

Some Universal Constructions For I- Fuzzy Topological Spaces II

E. H. Hamouda

Department of Basic Sciences, Industrial education college, Beni-Suef University, Egypt ehamouda70@gmail.com

ABSTRACT

Hamouda E. H. [J. of Advances in Math. Vol 6, 2(2014), 973-941] has introduced some universal constructions in the category **FTOP**, whose objects are the I-fuzzy topological spaces (X, μ, F) where X is an ordinary set, μ is a fuzzy set in X and F is a family of fuzzy sets in X satisfying some axioms. In this paper we introduce the dual universal constructions, namely, fuzzy co-products, fuzzy co-equalizers and fuzzy pushouts for I-fuzzy topological spaces. Also we discuss some results concerning all such universal objects.

Keywords: Fuzzy sets; I -fuzzy topological spaces; Fuzzy co-equalizers; Fuzzy pushouts; Fuzzy co-products.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 7, No. 2 editor@cirworld.com www.cirworld.com, member.cirworld.com

1203 | Page March 21, 2014

1. INTRODUCTION

Zadeh [15] introduced the notion of a fuzzy set as a function from the given set to the unit interval. The first categorical definition of fuzzy sets was introduced by J. A. Goguen [5]. In the case of fuzzy topology, there are various interesting categories of fuzzy topological spaces. The collection of all fuzzy topological spaces and fuzzy continuous functions form a category. Since C. Chang, R. Lowen and J. Goguen have defined fuzzy topology in different ways, each of them defines a different category of fuzzy topological spaces [11,13]. Geetha S. [4,5,6] introduced a new category **FTOP**, the objects are I - fuzzy topological spaces (X, μ , F) where X is an ordinary set, μ is a fuzzy set in X and F is a family of fuzzy sets in X satisfying some axioms. Some applications of category theory in fuzzy topology are presented in [2, 8, 14]. Behera [2] introduced the concepts of fuzzy equalizers, fuzzy pullbacks and their duals for fuzzy topological spaces in the sense of Chang. Hamouda E. H. [8] introduced some universal objects for I - fuzzy topological spaces (X, μ , F). In this paper the dual concepts, namely, fuzzy co-products, fuzzy co-equalizers and fuzzy pushouts for I-fuzzy topological spaces are investigated. Also we discuss some results concerning all such universal objects.

2. PRELIMINARIES

As usual *I* denotes the closed unit interval [0,1]. A fuzzy set *A* in a set *X* is a function on *X* into the closed unit interval [0, 1] of the real line. The fuzzy sets in *X* taking on respectively the constant values 0 and 1 are denoted by 0_X and 1_X respectively. For two fuzzy sets *A*, *B* in *X*, we write $A \le B$ if $A(x) \le B(x)$ for each $x \in X$. For a collection of fuzzy sets $\{A_i : i \in J\}$, the union $C = \bigcup_{i \in I} A_i$ and the intersection $D = \bigcap_{i \in I} A_i$ are defined by

$$C(x) = \bigvee_{i \in J} A_i(x)$$
, for all $x \in X$,

$$D(x) = \bigwedge_{i \in I} A_i(x)$$
, for all $x \in X$.

If $f: X \to Y$ is a function, and A, B are fuzzy sets in X, Y respectively, then the fuzzy set $f^{-1}(B)$ in X is defined by $f^{-1}(B) = B \circ f$, and $f(A): Y \to I$ is defined as follows [3]:

$$f(A)(y) = \begin{cases} \bigvee \{A(x) : x \in f^{-1}(y)\}, & \text{if } f^{-1}(y) \neq \emptyset; \\ 0 & \text{if } f^{-1}(y) = \emptyset. \end{cases}$$

Definition 2.1 [5] Let X be a set, $\mu: X \to I$ be a fuzzy set in X and F be a family of fuzzy sets in X satisfying the following conditions:

- (1) $A \in F$ implies that $A(x) \le \mu(x)$ for all $x \in X$,
- (2) If $A_i \in F$, $i \in J$, then $\bigcup_{i \in I} A_i \in F$,
- (3) If $A, B \in F$, then $A \cap B \in F$,
- (4) $0_X, \mu \in F$.

The triple (X, μ, F) is called an I – fuzzy topological space or I - fts. The members of F are called I – fuzzy open sets and their complements are called I – fuzzy closed sets.

Remark 2.2 when $= 1_X$, an I - fuzzy topological space is nothing but a fuzzy topology in the sense of Chang[3].

Definition 2.3 [4] Let (X_1, μ_1, F_1) and (X_2, μ_2, F_2) be two I - fuzzy topological spaces. A function $f: (X_1, \mu_1, F_1) \rightarrow (X_2, \mu_2, F_2)$ is fuzzy continuous if:

- i. $\mu_1(x) \le \mu_2(f(x)), \forall x \in X$,
- ii. $\mu_1 \cap f^{-1}(U) \in F_1$, $\forall U \in F_2$.

The notion **FTOP** will denote the category of I - fuzzy topological spaces and fuzzy continuous functions. We shall use the categorical terminology of [1]. For more information about the category **FTOP**, the reader could consult [4].

3. UNIVERSAL CONSTRUCTIONS IN FTOP

In this section we discuss fuzzy co-products, fuzzy co-equalizers and fuzzy pushouts for I – fuzzy topological spaces. By remark 2.2, some results in [2] are considered as a special case of the results below. The word "map" will always mean a continuous function, but the word "function" does not imply continuity.

The concept of fuzzy co-product has introduced in [4, 7, 10, 12]. The following theorem emphasizes the universal property of fuzzy co-product in **FTOP**. From now on, J is referred to as the index set and the word "fuzzy spaces" means I – fuzzy topological spaces.

Theorem 3.1 For a given fuzzy spaces (X_i, μ_i, F_i) , $i \in I$, the following hold:

- (1) There exists a fuzzy space (S, μ, F) and fuzzy maps $f_i: (X_i, \mu_i, F_i) \to (S, \mu, F)$ for each $i \in J$.
- (2) For any fuzzy space (X, γ, H) with fuzzy maps $\varphi_i: (X_i, \mu_i, F_i) \to (X, \gamma, H)$, there is a unique fuzzy map $\theta: (S, \mu, F) \to (X, \gamma, H)$ such that $\theta \circ f_i = \varphi_i$ for each $i \in J$.

Proof. (1) For the given fuzzy spaces (X_i, μ_i, F_i) , we consider the disjoint union $\coprod_{i \in J} (X_i, \mu_i, F_i)$ to be the fuzzy space (S, μ, F) , where $S = \coprod_{i \in J} X_i = \bigcup_{i \in J} (X_i \times \{i\})$ is the disjoint union of ordinary sets X_i with inclusion maps $f_i : X_i \to S$, defined by $f_i(x) = (x, i)$, μ is a fuzzy set in S defined by $\mu(x, i) = \mu_i(x)$ for each $i \in J$ and $\mathcal{U}_i = \{U : S \to I | f_i^{-1}(U) \cap \mu_i \in F_i, i \in J\}$. It is easily seen that \mathcal{U}_i is the finest fuzzy topology making f_i fuzzy continuous and the intersection $F = \bigcap_{i \in J} \mathcal{U}_i$ is the finest fuzzy topology making all the functions f_i fuzzy continuous [10]. In equivalent words, $U \in \mathcal{U}_i$ if and only if $f_i^{-1}(U) \cap \mu_i \in F_i$, $i \in J$.

(2) Define $\theta: (S, \mu, F) \to (X, \gamma, H)$ by $\theta(x, i) = \varphi_i(x)$ for all $x \in X_i$, $i \in J$. With the definition of θ , we have $\theta \circ f_i = \varphi_i$. For θ to be fuzzy continuous, $\theta^{-1}(B) \cap \mu$ must belong to F for each $B \in H$ and $\mu(x, i) \leq \gamma(\theta(x, i))$. First, since φ_i is a fuzzy map for each $i \in J$, then $\gamma(\theta(x, i)) = \gamma(\varphi_i(x)) \geq \mu_i(x) = \mu(x, i)$ for each $x \in X_i$. Let B be a fuzzy open set belonging to H and $X \in X_i$, then

$$(f_i^{-1}(\theta^{-1}(B) \cap \mu) \cap \mu_i)(x) = (f_i^{-1}(\theta^{-1}(B) \cap \mu)(x) \wedge \mu_i(x)$$

$$= (\theta^{-1}(B) \cap \mu)(f_i(x)) \wedge \mu_i(x)$$

$$= (\theta^{-1}(B) \cap \mu)(x, i) \wedge \mu_i(x)$$

$$= B(\theta(x, i)) \wedge \mu(x, i) \wedge \mu_i(x)$$

$$= B(\varphi_i)(x) \wedge \mu_i(x)$$

$$= (\varphi_i^{-1}(B) \cap \mu_i)(x).$$

Hence, $f_i^{-1}(\theta^{-1}(B) \cap \mu) \cap \mu_i = \varphi_i^{-1}(B) \cap \mu_i$ belongs to F_i for each $i \in J$. Therefore, $\theta^{-1}(B) \cap \mu \in F$, proving the fuzzy continuity of θ . This verifies the existence of the universal property. The uniqueness of θ is an immediate consequence of the definition. \square

Proposition 3.2 Let (X_i, μ_i, F_i) , $i \in J$, be a collection of fuzzy spaces, and give $\coprod_{i \in J} X_i$ the fuzzy co-product topology. Then the fuzzy co-product is unique up to fuzzy homeomorphism.

Proof. Let $S = Q = \coprod_{i \in J} X_i$ with fuzzy maps $f_i \colon (X_i, \mu_i, F_i) \to (S, \mu, F)$ and $g_i \colon (X_i, \mu_i, F_i) \to (Q, \gamma, H)$ respectively. Then the universal property of the fuzzy co-product S implies that there is a unique fuzzy map $\theta \colon \colon (S, \mu, F) \to (Q, \gamma, H)$ such that $\theta \circ f_i = g_i$ for each $i \in J$. In similar way, there exist a unique fuzzy map $\phi \colon (Q, \gamma, H) \to (S, \mu, F)$ such that $\phi \circ g_i = f_i$ for each $i \in J$. Thus $f_i = \phi \circ g_i = \phi \circ \theta \circ f_i = id_S \circ f_i$ for each $i \in J$. Form the uniqueness condition of theorem 3.1, it follows that $\phi \circ \theta = id_S$. Similarly, we have $\theta \circ \phi = id_Q$. Therefore, S and Q are fuzzy homeomorphic [3]. \square

For the sake of simplicity, we shall use the symbol (μ_X, F_X) for the I – fuzzy topological space (X, μ, F) . The following theorem states the definition [1] and proves the existence of fuzzy co-equalizers in **FTOP**.

Theorem 3.3 Let $f, g: (\mu_X, F_X) \to (\mu_Y, F_Y)$ be fuzzy maps, then

- (1) There exists a fuzzy space (μ_E, F_E) and a fuzzy map $q: (\mu_Y, F_Y) \to (\mu_E, F_E)$ such that $q \circ f = q \circ g$.
- (2) For any fuzzy space (μ_A, F_A) with a fuzzy map $\varphi: (\mu_Y, F_Y) \to (\mu_A, F_A)$ satisfying $\varphi \circ f = \varphi \circ g$, there exists a unique fuzzy map $h: (\mu_E, F_E) \to (\mu_A, F_A)$ such that $\varphi = h \circ q$.

Proof. (1) Define Q to be $\{(f(x), g(x)): x \in X\} \subseteq Y \times Y$. It is known that E need not be an equivalence relation on Y. Let R be the smallest equivalence relation on Y containing Q, that is the intersection of all equivalence relations on Y containing Q. Let E = Y/R be the usual quotient set and $q: Y \to E, y \mapsto [y]$, be the usual quotient map. Now we define the quotient fuzzy topology on E as follows: define μ_E to be the image of μ_Y under Q, Q, and Q and Q and Q are Q and Q and Q are Q are Q and Q are Q are Q and Q are Q and Q are Q are Q and Q are Q are Q and Q are Q and Q are Q are Q and Q are Q are Q and Q are Q and Q are Q are Q and Q are Q are Q and Q are Q and Q are Q are Q and Q are Q are Q and Q are Q and Q are Q are Q and Q are Q are Q and Q are Q and Q are Q are Q are Q and Q are Q are Q are Q are Q and Q are Q and Q are Q are Q and Q are Q are Q are Q and Q are Q are Q and Q are Q are Q and Q are Q are Q are Q and Q are Q are Q are Q and Q are Q are Q and Q are Q are Q and Q are Q are Q are Q are Q and Q are Q are Q and Q are Q are Q are Q and Q are Q and Q are Q are

(2) We then have to verify the universal property. For any fuzzy space (μ_A, F_A) , we define $h: (\mu_E, F_E) \to (\mu_A, F_A)$ by $h([y]) = \varphi(y), y \in Y$, and this implies that $\varphi = h \circ q$. We must show that this is well-defined. Given $[y_1] = [y_2]$ in E, for $y_1, y_2 \in Y$, then $q(y_1) = q(y_2)$ such that $(y_1, y_2) \in R$. Define the relation $R_{\varphi} = \{(y, z) \in Y \times Y : \varphi(y) = \varphi(z)\}$ on Y. It is an easy matter to check that R_{φ} is an equivalence relation on Y, moreover, the relation Q is a subset of R_{φ} , being $\varphi(f(x)) = \varphi(g(x))$ for every $x \in X$ and this implies that $R \subseteq R_{\varphi}$. Thus, $(y_1, y_2) \in R \subseteq R_{\varphi}$ and we have $\varphi(y_1) = \varphi(y_2)$. It follows that h is well-defined. Now to complete the existence of h, we have to show that h is a fuzzy map.

Since $\varphi = h \circ q$ is a fuzzy map, then the fuzzy continuity of h comes directly from the well known result: h is fuzzy continuous if and only if $h \circ q$ is fuzzy continuous[4]. The uniqueness of h comes directly from the definition. \square

We now define *fuzzy pushouts*. Suppose we have fuzzy maps $f: (\mu_X, F_X) \to (\mu_Y, F_Y)$ and $g: (\mu_X, F_X) \to (\mu_Z, F_Z)$. Then the fuzzy pushout of these fuzzy maps is a fuzzy space (μ_D, F_D) together with fuzzy maps $\alpha: (\mu_Y, F_Y) \to (\mu_D, F_D)$ and $\beta: (\mu_Z, F_Z) \to (\mu_D, F_D)$ such that $\alpha \circ f = \beta \circ g$, and such that the following *universal property* holds: Suppose that (μ_C, F_C) is a fuzzy space and that $\alpha: (\mu_Y, F_Y) \to (\mu_C, F_C)$ and $\beta: (\mu_Z, F_Z) \to (\mu_C, F_C)$ are fuzzy maps with $\alpha: f = \beta \circ g$. Then there is a unique fuzzy map $\alpha: (\mu_D, F_D) \to (\mu_C, F_C)$ with $\alpha: f = \beta$. We then call $\alpha: f = \beta$ and $\alpha: f = \beta$ and $\alpha: f = \beta$. We then call $\alpha: f = \beta$ and $\alpha: f = \beta$ are fuzzy pullback of $\alpha: f = \beta$ and $\alpha: f = \beta$.

In the following theorem, we show that fuzzy pushouts exist in the category **FTOP** by constructing them as fuzzy coproducts.

Theorem 3.4 Let $f: (\mu_X, F_X) \to (\mu_Y, F_Y)$ and $g: (\mu_X, F_X) \to (\mu_Z, F_Z)$ be any fuzzy maps in the category **FTOP**. Then there exists a fuzzy pushout (μ_D, F_D) .

Proof. Define D to be the quotient of the disjoint union $Y \coprod Z = Y \times \{1\} \cup Z \times \{2\}$ by the equivalence relation generated by the relation $(f(x), 1) \sim (g(x), 2)$ for each $x \in X$, then $D = Y \coprod Z / \sim$. Let the functions $\alpha: Y \to D$ and $\beta: Z \to D$ be defined by $\alpha(y) = [(y, 1)], \beta(z) = [(z, 2)]$. Now we define the fuzzy topology on D as follows: $\mu_D([(y, 1)]) = \mu_Y(y)$ for each $y \in X$, $\mu_D(z, 2) = \mu_Z(z)$ for each $z \in Z$, and by the definition of fuzzy co-product, D is assigned the finest fuzzy topology so that the functions α and β are fuzzy continuous.

Lemma. A fuzzy set $U: D \to I$ is fuzzy open, $U \in F_D$, iff $\alpha^{-1}(U) \cap \mu_Y \in F_Y$ and $\beta^{-1}(U) \cap \mu_Z \in F_Z$.

Proof. consider the quotient map $q: Y \coprod Z \to D$, and set $\alpha = q|_Y$ and $\beta = q|_Z$. Let $U: D \to I$ be a fuzzy open set belongs to F_D . Because q is a fuzzy map, $q^{-1}(U) \cap \mu_{Y \coprod Z} \in F_{Y \coprod Z}$. Then we have

$$(q^{-1}(U) \cap \mu_{Y \coprod Z})(y, 1) = q^{-1}(U)(y, 1) \wedge \mu_{Y \coprod Z}(y, 1) = U(q(y, 1)) \wedge \mu_{Y}(y) = U(\alpha(y)) \wedge \mu_{Y}(y) = (\alpha^{-1}(U) \cap \mu_{Y})(y).$$

But this implies that $\alpha^{-1}(U) \cap \mu_Y \in F_{Y \coprod Z}$. By the definition of fuzzy co-product, we conclude that $\alpha^{-1}(U) \cap \mu_Y \in F_Y$. In similar way and by replacing (y,1) with (z,2), we have $\beta^{-1}(U) \cap \mu_Z \in F_Z$. Conversely, suppose that $U:D \to I$ is a fuzzy set for which $\alpha^{-1}(U) \cap \mu_Y \in F_Y$ and $\beta^{-1}(U) \cap \mu_Z \in F_Z$. The above calculations implies that $(q^{-1}(U) \cap \mu_Y \coprod Zy, 1 = \alpha - 1U \cap \mu Y \coprod Zz, 2 = \beta - 1U \cap \mu Zz, 2$, proving the belonging of $(q^{-1}U \cap \mu Y \coprod Z)$ to $(q^{-1}U \cap \mu Y \coprod Z)$ but this means that $(q^{-1}U \cap \mu Y \coprod Z)$ is fuzzy open by the definition of the fuzzy quotient topology.

It is clear that $\alpha(f(x)) = [(f(x)), 1)] = [(g(x), 2)] = \beta(g(x)), x \in X$, this implies that $\alpha \circ f = \beta \circ g$. To show that D satisfies the universal property, given a fuzzy space (μ_C, F_C) with fuzzy maps $\alpha: (\mu_Y, F_Y) \to (\mu_C, F_C)$ and $\beta: (\mu_Z, F_Z) \to (\mu_C, F_C)$ such that $\alpha \circ f = \beta \circ g$, we define $\varphi: (\mu_D, F_D) \to (\mu_C, F_C)$ by $\varphi([(y, 1)]) = \alpha(y)$, and $\varphi([(z, 2)]) = \beta(z)$. It is easy to check that this is well-defined. Also, it is clear that $\varphi \circ \alpha = \alpha$ and $\varphi \circ \beta = \beta$. For the uniqueness property, consider the quotient map $q: Y \coprod Z \to D$ and define $\overline{\varphi}: Y \coprod Z \to C$ by $\overline{\varphi}|_Y = \alpha$ and $\overline{\varphi}|_Z = \beta$. We can verify that $\overline{\varphi}$ factors through the map φ to yield the map $\varphi: (\mu_D, F_D) \to (\mu_C, F_C)$. Further, φ is unique because it is required to satisfy $\varphi \circ q = \overline{\varphi}$ (by the uniqueness condition in theorem 3.1). Also the last equation guarantees the fuzzy continuity of φ . \square

Example 3.5

(1). Let (X, μ, F) be a fuzzy space, $(\{z\}, 1_{\{z\}}, F_{\{z\}})$ be a terminal object in **FTOP** [4] and $A \subset X$. Let

 $\mu_A = \mu|_A$, $F_A = \{U|_A : U \in F\}$, then (A, μ_A, F_A) is called a subspace of $(X, \mu, F)[4]$. The fuzzy pushout of the diagram

$$(\{z\},1_{\{z\}},F_{\{z\}}) \leftarrow (A,\mu_A,F_A) \rightarrow (X,\mu,F),$$

Is the fuzzy quotient $(X/A, \gamma, \mathcal{U})$,

(2). Let (X, μ, F) be a fuzzy space, $A, B \subset X$ so that $X = A \cup B$. Let $\mu_A = \mu_A$, $F_A = \{U_A : U \in F\}$ and

 $\mu_B = \mu|_B$, $F_B = \{U|_B : U \in F\}$, then (A, μ_A, F_A) and (B, μ_B, F_B) are fuzzy spaces considered as

subspaces of (X, μ, F) . Consider the diagram of fuzzy maps (inclusions)

$$(B,\mu_B,F_B) \leftarrow (A \cap B,\mu_{A \cap B},F_{A \cap B}) \rightarrow (A,\mu_A,F_A),$$

where $(A \cap B, \mu_{A \cap B}, F_{A \cap B})$ is a subspace of (A, μ_A, F_A) and (B, μ_B, F_B) . Then the fuzzy pushout (μ_D, F_D) is the fuzzy space (X, μ, F) .

Proposition 3.6 Given any fuzzy maps $f: (\mu_X, F_X) \to (\mu_Y, F_Y)$ and $g: (\mu_X, F_X) \to (\mu_Z, F_Z)$, the fuzzy pushout (μ_D, F_D) is unique up to fuzzy homeomorphism.

Proof. Suppose $(\mu_{D'}, F_{D'})$, with fuzzy maps $f': (\mu_{Y}, F_{Y}) \to (\mu_{D'}, F_{D'})$ and $g': (\mu_{Z}, F_{Z}) \to (\mu_{D'}, F_{D'})$, is another fuzzy pushout. Take $(\mu_{C}, F_{C}) = (\mu_{D'}, F_{D'})$; we find a fuzzy map $\varphi: (\mu_{D}, F_{D}) \to (\mu_{D'}, F_{D'})$ such that with $\varphi \circ \alpha = \hat{f}$ and $\varphi \circ \beta = \hat{g}$. By reversing the roles of (μ_{D}, F_{D}) and $(\mu_{D'}, F_{D'})$, we find a fuzzy map $\varphi': (\mu_{D'}, F_{D'}) \to (\mu_{D}, F_{D})$ such that $\varphi' \circ \hat{f} = \alpha$ and $\varphi' \circ \hat{g} = \beta$. Then $\varphi' \circ \varphi \circ \alpha = \alpha$, and similarly $\varphi' \circ \varphi \circ \beta = \beta$. Now take $(\mu_{C}, F_{C}) = (\mu_{D}, F_{D}), \alpha = \alpha'$ and $\beta = \beta'$. We have two fuzzy maps, $\varphi' \circ \varphi: (\mu_{D}, F_{D}) \to (\mu_{D}, F_{D})$ and id_{D} that satisfy the conditions of fuzzy pushout; by the uniqueness in definition of fuzzy pushout, $\varphi' \circ \varphi = id_{D}$. Similarly, $\varphi \circ \varphi' = id_{D'}$, so that φ and φ' are inverse fuzzy homeomorphisms. \square

We close this section by investigation the relationship among the universal constructions mentioned above.

Theorem 3.7 In **FTOP**, fuzzy pushouts exist if and only if fuzzy co-equalizers exist.

Proof. (*Co-equalizers* \Rightarrow *Pushouts*) Consider the arbitrary fuzzy maps $f: (\mu_X, F_X) \to (\mu_Z, F_Z)$ and $g: (\mu_Y, F_Y) \to (\mu_Z, F_Z)$. Let $(\mu_{Y \coprod Z}, F_{Y \coprod Z})$ be the fuzzy co-product of the fuzzy spaces (μ_Y, F_Y) and (μ_Z, F_Z) with the fuzzy maps $e_1: Y \to Y \coprod Z$ and $e_2: Z \to Y \coprod Z$ defined by $e_1(y) = (y, 1)$, and $e_2(z) = (z, 2)$. Let (μ_E, F_E) together with a fuzzy map $q: (\mu_{Y \coprod Z}, F_{Y \coprod Z}) \to (\mu_E, F_E)$ be the fuzzy co-equalizer of fuzzy maps $e_1 \circ f, e_2 \circ g: (\mu_X, F_X) \to (\mu_{Y \coprod Z}, F_{Y \coprod Z})$ such that $q \circ (e_1 \circ f) = q \circ (e_2 \circ g)$, by theorem 3.3. Now we prove that (μ_E, F_E) together with fuzzy maps $q \circ e_1: (\mu_Y, F_Y) \to (\mu_E, F_E)$ and $q \circ e_2: (\mu_Z, F_Z) \to (\mu_E, F_E)$ is the pushout of the fuzzy maps f and f. Let f be a fuzzy space with fuzzy maps f and f compared f be a fuzzy space with fuzzy maps f and f compared f be a fuzzy space with fuzzy maps f and f compared f be a fuzzy space of fuzzy maps f and f compared f be a fuzzy space with fuzzy maps f and f compared f be a fuzzy space with fuzzy maps f and f compared f be a fuzzy space with fuzzy maps f and f compared f be a fuzzy map f and f compared f be a fuzzy map f and f compared f be a fuzzy map f and f compared f be a fuzzy map f and f compared f be a fuzzy map f and f compared f be a fuzzy map f and f compared f be a fuzzy map f and f compared f be a fuzzy map f and f compared f be a fuzzy map f and f compared f be a fuzzy map f and f compared f be a fuzzy map f and f compared f be a fuzzy map f and f compared f and f compared f and f compared f be a fuzzy map f and f compared f compared f compared f compared f compared f

(*Pushouts* \Rightarrow *Co-equalizers*) Given any two fuzzy maps $f, g: (\mu_X, F_X) \to (\mu_Y, F_Y)$. Consider the function $f \sqcup g: X \coprod X \to Y$ defined by $(f \sqcup g)(x, 1) = f(x)$ and $(f \sqcup g)(x, 2) = g(x)$, in similar way, we define $id_X \sqcup id_X: X \coprod X \to X$. Now we show that $f \sqcup g$ is fuzzy map. Since f and g are fuzzy maps, then

$$\mu_Y \big((f \sqcup g)(x,1) \big) = \mu_Y \big(f(x) \big) \ge \mu_X(x) = \mu_{X \coprod X}(x,1),$$

$$\mu_Y \big((f \sqcup g)(x,2) \big) = \mu_Y \big(g(x) \big) \ge \mu_X(x) = \mu_{X \coprod X}(x,2).$$

Let U be a fuzzy open set in F_Y , f_1 , $f_2: X \to X \coprod X$ be fuzzy maps defined by $f_1(x) = (x, 1)$ and $f_2(x) = (x, 2)$, then

$$\mu_{X} \cap f_{1}^{-1}(\mu_{X \coprod X} \cap (f \coprod g)^{-1}(U)) = \mu_{X} \cap \mu_{X} \cap f_{1}^{-1}(\mu_{X \coprod X}) \cap f_{1}^{-1}((f \coprod g)^{-1}(U))$$

$$= \mu_{X} \cap f_{1}^{-1}(\mu_{X \coprod X}) \cap f_{1}^{-1}(U(f \coprod g))$$

$$= \mu_{X} \cap \mu_{X} \cap U(f) = \mu_{X} \cap (f^{-1}(U) \in F_{X}).$$

This implies that $\mu_{X \coprod X} \cap (f \coprod g)^{-1}(U) \in F_{X \coprod X}$, proving the fuzzy continuity of $f \coprod g: X \coprod X \to Y$. Let (μ_D, F_D) be the fuzzy pushout of $f \coprod g: X \coprod X \to Y$ and $id_X \coprod id_X: X \coprod X \to X$ so that $\alpha: (\mu_Y, F_Y) \to (\mu_D, F_D)$ and $\beta: (\mu_X, F_X) \to (\mu_D, F_D)$ are fuzzy maps with $\alpha \circ (f \coprod g) = \beta \circ (id_X \coprod id_X)$. We claim that

$$(\mu_X, F_X) \stackrel{f}{\rightrightarrows} (\mu_Y, F_Y) \stackrel{\alpha}{\to} (\mu_D, F_D)$$

is a fuzzy co-equalizer diagram. It is an easy work to check that $(f \sqcup g) \circ f_1 = f$, $(f \sqcup g) \circ f_2 = g$. Thus $\alpha \circ f = \alpha \circ (f \sqcup g) \circ f_1 = \beta \circ (id_X \sqcup id_X) \circ f_1 = \beta$, and $\alpha \circ g = \alpha \circ (f \sqcup g) \circ f_2 = \beta \circ (id_X \sqcup id_X) \circ f_2 = \beta$ and hence $\alpha \circ f = \alpha \circ g$. For any fuzzy map (μ_C, F_C) and $\theta : (\mu_Y, F_Y) \to (\mu_C, F_C)$ with $\theta \circ f = \theta \circ g$, so that $\theta \circ (f \sqcup g) = \theta \circ f = \theta \circ g = \theta \circ f \circ (id_X \sqcup id_X)$. By theorem 3.4, there exists a fuzzy map $\varphi : (\mu_D, F_D) \to (\mu_C, F_C)$ such that $\theta = \varphi \circ \alpha$ and thus the universal property of the co-equalizer $(\mu_Y, F_Y) \xrightarrow{\alpha} (\mu_D, F_D)$ is satisfied \Box

REFERENCES

- [1] Adàmek, J., Herrlich, H. and Strecker, G. 1990 Abstract and concrete categories. Wiley, New York
- [2] Behera, A. 2000 Universal constructions for fuzzy topological spaces. Fuzzy Sets and Systems (39), 271-276.
- [3] Chang, C.L. 1968 Fuzzy topological spaces. J. Math. Anal. Appl. (24), 182-190.
- [4] Geetha, S. 1992 Studies on fuzzy topological semigroups and related areas. Doctoral Thesis, University of Cochin.
- [5] Geetha, S. 1993 On L- fuzzy topological semigroups. J. Math. Anal. Appl. (174), 147-152.

- [6] Geetha, S. 1993 On L- fuzzy semitopological semigroups. J. Math. Anal. Appl. (175), 1-9.
- [7] Ghanim, M.H., Kerre, E.E. and Mashhour, A.S. 1984 Separation axioms, subspaces and sums in fuzzy topology. J. Math. Anal. Appl. (102), 189-202.
- [8] Hamouda, E. H. 2014 On some universal constructions for I- fuzzy topological spaces. J. of Advances in Math. Vol. 6, No.2,973-941
- [9] Liu, Y., Zhang, D. and Luo, M.. 2000 Some categorical aspects of fuzzy topology1. J. Math. Anal. Appl. (251), 649–668
- [10] Lowen, R. 1977 Initial and final topologies and the fuzzy Tychonoff theorem. . Math. Anal. Appl. (58), 11-21
- [11] Shostak, A. P. 1989 Two decades of fuzzy topology: basic idea, notions and results. Russ. Math. Surveys (6), 125-186
- [12] Wong, C.K. 1974 Fuzzy topology: Product and quotient theorems. J. Math. Anal. Appl. (45), 517-521.
- [13] Wong, C.K. 1976 Categories of fuzzy sets and fuzzy topological spaces. J. Math. Anal. Appl. (53), 704-714.
- [14] Wuyts, P. and Lowen, R. 1988 Reflectors and coreflectors in the category of fuzzy topological spaces. Comput. Math. Applic (16), 823-836
- [15] Zadeh, L.A. 1965 Fuzzy sets. Inform. And Control (8), 338-353.

