕𝑋𝜕𝑌1
 𝜇

𝑋
𝜇𝑌1

=
−2𝑛

1
𝛼  𝜃

2
𝛼  𝛼3

 ln 𝑛  2 Γ 1+
1

𝛼
  

2                       

         In general 𝑋 converge stochastically to 𝜇𝑋  and we prove that 𝑌1 converge stochastically to 0 . So 𝑋𝑌1 converge 

stochastically to 0 , [23], therefore  

𝐸 𝑋𝑌1 ≅ 0                                                                                                                                

and hence 
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Cov X, Y1 ≅ E XY1 − E X E Y1 = −
 Γ  1 +

1

α
  

2

n
1

αθ
2

α

                                   

By substituting eq.,s(22), (28),(29),(31), (33), (34) and (36) in eq.(25), one can get the approximation to the expected value 
of 𝛼  which is given by: 

𝐸 𝛼  ≅ 𝐸  
− ln 𝑛

ln 𝑌1 − ln 𝑋 
   = 𝛼 +

1

2
 
Γ  1 +

2

𝛼
 −  Γ  1 +

1

𝛼
  

2

𝑛𝜃
2

𝛼

 

 
 
 
 
 𝛼3𝜃

2

𝛼    
1

𝛼
+

2

ln 𝑛Γ 1+
1

𝛼
 
 

Γ  1 +
1

𝛼
 ln 𝑛

 
 
 
 
 

+ 

               
1

2
  

Γ  1 +
2

𝛼
 −  Γ  1 +

1

𝛼
  

2

𝑛
2

𝛼𝜃
2

𝛼

   
𝑛

2

𝛼  𝜃
2

𝛼  𝛼3  
2

ln 𝑛
−

1

𝛼
 

ln 𝑛  Γ  1 +
1

𝛼
  

2  +  −
 Γ  1 +

1

α
  

2

n
1

αθ
2

α

  
−2𝑛

1

𝛼  𝜃
2

𝛼  𝛼3

 ln 𝑛  2  Γ  1 +
1

𝛼
  

2  

Moreover  

               lim𝑛→∞ 𝐸 𝛼  = 𝛼. 

This shows that 𝛼  is asymptotically unbiased estimator of 𝛼. 

By substituting eq.,s(28), (30), (22), (310) and (36) in eq.(26), one can obtain the approximation to variance of 𝛼  which is 

given by: 

                       Var α  ≅ Var 
− ln 𝑛

ln 𝑌1 − ln 𝑋 
   

           =  
Γ  1 +

2

𝛼
 −  Γ  1 +

1

𝛼
  

2

𝑛𝜃
2

𝛼

  
𝛼2𝜃

1

𝛼

ln 𝑛 Γ(1 +
1

𝛼
)
 

2

+    
Γ  1 +

2

𝛼
 −  Γ  1 +

1

𝛼
  

2

𝑛
2

𝛼𝜃
2

𝛼

  
𝑛

1

𝛼𝜃
1

𝛼𝛼2

ln 𝑛  Γ  1 +
1

𝛼
 
 

2

+ 

                                      2  −
 Γ  1 +

1

α
  

2

n
1

αθ
2

α

  
𝛼2𝜃

1

𝛼

ln 𝑛 Γ(1 +
1

𝛼
)
  

𝑛
1

𝛼𝜃
1

𝛼𝛼2

ln 𝑛  Γ  1 +
1

𝛼
 
  

and hence 

                      Var α  =
𝛼4

𝑛  ln 𝑛 2
 

Γ  1 +
2

𝛼
 

 Γ  1 +
1

𝛼
  

2 − 1 +  
𝛼4

  ln 𝑛 2
 

Γ  1 +
2

𝛼
 

 Γ  1 +
1

𝛼
  

2 − 1 −
2𝛼4

 ln 𝑛 2
   

Conclusions 

We can conclude from our study the following 

1-The approximated mean and variance become more accurate if the higher order of    approximation is used. 

2-The estimator of the shape parameter is asymptotically unbiased estimator. 

3-The estimator of the shape parameter has small variance even for small sample size. 

4-This technique can be use for general form for the distn. with three parameters. 
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