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Introduction and Preliminary Results

Let 7 (n) denote the number of divisors of a positive integer n, and let @ (n) is the number of distinct prime divisors of
n. De Koninck and lvic [1] have been proved the asymptotic formula for y — oo

Zr(n)a)(n) =2xlog xlog log x + Axlog x + Bx log log x + o(X)

n<x

(1)-
In the work of De Koninck and Katai [2] was improved an error term in (1). They obtained also a nontrivial estimate for
the sum of 7 (n) @ (n) where nrun over short interval.

In 2005 Prosyanjuk and Varbanets [6] studies the average order 7(ar)w(c) in the ring of the Gaussian integers Z [i].

In our present we consider the summatory function for f(n) @ (n) where f(n) belong to the special class M(a) of
multiplicate function which we define the following way:

f(n)e M(a) if
(i) f(n) is a multiplicate function;

(i) there exists the finite (or empty) set P, of prime numbers constant a, such that:

if p=P,
if p=1 (mod4),pe P,, or p=2
if p=3 (mod4), pg P, b=aor0;

f(p)=

T o O

(iii) ‘ f(p* )‘ < ¢ for any prime p and each positive k, ¢ is a fixed constant;

(iv) for ¥ —> 0 we have
@- =2, f(n)=AXP(log x) + R(x)
where

R(x)=0(x?) <1, A, >0,P(u) =a,u+a,

Moreover, for a nonnegative function f(n) € M(a) we obtain an asymptotic formula for the sum:

AX)= D T(n)

w(n)=k

We shall use following assertions.
2
: . . . , -1
Lemmal.: There exists a positive constant C; such that in region Re le—nl(|OgT) 3(Iog IogT) ,

ImS|<T,
the following estimate

1
log £ (s) << (log([t| +10)) 3 (log log([t] +10))
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Here constant in symbol ,,<<"" is absolute.

Let m be a positive integer. We denote

D(x,m):= > f(n)

n<x
(n,m)=1

D(x):=D(x1)=>_ f(n)

n<x

Lemma 2:. Let the multiplicate function f(n) satisfies conditions (2).

Then for each prime p we have for )(X —>

@) D(x;p) = A x+0O(x")

0

where Ap =A
k=0

Proof:. First we obtain for a prime p.

12 %ﬂ):m fF()|So) fép ) )Zf( )_g GFE) meon

(n,p)=1

say.

Hence, by Perron’s formula we have for ¢ >1.

C+i X1+g
D(X; p)=— st—ds+O +O(—
(x; p) jg()() (( 1)) ()
: Ao Nc IOgT
Define N from the condition p™ =T, N= :
clog p
Them for c=1+ ¢, £ >0, T=x, we infer
cHIT 1+g
D(x; p) = Zf(p )— [ Fs )( 0( )
c—iT
N 1+5 x1+‘9
DG )(D(—)+0( )+
k=0 Tp

Lk o x g1 9
:sz +O( )+0(§ (27 =)= agx+0(?)
K kK’ kP
k=0 P !

Corollary:. For any real h<x and each primer:p we have
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D(x,x+h;p):= 3 f(n)= Zf( PG Xp*“) o)

X<n<x+h

where N:{ IOg X} .
log p

Lemma3: &y — o,

Zl:

p<x

3, Z'ng log x—d +0(—)
p<x p=x P ogx
where

1 1}
= log(1— =) + =),
¢, =y+ zp (log( IO)+ IO)

o, log p 1
> p(p-1)

¥ is the Euler’s constant.
Moreover, for 2< y <X,

2
(6)- Z 1< y ,

X< PSX+Y IOg y
Yy l+g
(7)- Z 1= +O0(—5-), ¥ X2 <y<x
x<pox+y Iog X log”x

Proof. The relations (5) are well-known (see,[7]), the inequality was proved Montgomery and Vaughan [5], and (7)
proved M. Huxley [3].

Lemma4:. Let & be a complex number, Re & >0. Then for )(X —> o0 and any positive number M

y(a, X) ::J'exp(—u)ua‘ldu =r(a)-x""exp(—x)[1+ Zw( DX +O(X )] where r(r)

is the Euler’s gamma-function; the constant in the symbol "O"" can depend only of M.
(It is a well known estimate of the incomplete gamma- function through the complete gamma-function).
2. Main Results.
We put
© F) =2 f(nao(n).
n<x

For each positive integer n > 2 there exist primes p; <p,<...<p;, writhe r= @ (n), such that.

a,

a a a a,
= Ppe Pt =P My =pim, == prm
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whis some positive integers as,..., an, (m; pp)=1, i=1,....r.

It is clear that each n has @ (n) the representations as n=p®m, (m,p)=1. Hence,

Zf(n)w(n)— > Z f (p@m)

n<x a,p m<

pa <X pa
(m, p)=1

Now we shall prove the following theorem.

Theorem 1:.

Let the multiplicate function f(n) belongs t, M(a). Then for y — oo
Z f (n)aw(n) = Byxlog xlog log x + B, xlog x + B, xlog log x + B x+O(—)
n<x Og X

b b
where B, = Aja, ——, B, = Aja, ——, and B,, B; are the computable constants; the parameters Ao, a, b take

from the definition of the class M(a), and al ap are coefficient of the polynomial P(u) in the relation (2).
From (8),(9), by Lemma 2 we have:

F(xX) = Zf(pa)D%;p)

pd<x

> f(p)A, —(ailog +ao)+0(x9))+

p=x

0

X X
l0g—+8,) +O(( —)")-
a2 j= p p
p2<x

| 0
XZ (@, ogp+a)+ (p))

p<x

p') ; \f(Pa)
+ A ————( Iog—+a )+ 0(x
pg P +J p° Z p*

a>2,j>0 a>2

- onZ@(alaogx—log D)+ a,)+

p<x

AT P @ (ogx-log p)+2,) +

+AOXZZZ f(p” )afj(p )(a (logx—log p*) +a,) + O(x’) =

a2 j=0 p?<x
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= A, Tbxlogxloglog2+ Aa, —blogx+C xloglog x +C, x+O(—)—
log x

= B,xlog xloglog x + B,xlog x + B,xlog log x + B, X+O(T)
X

a+b b .
where B, = Aoa1— B, = A7, 2 , By, B3 are the computable constants, moreover, Bo=0 only if a;=0,and

B;=0 only if a5=0, Bg +B/ >0.
Remark:.

For the calculation of the coefficients ¢, c;,C,, C3 We take into account the following asymptic estimates.

p=+1(mod4) P log?
IOﬁzllogx—dl#O( - ).
p=+1(mod4) p 2 |Og X

Moreover, the constants Ci, dl', are analogical to the constants ¢y, d; from
Lemma 3.

Let f(n) € M(a) and letze C, |Z| =1. We define the function

0 Za)(n)f n
F(S,Z)=Zn—(), Res>1.

S
n=1

2™ f (n)

Since is a multiplicate function we infer

F(S,Z):H(1+ Zf(p) Zf(p ) )

S 25
p P

P

I1 (1+% Zf(p) N g Zfé22)+...)G(S,z)

p p=3(mod4)
p=1(mod 4)

_ zf (p°) zZf(p)  zf(p*) , ya, (D) zf(4)
where. G(s,z)—LIO(1+ ~ +. )@+ o + o )@ 5t o +...)

this we have

ay  F(52)=4()"Gy(s,2)

Here Gy(S,z) is a function defined by the Dirichlet’s series an (z)n™° , which converges in the region Re
n=1
s>1/2, moreover
bn(z)<< n (uniformly on z, |z|=1)

Introduce the following notation
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A= 2 () A(xh)= > f(n

n<x X<n<x+h
w(n)=k w(n)=k
B(x,z) =) z°™f(n),B(x,h,z) = > z°" f(n)
n<x Xx<n<x+h
Theorem 2:.

Let z is a complex number, |z|=1. Assume that f(n) € M(a), 0<a<1, and

f(n) >0 forallneN. Then

(lOg X)3/5

B(x,7) = xl_az{zwo(z)ﬂ(z)+ 72(2) }omﬁ oioss )

(log x) r(az) logx (logx)?

Where o (z) =lim_,(F(s,2)x(s—1)*),andy,(2),7,(z)  define by (21)-(22), moreover,
w,(2),7.(2),7,(z) are regular functions for [z| < 2.

Proof:. We shall use the classic schema of E. Landau . By the relation

1 2].ioo yoHk |(y 1) ify>1,

ds =< k!
. S(8+1D)..(s+k) 0 if O<y<1

and taking into account that the series for F(s, z) converges for Res=o =2, we obtain

2+ioo nl 2+io0 (Xn —1)S+l
" 2 I Fo ) ® s Tl o), ] Foy
3 Zz“(”) (x—n)f(n):=S(x,2)
since BOX,) =" f(n) = AxP(10g X) + O(X)” we can assume that fzi=1, 7 1.

n<x

Take T>3. We set
13)-  St) = 0_21 (loglt| +10) **(log log([t| +10))™*, [t|<T,8, =&(T)

(here c, takes from Lemma 1).
Let J=J 1+ J2+J3 +J 4+Jo

where J; consists with points s= o +it for which
o=1-6(),t>T,;

J, consists with points s= o +it for which
o=1-06(),t<-T

Js (accorolingly, J,) consists with that s= o +it for which

0=1-06,,0<t<T (accorolingly, =T <t <O0);
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Jo consists of the interval (1- 9, 1- p) going in straight and back direction, an and the circle of the radius o with the
centre in s=1.

Thus we have

fF(s 7)) —— (s 1) s=0
Hence,

2+i0 +1 1 s+l
S(x, z)_—j F(s,2) ( 5 s:z—ﬂi!F(s,z)S(Hl)d

From (11) we have on the contour J

1 1
(14)' NN F(S, Z) = —aZGl (S! Z)|
s(s+1) (s-1)
where G4(s, z) is regular on P.
From the condition Re z<1 we obtain that the integral on circle of radius p tends to 0 if o —0. Hence, we can

consider Py as the interval (1- 50 , 1) which pass in straight and back direction. Thus we obtain

e—zziaz (1 A S) —az

(S _l N maz -az
el -5} on back direction
So, we have
(15)- =—I (s, Z)s(s+1) =2—(J; j+j I I)—I +,+0+1,+1,

3/5

Applying Lemma 1 we easy infer for T=exp(C, (log x)*'>), ¢,>0,

@6)- b+ 1, +1,+1, <x*exp(—c,(log x)*"* (loglog x) ™), ¢5>0
Moreover,
s+1 1
J' _ 1 J' (ezziaz _e—ﬂiaZ) Gl(S! Z) Xs+1
s( +1) 27,75 L-s)*
We set

(17)- G(8:2) =y (2) +(1-5)G,(s,2).  w,(2) =G, (L, 2)
G,(s, 2) is analytic function (as function on s), moreover, G,(s, z) for S € [1—50 1] is uniformly bound on z, |z|=1.
Consider G,(s, z) as function of variable s and continue periodically (with period &, ) on all real axis.

Then we have
x?sinmaz| T 1
lg=——— j(l—s) XMy, (2)ds + J'(l—s)l‘azez(s,z)xs—lds _
T

1-6q 1-6¢
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x2sinmaz  w,(z) *% x2sinzaz 2%
- = Ie‘“u‘l‘az)‘ldu + J‘e‘“ul‘ZG3 (u,z)du,
/4 (log x) 0 7(log x) 0

Where Gs(u, z) is a periodic function of u with period o, log X and bounds by absolute constant.

Now by Lemma 4 for M=1 we have

x? sin 7az s
= r@-2)+0(5,x  log x) |+
o =~ oyt Vo @Ir=2)+ 0@ log )

x? sin zaz
z(log x)*

o0

2
e UG, (u, 2)du + O(5°x * log? x)) = Xy (2)
x(! 5(u,2)du+ O(55x ™ log” ) = S

x*y,(2)sin maz
z(log x)**

3/5

+0(x" exp(—c, (log x)*" (loglog x) ™)) | ¢50)

where
(19 75(2) = [€ UG, (u,2)du, |y, (2)] < const
0

for |z|=1.
Collecting our previous estimates we get

x> w,(2) .\ 7,(2)sin zazx?

(logx)** 2r(az)  z(logx)>™

3/5

(20)- S(x,2) = +0O(x? exp(—c; (log x)*"* (log log X)),

where cs=min(cs, C4).
For each u, 0<u<x, we have

X+U X+U

- S0C+0.2)=5002)= | (S, 2)ay = [BOy )y

X
From this, taking into account that f(n) > 0 we have, after a simple computations,

_c(logx)®’®

o 2v,(2)  7(2) | 7,(2) T
e B(x 2) = (log x)* { r(az) . log x _ (log X)2:|+O(Xe ).

c=1/2cs

(az -y, (2) N 2y,(2)sin maz

h Z) =
where 7,(2) 2r(az) P

1 .
@3)- 7A2) =—(az—2)y,(z)sin raz
T

Theorem 3:. Let ¢(x) is a real function tending to oo slow than ,/log log x
Than .
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k-1
A=Y f()- x(log log x)** %(Iog log x)
A (-DMMogx o, |i;k|;glz< )

+0(k*?(loglog x) ™),

where ¥/, defined in Theorem 2.

Proof. By definion B(X, z) we have

B(X, z) :1+i:Ak(x)zk

Obviously, that Ax(x)=0 if k>2logx Hence, B(x, z) is analytic function of z.
Then by formulas C, we have

_1 ~(k+1)
A (x) = o !B(x, 2)z dz,

where c is the circle with centre z=0 of radius I =

. For k=1 we put ¢
log log x

|z|=1/2. By Theorem 2 we infer

B(x,2) dz - 2xa 1 w,(2)(log x)* - 1

Al )_am'[/z z* logx 27 5, r(l+az)z (logx)? 27

« J‘ 7.(2) +7,(2) |2g_1 x(log x)* dz + O(e—C(Iogx)3’5(loglogx) J‘ | dz |) |

Z I2] 1/2|Z|

— 22/, (0)+ O(Ep(—c(log ) (oglog x) )
0g X

For k>1 Theorem 2 gives

(2)(logx)* I“ g |

Yo
@)- A= Iogx ij r(az)z*" ||k+1

+O(xexp (- c(Iogx)3’5(IogIogx)‘1).[ ldlm =1, +1,+1,

we have:.

|, << xexp(~c(log x)*'* (log log x)l)(ki1 log log x)*

(26) .
<< xexp(7(log x)*'*(log log x) )
X T
| << loa X) %% doy << erCOSalOglong <<
2 7 r*(log x)? I( 9%) T (|09X)2_J; ’
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X log log xjk = (rloglog x)" { ; x  (loglog x)"e*
27)- << ————|(cos2zx)"da <<
o (|ogx)z( e D e (e N TR o e

X (loglog x)* loglog x
(logx)? (k—1)! k-1 '

(here we used the sterling’s formulas for (k-1)!=r(Kk)).

Denote
9(2) = w, (2)(2(a2)) " = ay, ()(C(L+az))™
The function g(z) is analytic for |z|<3/2, and thus

9(2) =9(N+g'(Nz-n+0(g" @)l z-r[*). lg"(i<const

Hence,

_ox 1 (logx)* . xg(r) 1 ¢(logx)* xg'(r) 1 ¢(z—r)(logx)*
(28)71—@%!9(2) o dz = ” —! iy dz + _»!z—kdz

z° 274 logx 27

~o([ 22Ty og )t ) cz |
2]

Now, as in [ ] we obtain

k-1
@9 I, = ng(;) ('03;0_913‘)' +0(k*'?(loglog x) ) =

wo((k—1)(loglogx) ™) x(loglogx)**

) r(l+a(k —1)(loglog x)™) (k —1)!log x +O(k**(loglog x) ™)

The relations (25)-(29) accomplish the proof our theorem. Using our Theorems
2 and 3, and also Lemma 3, and Theorems 1 and 2 of Katai [4], we immediately
obtain the following assertions.

Theorem 4:.

- . 7/12 S
Let the conditions of Theorem 2 satisfy. Let, furthermore, X'~ ° <h < X%

where ¢ is arbitrary positive constant. Then

h 1
B(x,h;z) = ———— (v, (2) +O(-—>))
(log x) log x
Theorem 5:.
Let the conditions of Theorem 3 satisfy. Then for each h, X" < h < 3% ,

& >0, the following asymptotic formula.

Gty = 11 1091000" " vtk =1oglog) )
ogx (k—1logx r(1+ (k—1)(loglog x) ™)

h
log x(I log log x)

+0O(k*?(loglog x) 2) + O(

174/
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holds.

3. Conclusion:.

The condition O < @ <1 of Theorem 3 and 4 can expand on

0 < a < 2. Then obviously that for the multiplication functions 7(n) and % r(n)
(the number of representations of n by sun of two squares) the appropriate
asymptotic formulas of theorem 2-5 are hold, moreover, we easy can write the

function w,(2),7,(2),7,(z) . For example, if f(n)=1/4 r(n) we have

’ 1., 1., 1,
wo(z){%) [T e-rer 1 a-—'e-pes

p=1(mod 4) -1 p=3(mod 4)
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