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Abstract: Let  (n) denote the number of divisors of a positive integer n, and    let  (n) is  the number of distinct 

prime divisors of n. De Koninck and Ivic [1] have  been proved the asymptotic formula for   
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Introduction and Preliminary Results       

Let  (n) denote the number of divisors of a positive integer n, and let  (n) is the number of distinct prime divisors of 

n. De Koninck and Ivic [1] have  been proved the asymptotic formula for   

(1)-      
( ) ( ) 2 log log log log log log ( )

n x

n n x x x Ax x Bx x x  



     

In the work of De Koninck and Katai [2] was improved an error term in (1).  They obtained also a nontrivial estimate for 

the sum of  (n)  (n) where n run  over short interval.  

In 2005 Prosyanjuk and Varbanets [6] studies the average order )()(  in  the ring of the Gaussian integers Z [i]. 

In our present we consider the summatory function for f(n)  (n) where f(n)  belong to the special class M(a) of 

multiplicate function which we define the  following way: 

)()( aMnf   if 

  (i)  f(n) is a multiplicate function;  

  (ii)  there exists the finite (or empty) set P0 of prime numbers constant a, such that:  

                              

     











b

a

o

pf )(
                 if  p1 (mod4),p  Po, or p=2           

                  

(iii) cpf k )(  for any prime p and each positive k, c is a fixed constant; 

(iv) for x
x

 we have 

 (2)-    =



xn

xRxxPAnf )()(log)( 0 , 

where 

 )()( xOxR  1 , 0oA , 01)( auauP   

Moreover, for a nonnegative function f(n)M(a) we obtain an asymptotic formula for the sum: 
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We shall use following assertions. 

Lemma1.: There exists a positive constant C1 such that in region  Re s 1
13

2

1 )log(log)(log 


 TTń , 

TS Im , 

 the following estimate 

log ( ) (log( 10)) (loglog( 10))

1

3s t t     

                                

  if p=Po 

 

if p3 (mod4), p  Po, b=a or 0; 

 



    ISSN 2347-1921 
 

1193 | P a g e                                                   M a r c h  2 0 ,  2 0 1 4  

Here constant in symbol ,,<<´´ is absolute. 

Let  m  be a positive integer. We denote 








1),(

)(:),(
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nfxDxD )()1,(:)(
. 

Lemma 2:. Let the multiplicate function f(n) satisfies conditions (2).  

Then for   each prime p we have for  x
x

  

(3)-  )();( xOxApxD p   
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Proof:. First we obtain for a prime p.  
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,   (Re s>1), 

say. 

Hence, by Perron’s formula we have for c >1. 
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Corollary:.  For any real h x and each primer:p we have 
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  is the Euler’s constant. 

Moreover, for xy 2 , 

(6)-       



yxpx y

y

log
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1 , 

(7)-  
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)

log
(

log
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7

. 

Proof. The relations (5) are well-known (see,[7]), the inequality was proved Montgomery and Vaughan [5], and (7) 

proved M. Huxley [3]. 

Lemma 4:. Let   be a complex number, Re  >0. Then for x
x

 and any positive number M 
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 where r( ) 

is the Euler’s gamma-function; the constant in the symbol "O´´ can depend only of M. 

(It is a well known estimate of the incomplete gamma- function through the complete gamma-function). 

2. Main Results.  

We put  

(8)-     



xn

nnfxF )()(:)(  . 

For each positive integer n 2 there exist primes p1 <p2<…<pr, writhe r= (n), such that.  

n= r

a
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aaaa
mpmpmppp r ...... 221121

2121
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whis some positive integers a1,…, ar; (mi, pi)=1, i=1,…,r. 

It is clear that each n has  (n) the representations as n=p
a
m, (m,p)=1. Hence, 

(9)-    

( ) ( ) ( )

,

( , ) 1

f n n f p ma

xn x a p
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a ap x p
m p

 







  
 

Now we shall prove the following theorem.  

Theorem 1:. 

Let the multiplicate function f(n) belongs t0 M(a). Then for   
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  and B2, B3 are the computable constants;  the parameters A0, a, b take 

from the definition of the class M(a), and a1, a0 are  coefficient of the polynomial P(u) in the relation (2). 

From (8),(9), by Lemma 2 we have: 
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, B2, B3 are the computable constants,  moreover, B0=0 only if a1=0,and 

B1=0 only if a0=0, 02

1

2

0  BB . 

Remark:.  

For the calculation of the coefficients c0, c1,c2, c3 we take into  account the following asymptic estimates.  
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Moreover, the constants 
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1 ,dc , are analogical to the constants c1, d1 from                                                      
   Lemma 3.  

  Let f(n)M(a) and let zC, 1z . We define the function 
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this we have 

(11)        ),()(),( 0 zsGszsF az  

Here 0( , )G s z  is a function defined by the Dirichlet’s series 
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)(
n

s

n nzb , which  converges in the region Re 

s>1/2, moreover  

bn(z)<< n (uniformly on z, |z|=1) 

Introduce the following notation 
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Theorem 2:.  

Let z is a complex number, |z|=1. Assume  that f(n) M(a),  0<a 1, and      

0)( nf  for all nN. Then 
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Where )(),(),)1(),((lim)( 2110 zzandszsFz az

s     define by (21)-(22),   moreover, 

)(0 z , )(),( 21 zz   are regular functions for |z| 2 . 

Proof:. We shall use the classic schema of E. Landau . By the relation 
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and taking into account that the series for F(s, z) converges for Re s= 2 ,     we obtain  
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Take T>3. We set 
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(here c1 takes from Lemma 1). 

Let J= J 1+ J2+J3 +J 4+Jo 
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J2 consists with points s= +it for which 
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J0 consists of the interval (1- 0 , 1-  ) going in straight and back direction, an and the circle of the radius   with the 

centre in s=1. 

Thus we have 

0
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From (11) we have on the contour J 
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where G1(s, z) is regular on P. 

From the condition Re z<1 we obtain that the integral on circle of radius    tends to 0 if  0. Hence, we can 

consider P0 as the interval (1- 0 , 1) which  pass in straight and back direction. Thus we obtain  
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Applying Lemma 1 we easy infer for T= ),)(logexp( 5/3
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We set 

(17)-  ),()1()(),( 201 zsGszzsG  ,     ),1()( 10 zGz   

G2(s, z) is analytic function (as function on s), moreover, G2(s, z) for  ]1,1[ 0s  is uniformly bound on z, |z|=1. 

Consider G2(s, z) as function of  variable s and continue periodically (with period 0 ) on all real axis.  
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on straight direction 
                                               

       on back direction   
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Where G3(u, z) is a periodic function of u with period xlog0  and bounds by  absolute constant. 

Now by Lemma 4 for M=1 we have 
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Collecting our previous estimates we get 
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where c5=min(c3, c4). 

For each u, 0<u<x, we have 
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From this, taking into account that f(n) 0 we have, after a simple computations, 
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Theorem 3:. Let c(x) is a real function tending to   slow than xloglog  

Than .  
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where 0   defined in Theorem 2. 

Proof. By definion B(x, z) we have 
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(here we used the sterling’s formulas for (k-1)!=r(k)). 
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Now, as in [ ] we obtain 
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The relations (25)-(29) accomplish the proof our theorem. Using our Theorems   

2 and 3, and also Lemma 3, and Theorems 1 and 2 of Katai [4], we immediately   

obtain the following assertions. 

Theorem 4:. 

 Let the conditions of Theorem 2 satisfy. Let, furthermore, 
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 Let the conditions of Theorem 3 satisfy. Then for each h, 
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 >0, the following asymptotic formula. 
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holds. 

3. Conclusion:.   

The condition 10  a  of Theorem 3 and 4 can expand on   

20  a . Then obviously that for the multiplication functions )(n  and ¼ r(n)   

(the number of representations of  n  by sun of two squares) the appropriate   

asymptotic formulas of theorem 2-5 are hold, moreover, we easy can write the   

function )(),(),( 210 zzz  . For example, if f(n)=1/4 r(n) we have 
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