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ABSTRACT 

Hamouda E. H. [J. of Advances in Math. Vol 6, 2(2014), 973-941] has introduced some universal constructions in the 

category FTOP, whose objects are the  I-fuzzy topological spaces (X,μ, F) where X is an ordinary set, μ is a fuzzy set in X 

and F is a family of fuzzy sets in X satisfying some axioms. In this paper we introduce the dual universal constructions, 

namely, fuzzy co-products, fuzzy co-equalizers and fuzzy pushouts for I-fuzzy topological spaces. Also we discuss some 

results concerning all such universal objects. 
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1. INTRODUCTION 

Zadeh [15] introduced the notion of a fuzzy set as a function from the given set to the unit interval. The first categorical 

definition of fuzzy sets was introduced by J. A. Goguen [5]. In the case of fuzzy topology, there are various interesting 

categories of fuzzy topological spaces. The collection of all fuzzy topological spaces and fuzzy continuous functions 

form a category. Since C. Chang, R. Lowen and J. Goguen have defined fuzzy topology in different ways, each of them 

defines a different category of fuzzy topological spaces [11,13]. Geetha S. [4,5,6] introduced a new category FTOP, the 

objects are I - fuzzy topological spaces (X, μ, F)  where X is an ordinary set, μ is a fuzzy set in X and F is a family of 

fuzzy sets in X satisfying some axioms. Some applications of category theory in fuzzy topology are presented in [2, 8, 

14]. Behera [2] introduced the concepts of fuzzy equalizers , fuzzy pullbacks and their duals for fuzzy topological spaces 

in the sense of Chang. Hamouda E. H. [8] introduced some universal objects for I - fuzzy topological spaces (X, μ, F). In 

this paper the dual concepts, namely, fuzzy co-products, fuzzy co-equalizers and fuzzy pushouts for I-fuzzy topological 

spaces are investigated. Also we discuss some results concerning all such universal objects. 

2. PRELIMINARIES 

As usual 𝐼 denotes the closed unit interval [0,1]. A fuzzy set A in a set X is a function on X into the closed unit interval [0, 

1] of the real line.  The fuzzy sets in X taking on respectively the constant values 0 and 1 are denoted by 0X and 1X 

respectively. For two fuzzy sets A, B in X,  we write 𝐴 ≤ 𝐵 if 𝐴(𝑥) ≤ 𝐵(𝑥) for each 𝑥 ∈ 𝑋. For a collection of fuzzy sets 

{𝐴𝑖 : 𝑖 ∈ 𝐽}, the union 𝐶 =  𝐴𝑖𝑖∈𝐽  and the intersection 𝐷 =  𝐴𝑖𝑖∈𝐽  are defined by  

𝐶(𝑥) =   𝐴𝑖𝑖∈𝐽 (𝑥),     for all 𝑥 ∈ 𝑋, 

𝐷 𝑥 =   𝐴𝑖 𝑥 𝑖∈𝐽 ,     for all 𝑥 ∈ 𝑋. 

If 𝑓: 𝑋 → 𝑌 is a function, and 𝐴, 𝐵 are fuzzy sets in 𝑋, 𝑌 respectively, then the fuzzy set 𝑓−1(𝐵) in 𝑋 is defined by 

𝑓−1 𝐵 = 𝐵 ∘ 𝑓, and 𝑓 𝐴 : 𝑌 → 𝐼 is defined as follows [3]: 

𝑓 𝐴  𝑦 =  
  𝐴 𝑥 : 𝑥 ∈ 𝑓−1 𝑦  ,      𝑖𝑓 𝑓−1 𝑦 ≠ ∅; 

0                                         𝑖𝑓 𝑓−1 𝑦 = ∅.

  

Definition 2.1 [5] Let 𝑋 be a set , 𝜇: 𝑋 → 𝐼 be a fuzzy set in 𝑋 and 𝐹  be a family of fuzzy sets in 𝑋 satisfying the 

following conditions: 

(1) 𝐴 ∈ 𝐹 implies that 𝐴(𝑥) ≤ 𝜇(𝑥) for all 𝑥 ∈ 𝑋, 

(2) If 𝐴𝑖 ∈ 𝐹, 𝑖 ∈ 𝐽, then  𝐴𝑖𝑖∈𝐽 ∈ 𝐹, 

(3) If 𝐴, 𝐵 ∈ 𝐹, then 𝐴 ∩ 𝐵 ∈ 𝐹, 

(4) 0𝑋 , 𝜇 ∈ 𝐹.    

The triple (𝑋, 𝜇, 𝐹) is called an 𝐼 − fuzzy topological space or  𝐼 - fts. The members of 𝐹 are called  𝐼 − fuzzy open sets 

and their complements are called  𝐼 − fuzzy closed sets. 

Remark 2.2 when = 1𝑋  , an 𝐼 − fuzzy topological space is nothing but a fuzzy topology in the sense of Chang[3].   

Definition 2.3 [4] Let (𝑋1, 𝜇1, 𝐹1) and (𝑋2, 𝜇2, 𝐹2) be two 𝐼 − fuzzy topological spaces. A function 𝑓: (𝑋1 , 𝜇1, 𝐹1) → 

(𝑋2, 𝜇2, 𝐹2) is fuzzy continuous if: 

i. 𝜇1 𝑥 ≤ 𝜇2 𝑓 𝑥  , ∀ 𝑥 ∈ 𝑋, 

ii. 𝜇1 ∩ 𝑓−1 𝑈 ∈ 𝐹1, ∀ 𝑈 ∈ 𝐹2. 

The notion FTOP will denote the category of I − fuzzy topological spaces and fuzzy continuous functions. We shall use 

the categorical terminology of [1]. For more information about the category FTOP, the reader could consult [4]. 

3. UNIVERSAL CONSTRUCTIONS IN FTOP 

In this section we discuss fuzzy co-products, fuzzy co-equalizers and fuzzy pushouts for  𝐼 − fuzzy topological spaces. 

By remark 2.2, some results in [2] are considered as a special case of the results below. The word "map" will always 

mean a continuous function, but the word "function" does not imply continuity.   

The concept of fuzzy co-product has introduced in [4, 7,10,12].The following theorem emphasizes the universal property 

of fuzzy co-product in FTOP. From now on, 𝐽 is referred to as the index set and the word "fuzzy spaces"  means  𝐼 − 

fuzzy topological spaces. 

Theorem 3.1 For a given fuzzy spaces  𝑋𝑖 , 𝜇𝑖 , 𝐹𝑖 , 𝑖 ∈ 𝐽, the following hold: 
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(1) There exists a fuzzy space (𝑆, 𝜇, 𝐹) and fuzzy maps 𝑓𝑖 : (𝑋𝑖 , 𝜇𝑖 , 𝐹𝑖) → (𝑆, 𝜇, 𝐹) for each 𝑖 ∈ 𝐽. 

(2) For any fuzzy space  (𝑋, 𝛾, 𝐻) with fuzzy maps 𝜑𝑖 : (𝑋𝑖 , 𝜇𝑖 , 𝐹𝑖) → (𝑋, 𝛾, 𝐻), there is a unique fuzzy map 𝜃: (𝑆, 𝜇, 𝐹) →
(𝑋, 𝛾, 𝐻) such that 𝜃 ∘ 𝑓𝑖 = 𝜑𝑖  for each 𝑖 ∈ 𝐽. 

Proof. (1) For the given fuzzy spaces  𝑋𝑖 , 𝜇𝑖 , 𝐹𝑖  , we consider the disjoint union    𝑋𝑖 , 𝜇𝑖 , 𝐹𝑖 𝑖∈𝐽   to be the fuzzy space 

(𝑆, 𝜇, 𝐹), where 𝑆 =  𝑋𝑖 =   (𝑋𝑖 × {𝑖})𝑖∈𝐽𝑖∈𝐽   is the disjoint union of ordinary sets 𝑋𝑖  with inclusion maps 𝑓𝑖 : 𝑋𝑖 → 𝑆, 

defined by 𝑓𝑖 𝑥 = (𝑥, 𝑖),  𝜇 is a fuzzy set in 𝑆 defined by 𝜇 𝑥, 𝑖 = 𝜇𝑖(𝑥) for each 𝑖 ∈ 𝐽 and 𝒰𝑖 = {𝑈: 𝑆 → 𝐼|𝑓𝑖
−1(𝑈) ∩

𝜇𝑖 ∈ 𝐹𝑖 , 𝑖 ∈ 𝐽}. It is easily seen that 𝒰𝑖  is the finest fuzzy topology making 𝑓𝑖  fuzzy continuous and the intersection 

𝐹 =  𝒰𝑖𝑖∈𝐽   is the finest fuzzy topology making all the functions 𝑓𝑖  fuzzy continuous [10]. In equivalent words, 𝑈 ∈ 𝒰𝑖  

if and only if 𝑓𝑖
−1(𝑈) ∩ 𝜇𝑖 ∈ 𝐹𝑖 , 𝑖 ∈ 𝐽.  

(2) Define 𝜃: (𝑆, 𝜇, 𝐹) → (𝑋, 𝛾, 𝐻) by 𝜃 𝑥, 𝑖 = 𝜑𝑖 𝑥  for all 𝑥 ∈ 𝑋𝑖 , 𝑖 ∈ 𝐽. With the definition of 𝜃, we have 𝜃 ∘ 𝑓𝑖 = 𝜑𝑖 . 

For 𝜃 to be fuzzy continuous, 𝜃−1(𝐵) ∩ 𝜇 must belong to 𝐹 for each 𝐵 ∈ 𝐻 and 𝜇(𝑥, 𝑖) ≤ 𝛾(𝜃 𝑥, 𝑖 ). First, since 𝜑𝑖  is a 

fuzzy map for each  𝑖 ∈ 𝐽, then 𝛾 𝜃 𝑥, 𝑖  = 𝛾 𝜑𝑖 𝑥  ≥ 𝜇𝑖 𝑥 = 𝜇(𝑥, 𝑖) for each 𝑥 ∈ 𝑋𝑖 . Let 𝐵 be a fuzzy open set 

belonging to 𝐻 and 𝑥 ∈ 𝑋𝑖 , then 

(𝑓𝑖
−1(𝜃−1 𝐵 ∩ 𝜇) ∩ 𝜇𝑖) 𝑥 =  𝑓𝑖

−1(𝜃−1 𝐵 ∩ 𝜇 (𝑥) ∧ 𝜇𝑖 𝑥  

                                                 = (𝜃−1 𝐵 ∩ 𝜇)(𝑓𝑖(𝑥)) ∧ 𝜇𝑖 𝑥  

                                        = (𝜃−1 𝐵 ∩ 𝜇)(𝑥, 𝑖) ∧ 𝜇𝑖 𝑥  

                                              = 𝐵 𝜃 𝑥, 𝑖  ∧ 𝜇 𝑥, 𝑖 ∧ 𝜇𝑖 𝑥  

                         = 𝐵 𝜑𝑖  𝑥 ∧ 𝜇𝑖 𝑥  

                             = (𝜑𝑖
−1 𝐵 ∩ 𝜇𝑖)(𝑥). 

Hence,  𝑓𝑖
−1(𝜃−1 𝐵 ∩ 𝜇) ∩ 𝜇𝑖 = 𝜑𝑖

−1 𝐵 ∩ 𝜇𝑖  belongs to 𝐹𝑖  for each 𝑖 ∈ 𝐽 . Therefore, 𝜃−1(𝐵) ∩ 𝜇 ∈ 𝐹 , proving the 

fuzzy continuity of  𝜃  .This verifies the existence of the universal property. The uniqueness of  𝜃  is an immediate 

consequence of the definition . □ 

Proposition 3.2 Let  𝑋𝑖 , 𝜇𝑖 , 𝐹𝑖 , 𝑖 ∈ 𝐽, be a collection of fuzzy spaces, and give  𝑋𝑖𝑖∈𝐽   the fuzzy co-product topology. 

Then the fuzzy co- product is unique up to fuzzy homeomorphism. 

Proof. Let 𝑆 = 𝑄 =  𝑋𝑖𝑖∈𝐽   with fuzzy maps 𝑓𝑖 :  𝑋𝑖 , 𝜇𝑖 , 𝐹𝑖 →  𝑆, 𝜇, 𝐹  and 𝑔𝑖 :  𝑋𝑖 , 𝜇𝑖 , 𝐹𝑖 →  𝑄, 𝛾, 𝐻  respectively. Then 

the universal property of the fuzzy co-product 𝑆 implies that there is a unique fuzzy map θ:  :  𝑆, 𝜇, 𝐹 →  𝑄, 𝛾, 𝐻   such 

that 𝜃 ∘ 𝑓𝑖 = 𝑔𝑖  for each 𝑖 ∈ 𝐽. In similar way, there exist a unique fuzzy map 𝜑:  𝑄, 𝛾, 𝐻 → (𝑆, 𝜇, 𝐹) such that 𝜑 ∘ 𝑔𝑖 =
𝑓𝑖  for each i ∈ J. Thus 𝑓𝑖 = 𝜑 ∘ 𝑔𝑖 = 𝜑 ∘ 𝜃 ∘ 𝑓𝑖 = 𝑖𝑑𝑆 ∘ 𝑓𝑖   for each i ∈ J. Form the uniqueness condition of theorem 3.1, it 

follows that 𝜑 ∘ 𝜃 = 𝑖𝑑𝑆 . Similarly, we have 𝜃 ∘ 𝜑 = 𝑖𝑑𝑄 . Therefore, 𝑆 and 𝑄 are fuzzy homeomorphic [3]. □ 

For the sake of simplicity, we shall use the symbol (𝜇𝑋 , 𝐹𝑋) for the  𝐼 − fuzzy topological space  (𝑋, 𝜇, 𝐹). The following 

theorem states the definition [1] and proves  the existence of fuzzy co-equalizers  in FTOP. 

Theorem 3.3  Let 𝑓, 𝑔:   𝜇𝑋 , 𝐹𝑋 → (𝜇𝑌 , 𝐹𝑌) be fuzzy maps, then 

(1)  There exists a fuzzy space    𝜇𝐸 , 𝐹𝐸  and a fuzzy map 𝑞: (𝜇𝑌 , 𝐹𝑌) →   𝜇𝐸 , 𝐹𝐸  such that 𝑞 ∘ 𝑓 = 𝑞 ∘ 𝑔. 

(2)  For any fuzzy space   𝜇𝐴 , 𝐹𝐴  with a fuzzy map 𝜑:   𝜇𝑌, 𝐹𝑌 →   𝜇𝐴 , 𝐹𝐴  satisfying 𝜑 ∘ 𝑓 = 𝜑 ∘ 𝑔 , there exists a 

unique fuzzy map 𝑕:   𝜇𝐸 , 𝐹𝐸 →   𝜇𝐴 , 𝐹𝐴  such that 𝜑 = 𝑕 ∘ 𝑞. 

Proof. (1) Define 𝑄 to be  { 𝑓 𝑥 , 𝑔 𝑥  : 𝑥 ∈ 𝑋} ⊆ 𝑌 × 𝑌. It is known that 𝐸 need not be an equivalence relation on 𝑌. 

Let 𝑅 be the smallest equivalence relation on 𝑌 containing 𝑄, that is the intersection of all equivalence relations on 𝑌 

containing 𝑄. Let 𝐸 = 𝑌/𝑅 be the usual quotient set and 𝑞: 𝑌 → 𝐸, 𝑦 ↦  𝑦 , be the usual quotient map. Now we define 

the quotient fuzzy topology on 𝐸  as follows: define  𝜇𝐸  to be the image of 𝜇𝑌  under  𝑞  , 𝑞 𝜇𝐸 , and  𝐹𝐸 = {𝑉: 𝐸 →
𝐼|𝑞−1(𝑉) ∩ 𝜇𝑌 ∈ 𝐹𝑌}. Then ( 𝜇𝐸 , 𝐹𝐸) is the desired fuzzy space, and 𝑞: (𝜇𝑌 , 𝐹𝑌) →   𝜇𝐸 , 𝐹𝐸  is a fuzzy map[4]. Since for 

any  𝑥 ∈ 𝑋,  𝑓 𝑥  = [𝑔 𝑥 ], it follows that 𝑞 𝑓 𝑥  =  𝑓 𝑥  =  𝑔 𝑥  = 𝑞 𝑔 𝑥  , i.e., 𝑞 ∘ 𝑓 = 𝑞 ∘ 𝑔. 

(2) We then have to verify the universal property. For any fuzzy space   𝜇𝐴 , 𝐹𝐴 , we define  𝑕:   𝜇𝐸 , 𝐹𝐸 →   𝜇𝐴 , 𝐹𝐴  by 

𝑕 [𝑦] = 𝜑 𝑦 , 𝑦 ∈ 𝑌, and this implies that  𝜑 = 𝑕 ∘ 𝑞. We must show that this is well-defined. Given   𝑦1 = [𝑦2] in 𝐸, 

for 𝑦1 , 𝑦2  ∈ 𝑌, then 𝑞 𝑦1 = 𝑞(𝑦2) such that (𝑦1 , 𝑦2) ∈ 𝑅. Define the relation 𝑅𝜑 = {(𝑦, 𝑧) ∈ 𝑌 × 𝑌: 𝜑 𝑦 = 𝜑 𝑧 } on 

𝑌. It is an easy matter to check that  𝑅𝜑  is an equivalence relation on 𝑌, moreover, the relation 𝑄 is a subset of 𝑅𝜑 , being  

𝜑 𝑓 𝑥  = 𝜑(𝑔 𝑥   for every 𝑥 ∈ 𝑋   and this implies that 𝑅 ⊆ 𝑅𝜑 . Thus, (𝑦1 , 𝑦2) ∈ 𝑅 ⊆ 𝑅𝜑  and we have 𝜑 𝑦1 =

𝜑(𝑦2). It follows that 𝑕 is well-defined. Now to complete the existence of 𝑕 , we have to show that  𝑕  is a fuzzy map. 
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Since  𝜑 = 𝑕 ∘ 𝑞 is a fuzzy map, then the fuzzy continuity of 𝑕 comes directly from the well known result: 𝑕  is fuzzy 

continuous if and only if 𝑕 ∘ 𝑞 is fuzzy continuous[4]. The uniqueness of 𝑕 comes directly from the definition. □ 

We now define fuzzy pushouts. Suppose we have  fuzzy maps  𝑓: (𝜇𝑋 , 𝐹𝑋) → (𝜇𝑌 , 𝐹𝑌) and  𝑔: (𝜇𝑋 , 𝐹𝑋) → (𝜇𝑍 , 𝐹𝑍).  Then 

the fuzzy pushout of these fuzzy maps is a fuzzy space (𝜇𝐷 , 𝐹𝐷) together with fuzzy maps  𝛼: (𝜇𝑌 , 𝐹𝑌) → (𝜇𝐷 , 𝐹𝐷) and 

𝛽: (𝜇𝑍 , 𝐹𝑍) → (𝜇𝐷 , 𝐹𝐷)  such that 𝛼 ∘ 𝑓 = 𝛽 ∘ 𝑔 , and such that the following universal property holds: Suppose that  

(𝜇𝐶 , 𝐹𝐶) is a fuzzy space and that 𝛼 : (𝜇𝑌 , 𝐹𝑌)  → (𝜇𝐶 , 𝐹𝐶) and 𝛽 : (𝜇𝑍 , 𝐹𝑍)  → (𝜇𝐶 , 𝐹𝐶) are fuzzy maps with 𝛼 ∘ 𝑓 = 𝛽 ∘ 𝑔. 

Then there is a unique fuzzy map  𝜑: (𝜇𝐷 , 𝐹𝐷)  → (𝜇𝐶 , 𝐹𝐶) with 𝜑 ∘ 𝛼 = 𝛼  and 𝜑 ∘ 𝛽 = 𝛽 . We then call (𝜇𝐷 , 𝐹𝐷) a fuzzy 

pullback of 𝑓 and 𝑔. 

In the following theorem, we show that fuzzy pushouts exist in the category FTOP by constructing them as fuzzy co-

products. 

Theorem 3.4  Let 𝑓: (𝜇𝑋 , 𝐹𝑋) → (𝜇𝑌 , 𝐹𝑌) and  𝑔: (𝜇𝑋 , 𝐹𝑋) → (𝜇𝑍 , 𝐹𝑍) be any fuzzy maps in the category FTOP. Then 

there exists a fuzzy pushout (𝜇𝐷 , 𝐹𝐷). 

Proof. Define 𝐷 to be the quotient of the disjoint union 𝑌 𝑍 = 𝑌 ×  1 ∪ 𝑍 × {2} by the equivalence relation generated 

by the relation  𝑓 𝑥 , 1 ~(𝑔 𝑥 , 2) for each 𝑥 ∈ 𝑋, then 𝐷 =  𝑌 𝑍/~ . Let  the functions  𝛼: 𝑌 → 𝐷 and 𝛽: 𝑍 → 𝐷 be 

defined by 𝛼 𝑦 = [ 𝑦, 1 ], 𝛽 𝑧 = [ 𝑧, 2 ]. Now  we define the fuzzy topology on 𝐷 as follows:  𝜇𝐷 [ 𝑦, 1 ] = 𝜇𝑌(𝑦) 

for each 𝑦 ∈ 𝑋 ,  𝜇𝐷 𝑧, 2 = 𝜇𝑍(𝑧) for each 𝑧 ∈ 𝑍, and by the definition of fuzzy co-product, 𝐷 is assigned the finest 

fuzzy topology so that the functions  𝛼 and 𝛽 are fuzzy continuous.  

Lemma. A fuzzy set  𝑈: 𝐷 → 𝐼  is fuzzy open, 𝑈 ∈ 𝐹𝐷 , iff 𝛼−1(𝑈) ∩ 𝜇𝑌 ∈ 𝐹𝑌 and  𝛽−1(𝑈) ∩ 𝜇𝑍 ∈ 𝐹𝑍. 

Proof. consider the quotient map 𝑞: 𝑌 𝑍 → 𝐷, and set 𝛼 = 𝑞|𝑌 and  𝛽 = 𝑞|𝑍  . Let 𝑈: 𝐷 → 𝐼 be a fuzzy open set belongs 

to 𝐹𝐷. Because 𝑞 is a fuzzy map, 𝑞−1(𝑈) ∩ 𝜇𝑌  𝑍 ∈ 𝐹𝑌  𝑍  . Then we have 

 𝑞−1 𝑈 ∩ 𝜇𝑌  𝑍  𝑦, 1 = 𝑞−1 𝑈  𝑦, 1 ∧ 𝜇𝑌  𝑍 𝑦, 1 = 𝑈 𝑞 𝑦, 1  ∧ 𝜇𝑌 𝑦 = 𝑈 𝛼 𝑦  ∧ 𝜇𝑌 𝑦 =  𝛼−1 𝑈 ∩ 𝜇𝑌  𝑦 . 

But this implies that  𝛼−1 𝑈 ∩ 𝜇𝑌 ∈ 𝐹𝑌 𝑍  . By the definition of fuzzy co-product , we conclude that 𝛼−1 𝑈 ∩ 𝜇𝑌 ∈ 𝐹𝑌. 

In similar way and by replacing (𝑦, 1) with (𝑧, 2), we have   𝛽−1 𝑈 ∩ 𝜇𝑍 ∈ 𝐹𝑍 . Conversely, suppose that 𝑈: 𝐷 → 𝐼 is a 

fuzzy set for which 𝛼−1(𝑈) ∩ 𝜇𝑌 ∈  𝐹𝑌  and  𝛽−1(𝑈) ∩ 𝜇𝑍 ∈ 𝐹𝑍 . The above calculations implies that  𝑞−1 𝑈 ∩

𝜇𝑌 𝑍𝑦,1=𝛼−1𝑈∩𝜇𝑌𝑦 and 𝑞−1𝑈∩𝜇𝑌 𝑍𝑧,2=𝛽−1𝑈∩𝜇𝑍𝑧,2, proving the belonging of 𝑞−1𝑈∩𝜇𝑌 𝑍  to 𝐹𝑌 𝑍 . but 

this means that 𝑈 is fuzzy open by the definition of the fuzzy quotient topology. 

It is clear that 𝛼 𝑓 𝑥  = [ 𝑓 𝑥  , 1)] = [(𝑔 𝑥 , 2)] = 𝛽(𝑔(𝑥)), 𝑥 ∈ 𝑋, this implies that 𝛼 ∘ 𝑓 = 𝛽 ∘ 𝑔. To show that 𝐷 

satisfies the universal property, given a fuzzy space  (𝜇𝐶 , 𝐹𝐶)  with fuzzy maps 𝛼 : (𝜇𝑌 , 𝐹𝑌)  → (𝜇𝐶 , 𝐹𝐶)  and 𝛽 : (𝜇𝑍 , 𝐹𝑍)  →

(𝜇𝐶 , 𝐹𝐶)  such that 𝛼 ∘ 𝑓 = 𝛽 ∘ 𝑔, we define  𝜑: (𝜇𝐷 , 𝐹𝐷)  → (𝜇𝐶 , 𝐹𝐶) by 𝜑 [ 𝑦, 1 ] = 𝛼  𝑦 , and  𝜑 [ 𝑧, 2 ] = 𝛽  𝑧 . It 

is easy to check that this is well-defined. Also, it is clear that 𝜑 ∘ 𝛼 = 𝛼  and 𝜑 ∘ 𝛽 = 𝛽 . For the uniqueness property, 

consider the quotient map 𝑞: 𝑌 𝑍 → 𝐷  and  define  𝜑 : 𝑌 𝑍 → 𝐶  by 𝜑 |𝑌 = 𝛼   and  𝜑 |𝑍 = 𝛽 . We can verify that  𝜑  

factors through the map 𝑞 to yield the map  𝜑: (𝜇𝐷 , 𝐹𝐷)  → (𝜇𝐶 , 𝐹𝐶). Further, 𝜑 is unique because it is required to satisfy 

𝜑 ∘ 𝑞 =  𝜑  (by the uniqueness condition in theorem 3.1). Also the last equation guarantees  the fuzzy continuity of 𝜑.  □   

Example 3.5   

(1). Let (𝑋, 𝜇, 𝐹) be a fuzzy space ,  ( 𝑧 , 1 𝑧 , 𝐹 𝑧 ) be a terminal object in FTOP [4] and  𝐴 ⊂ X. Let 

𝜇𝐴 = 𝜇|𝐴 , 𝐹𝐴 = {𝑈|𝐴 ∶ 𝑈 ∈ 𝐹}, then (𝐴, 𝜇𝐴 , 𝐹𝐴) is called a subspace of (𝑋, 𝜇, 𝐹)[4]. The fuzzy pushout of the diagram  

({𝑧},1{𝑧}, 𝐹{𝑧}) ← (𝐴, 𝜇𝐴 , 𝐹𝐴) → (𝑋, 𝜇, 𝐹), 

Is the fuzzy quotient (𝑋/𝐴, 𝛾, 𝒰), 

(2). Let (𝑋, 𝜇, 𝐹) be a fuzzy space,  𝐴, 𝐵 ⊂ X  so that 𝑋 = 𝐴 ∪ 𝐵.  Let 𝜇𝐴 = 𝜇|𝐴 , 𝐹𝐴 = {𝑈|𝐴 ∶ 𝑈 ∈ 𝐹} and                                            

𝜇𝐵 = 𝜇|𝐵  ,  𝐹𝐵 = {𝑈|𝐵 ∶ 𝑈 ∈ 𝐹}, then (𝐴, 𝜇𝐴 , 𝐹𝐴) and  (𝐵, 𝜇𝐵 , 𝐹𝐵) are fuzzy spaces considered as  

subspaces of  (𝑋, 𝜇, 𝐹). Consider  the diagram of fuzzy maps (inclusions) 

(𝐵, 𝜇𝐵 , 𝐹𝐵) ← (𝐴 ∩ 𝐵, 𝜇𝐴∩𝐵 , 𝐹𝐴∩𝐵) → (𝐴, 𝜇𝐴 , 𝐹𝐴), 

where (𝐴 ∩ 𝐵, 𝜇𝐴∩𝐵 , 𝐹𝐴∩𝐵) is a subspace of (𝐴, 𝜇𝐴 , 𝐹𝐴) and (𝐵, 𝜇𝐵 , 𝐹𝐵). Then the fuzzy pushout  (𝜇𝐷 , 𝐹𝐷) is the fuzzy 

space (𝑋, 𝜇, 𝐹) . 

Proposition 3.6  Given any fuzzy maps 𝑓: (𝜇𝑋 , 𝐹𝑋) → (𝜇𝑌 , 𝐹𝑌)  and  𝑔: (𝜇𝑋 , 𝐹𝑋) → (𝜇𝑍 , 𝐹𝑍), the fuzzy pushout (𝜇𝐷 , 𝐹𝐷)  

is unique up to fuzzy homeomorphism. 

g 
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Proof. Suppose (𝜇𝐷′ , 𝐹𝐷′ ) , with fuzzy maps 𝑓 ′ : (𝜇𝑌 , 𝐹𝑌) → (𝜇𝐷′ , 𝐹𝐷′ )  and 𝑔′ : (𝜇𝑍 , 𝐹𝑍) → (𝜇𝐷′ , 𝐹𝐷′ ) , is another fuzzy 

pushout. Take  𝜇𝐶 , 𝐹𝐶 = (𝜇𝐷′ , 𝐹𝐷′ ) ; we find a fuzzy map 𝜑: (𝜇𝐷 , 𝐹𝐷) → (𝜇𝐷′ , 𝐹𝐷′ )  such that with 𝜑 ∘ 𝛼 = 𝑓  and 

𝜑 ∘ 𝛽 = 𝑔 . By reversing the roles of (𝜇𝐷 , 𝐹𝐷) and (𝜇𝐷′ , 𝐹𝐷′ ), we find  a fuzzy map 𝜑′ : (𝜇𝐷′ , 𝐹𝐷′ ) →  (𝜇𝐷 , 𝐹𝐷) such that 

𝜑′ ∘ 𝑓 = 𝛼 and 𝜑′ ∘ 𝑔 = 𝛽. Then  𝜑′ ∘ 𝜑 ∘ 𝛼 = 𝛼, and similarly 𝜑′ ∘ 𝜑 ∘ 𝛽 = 𝛽. Now take  𝜇𝐶 , 𝐹𝐶 =  𝜇𝐷 , 𝐹𝐷 , 𝛼 = 𝛼 ′  

and 𝛽 = 𝛽′ . We have two fuzzy maps, 𝜑′ ∘ 𝜑: (𝜇𝐷 , 𝐹𝐷) →  (𝜇𝐷 , 𝐹𝐷) and 𝑖𝑑𝐷  that satisfy the conditions of fuzzy pushout; 

by the uniqueness in definition of fuzzy pushout, 𝜑′ ∘ 𝜑 = 𝑖𝑑𝐷 . Similarly, 𝜑 ∘ 𝜑′ = 𝑖𝑑𝐷′ , so that 𝜑 and 𝜑′  are inverse 

fuzzy homeomorphisms. □  

We close this section by investigation the relationship among the universal constructions mentioned above. 

Theorem 3.7 In FTOP, fuzzy pushouts exist if and only if fuzzy co-equalizers exist. 

Proof. (Co-equalizers ⇒ Pushouts) Consider the arbitrary fuzzy maps  𝑓: (𝜇𝑋 , 𝐹𝑋) → (𝜇𝑍 , 𝐹𝑍)   and  𝑔: (𝜇𝑌, 𝐹𝑌) →

(𝜇𝑍 , 𝐹𝑍) . Let   𝜇𝑌  𝑍 , 𝐹𝑌  𝑍  be the fuzzy co-product of the fuzzy spaces (𝜇𝑌 , 𝐹𝑌)  and (𝜇𝑍 , 𝐹𝑍)   with the fuzzy 

maps 𝑒1: 𝑌 → 𝑌  𝑍 and 𝑒2: 𝑍 → 𝑌  𝑍 defined by 𝑒1 𝑦 =  𝑦, 1 , and 𝑒2 𝑧 =  𝑧, 2 . Let   𝜇𝐸 , 𝐹𝐸  together with a fuzzy 

map 𝑞:   𝜇𝑌  𝑍 , 𝐹𝑌  𝑍 →   𝜇𝐸 , 𝐹𝐸  be the fuzzy co-equalizer of fuzzy maps 𝑒1 ∘ 𝑓, 𝑒2 ∘ 𝑔: (𝜇𝑋 , 𝐹𝑋) →   𝜇𝑌  𝑍 , 𝐹𝑌  𝑍  such 

that 𝑞 ∘ (𝑒1 ∘ 𝑓) = 𝑞 ∘ (𝑒2 ∘ 𝑔) , by theorem 3.3. Now we prove that   𝜇𝐸 , 𝐹𝐸  together with fuzzy maps 

 𝑞 ∘ 𝑒1: (𝜇𝑌 , 𝐹𝑌) →   𝜇𝐸 , 𝐹𝐸  and 𝑞 ∘ 𝑒2: (𝜇𝑍 , 𝐹𝑍) →   𝜇𝐸 , 𝐹𝐸  is the pushout of the fuzzy maps 𝑓 and 𝑔. Let (𝜇𝐶 , 𝐹𝐶) be a 

fuzzy space with fuzzy maps 𝛼: (𝜇𝑌 , 𝐹𝑌)  → (𝜇𝐶 , 𝐹𝐶) and 𝛽: (𝜇𝑍 , 𝐹𝑍)  → (𝜇𝐶 , 𝐹𝐶) so that 𝛼 ∘ 𝑓 = 𝛽 ∘ 𝑔. By theorem 3.1, 

there exists a unique fuzzy map 𝜃: (𝜇𝑌  𝑍 , 𝐹𝑌  𝑍)  → (𝜇𝐶 , 𝐹𝐶) such that  𝜃 ∘ 𝑒1 = 𝛼,  𝜃 ∘ 𝑒2 = 𝛽. Since   𝜇𝐸 , 𝐹𝐸  is the 

fuzzy co-equalizer of fuzzy maps 𝑒1 ∘ 𝑓, 𝑒2 ∘ 𝑔: (𝜇𝑋 , 𝐹𝑋) →   𝜇𝑌  𝑍 , 𝐹𝑌  𝑍  and 𝜃 ∘  𝑒1 ∘ 𝑓 = (𝜃 ∘ 𝑒1) ∘ 𝑓 = 𝛼 ∘ 𝑓 = 𝛽 ∘

𝑓 = (𝜃 ∘ 𝑒2) ∘ 𝑔 = 𝜃 ∘  𝑒2 ∘ 𝑔 , then theorem 3.3 implies that there exists a unique fuzzy map 𝑕:   𝜇𝐸 , 𝐹𝐸 →   𝜇𝐶 , 𝐹𝐶    

such that 𝑕 ∘ 𝑞 = 𝜃. Hence 𝑕 ∘ (𝑞 ∘ 𝑒1) = 𝜃 ∘ 𝑒1 =  𝛼 and  𝑕 ∘ (𝑞 ∘ 𝑒2) = 𝜃 ∘ 𝑒2 =  𝛽. Thus the required fuzzy pushout  

is obtained.  

(Pushouts ⇒ Co-equalizers) Given any two fuzzy maps 𝑓, 𝑔:   𝜇𝑋 , 𝐹𝑋 → (𝜇𝑌 , 𝐹𝑌). Consider the function 𝑓 ⨆ 𝑔: 𝑋  𝑋 →
𝑌 defined by (𝑓 ⨆ 𝑔)(𝑥, 1) = 𝑓(𝑥)   and (𝑓 ⨆ 𝑔)(𝑥, 2) = 𝑔(𝑥), in similar way, we define  𝑖𝑑𝑋  ⨆ 𝑖𝑑𝑋 : 𝑋   𝑋 → 𝑋. Now 

we show that  𝑓 ⨆ 𝑔 is fuzzy map. Since 𝑓 and 𝑔 are fuzzy maps, then  

𝜇𝑌  𝑓 ⨆ 𝑔  𝑥, 1  = 𝜇𝑌 𝑓 𝑥  ≥ 𝜇𝑋 𝑥 = 𝜇𝑋  𝑋 𝑥, 1 , 

 𝜇𝑌  𝑓 ⨆ 𝑔  𝑥, 2  = 𝜇𝑌 𝑔 𝑥  ≥ 𝜇𝑋 𝑥 = 𝜇𝑋  𝑋 𝑥, 2 . 

Let 𝑈 be a fuzzy open set in 𝐹𝑌 , 𝑓1, 𝑓2: 𝑋 → 𝑋  𝑋 be fuzzy maps defined by 𝑓1 𝑥 = (𝑥, 1) and  𝑓2 𝑥 = (𝑥, 2), then 

𝜇𝑋 ∩ 𝑓1
−1(𝜇𝑋 𝑋 ∩  𝑓 ⨆ 𝑔 −1 𝑈 ) = 𝜇𝑋 ∩ 𝜇𝑋 ∩ 𝑓1

−1(𝜇𝑋 𝑋) ∩ 𝑓1
−1  𝑓 ⨆ 𝑔 −1 𝑈   

                                      = 𝜇𝑋 ∩ 𝑓1
−1(𝜇𝑋 𝑋) ∩ 𝑓1

−1
(U(𝑓  𝑔)) 

                                                                                      = 𝜇𝑋 ∩ 𝜇𝑋  ∩ 𝑈(𝑓 ) = 𝜇𝑋  ∩ (𝑓−1(𝑈) ∈  𝐹𝑋 . 

This implies that 𝜇𝑋 𝑋 ∩  𝑓 ⨆ 𝑔 −1 𝑈 ∈  𝐹𝑋 𝑋 , proving the fuzzy continuity of 𝑓 ⨆ 𝑔: 𝑋  𝑋 → 𝑌. Let (𝜇𝐷 , 𝐹𝐷)  be the 

fuzzy pushout of 𝑓 ⨆ 𝑔: 𝑋   𝑋 → 𝑌and 𝑖𝑑𝑋    𝑖𝑑𝑋 : 𝑋   𝑋 → 𝑋 so that 𝛼: (𝜇𝑌 , 𝐹𝑌) → (𝜇𝐷 , 𝐹𝐷) and 𝛽: (𝜇𝑋 , 𝐹𝑋) → (𝜇𝐷 , 𝐹𝐷) 

are fuzzy maps with 𝛼 ∘  𝑓 ⨆ 𝑔 = 𝛽 ∘ (𝑖𝑑𝑋  ⨆ 𝑖𝑑𝑋). We claim that 

 𝜇𝑋 , 𝐹𝑋 
𝑓

 ⇉
𝑔

 (𝜇𝑌 , 𝐹𝑌)
𝛼
→ 𝜇𝐷 , 𝐹𝐷  

is a fuzzy co-equalizer diagram. It is an easy work to check that  𝑓⨆𝑔 ∘ 𝑓1 = 𝑓,  𝑓⨆𝑔 ∘ 𝑓2 = 𝑔. Thus 𝛼 ∘ 𝑓 = 𝛼 ∘
 𝑓⨆𝑔 ∘ 𝑓1 = 𝛽 ∘ (𝑖𝑑𝑋  ⨆ 𝑖𝑑𝑋) ∘ 𝑓1 = 𝛽, and 𝛼 ∘ 𝑔 = 𝛼 ∘  𝑓⨆𝑔 ∘ 𝑓2 = 𝛽 ∘ (𝑖𝑑𝑋  ⨆ 𝑖𝑑𝑋) ∘ 𝑓2 = 𝛽 and hence   𝛼 ∘ 𝑓 = 𝛼 ∘
𝑔. For any fuzzy map  𝜇𝐶 , 𝐹𝐶  and  𝜃:  𝜇𝑌 , 𝐹𝑌 → (𝜇𝐶 , 𝐹𝐶) with 𝜃 ∘ 𝑓 = 𝜃 ∘ 𝑔, so that   𝜃 ∘  𝑓⨆𝑔 = 𝜃 ∘ 𝑓 = 𝜃 ∘ 𝑔 = 𝜃 ∘
𝑓 ∘ (𝑖𝑑𝑋  ⨆ 𝑖𝑑𝑋). By theorem 3.4, there exists a fuzzy map 𝜑:  𝜇𝐷 , 𝐹𝐷 →  𝜇𝐶 , 𝐹𝐶  such that 𝜃 = 𝜑 ∘ 𝛼  and thus the 

universal property of the co-equalizer (𝜇𝑌 , 𝐹𝑌)
𝛼
→ 𝜇𝐷 , 𝐹𝐷  is satisfied .□ 
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