On the average order of the number of divisors of a positive integer n, and the number of distinct prime divisors of n
 Sattar Abed Khraibet
 Teacher University of Thi-Qar

Abstract: Let $\tau(\mathrm{n})$ denote the number of divisors of a positive integer n , and let $\omega(\mathrm{n})$ is the number of distinct prime divisors of n . De Koninck and lvic [1] have been proved the asymptotic formula for $\chi \rightarrow \infty$

$$
\sum_{n \leq x} \tau(n) \omega(n)=2 x \log x \log \log x+A x \log x+B x \log \log x+o(x)
$$

Keywords:

Multiplicate function; the number of divisors of a positive integer n; the number of distinct prime divisors of n; Mean value; Asymptotic formula.

Council for Innovative Research

Introduction and Preliminary Results

Let $\tau(\mathrm{n})$ denote the number of divisors of a positive integer n , and let $\omega(\mathrm{n})$ is the number of distinct prime divisors of n. De Koninck and Ivic [1] have been proved the asymptotic formula for $\chi \rightarrow \infty$
(1)-

$$
\sum_{n \leq x} \tau(n) \omega(n)=2 x \log x \log \log x+A x \log x+B x \log \log x+o(x)
$$

In the work of De Koninck and Katai [2] was improved an error term in (1). They obtained also a nontrivial estimate for the sum of $\tau(\mathrm{n}) \omega(\mathrm{n})$ where n run over short interval.

In 2005 Prosyanjuk and Varbanets [6] studies the average order $\tau(\alpha) \omega(\alpha)$ in the ring of the Gaussian integers Z [i].
In our present we consider the summatory function for $f(n) \omega(n)$ where $f(n)$ belong to the special class $M(a)$ of multiplicate function which we define the following way:
$f(n) \in M(a)$ if
(i) $f(n)$ is a multiplicate function;
(ii) there exists the finite (or empty) set P_{0} of prime numbers constant a, such that:

$$
f(p)= \begin{cases}o & \text { if } \mathrm{p}=\mathrm{P}_{\mathrm{o}} \\ a & \text { if } \mathrm{p} \equiv 1(\bmod 4), \mathrm{p} \notin \mathrm{P}_{\mathrm{o}}, \text { or } \mathrm{p}=2 \\ b & \text { if } \mathrm{p} \equiv 3(\bmod 4), \mathrm{p} \notin \mathrm{P}_{\mathrm{o}}, \mathrm{~b}=\mathrm{a} \text { or } 0\end{cases}
$$

(iii) $\left|f\left(p^{k}\right)\right| \leq c$ for any prime p and each positive k, c is a fixed constant;
(iv) for $x^{x} \rightarrow \infty$ we have
(2)- $=\sum_{n \leq x} f(n)=A_{0} x P(\log x)+R(x)$,
where

$$
R(x)=O\left(x^{\theta}\right) \theta<1, A_{o}>0, P(u)=a_{1} u+a_{0}
$$

Moreover, for a nonnegative function $f(n) \in M(a)$ we obtain an asymptotic formula for the sum:

$$
A_{k}(x)=\sum_{\substack{n \leq x \\ \omega(n)=k}} f(n)
$$

We shall use following assertions.
Lemma1.: There exists a positive constant C_{1} such that in region $\operatorname{Re} s \geq 1-\dot{n}_{1}(\log T)^{-\frac{2}{3}}(\log \log T)^{-1}$, $|\operatorname{Im} S| \leq T$,
the following estimate

$$
\log \zeta(s) \ll(\log (|t|+10))^{\frac{1}{3}}(\log \log (|t|+10))
$$

Here constant in symbol „<<" is absolute.
Let m be a positive integer. We denote

$$
\begin{aligned}
& D(x, m):=\sum_{\substack{n \leq x \\
(n, m)=1}} f(n) \\
& D(x):=D(x, 1)=\sum_{n \leq x} f(n) .
\end{aligned}
$$

Lemma 2:. Let the multiplicate function $\mathrm{f}(\mathrm{n})$ satisfies conditions (2).
Then for each prime p we have for $\boldsymbol{x}^{x} \rightarrow \infty$
(3)- $D(x ; p)=A_{p} x+O\left(x^{\theta}\right)$
where $A_{p}=A \sum_{k=0}^{\infty} \frac{f\left(p^{k}\right)}{p^{k}}$
Proof:. First we obtain for a prime p.

$$
\sum_{\substack{n=1 \\(n, p)=1}} \frac{f(n)}{n^{s}}=\left(1+\frac{f(p)}{p^{s}}+\frac{f\left(p^{2}\right)}{p^{2 s}}+\ldots\right) \sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}=g_{p}(s) F(s), \quad(\operatorname{Re} s>1),
$$

say.
Hence, by Perron's formula we have for $\mathrm{c}>1$.

$$
D(x ; p)=\frac{1}{2 \pi i} \int_{c-i}^{c+i} g_{r}(s) F(s) \frac{x^{s}}{s} d s+O\left(\frac{x^{c}}{T(c-1)}\right)+O\left(\frac{x^{1+\varepsilon}}{T}\right)
$$

Define N from the condition $\mathrm{p}^{\mathrm{Nc}}=\mathrm{T}, \mathrm{N}=\frac{\log T}{c \log p}$.
Them for $\mathrm{c}=1+\varepsilon, \varepsilon>0$, $\mathrm{T}=\mathrm{x}$, we infer

$$
\begin{aligned}
& D(x ; p)=\sum_{k=0}^{N} f\left(p^{k}\right) \frac{1}{2 \pi i} \int_{c-i T}^{c+i T} F(s)\left(\frac{x}{p^{k}}\right)^{s} \frac{d s}{s}+O\left(\frac{x^{1+\varepsilon}}{T}\right) \\
& \quad=\sum_{k=0}^{N} f\left(p^{k}\right)\left(D\left(\frac{x}{p^{x}}\right)+O\left(\frac{x^{1+\varepsilon}}{T p^{k}}\right)\right)+O\left(\frac{x^{1+\varepsilon}}{T}\right) \\
& \quad=A x \sum_{k=0}^{N} \frac{f\left(p^{k}\right)}{p^{k}}+O\left(\frac{x^{1+\varepsilon}}{T}\right)+O\left(\sum_{k=0}^{N}\left(\frac{x}{p^{k}}\right)^{\theta} \frac{1}{p^{k}}\right)=A_{p} x+O\left(x^{\theta}\right)
\end{aligned}
$$

Corollary:. For any real $\mathrm{h} \leq \mathrm{x}$ and each primer: p we have
$D(x, x+h ; p):=\sum_{x<n \leq x+h} f(n)=\sum_{k=0}^{N} f\left(p^{k}\right) D\left(\frac{x}{p^{k}}, \frac{x+h}{p^{k}}\right)+O(1)$,
where $\mathrm{N}=\left[\frac{\log x}{\log p}\right]$.
Lemma3: $\alpha_{s} \quad x^{x} \rightarrow \infty$,
$\sum_{p \leq x} \frac{1}{p}=\log \log x+c_{1}+O\left(\frac{1}{\log ^{2} x}\right)$,
$\sum_{p \leq x}, \sum_{p \leq x} \frac{\log p}{p}=\log x-d_{1}+O\left(\frac{1}{\log x}\right)$
where
$c_{1}=\gamma+\sum_{p}\left(\log \left(1-\frac{1}{p}\right)+\frac{1}{p}\right)$,

$$
d_{1}=\gamma+\sum_{p} \frac{\log p}{p(p-1)}
$$

γ is the Euler's constant.
Moreover, for $2 \leq y \leq x$,
(6)- $\sum_{x<p \leq x+y} 1 \leq \frac{2 y}{\log y}$,
(7)-

$$
\sum_{x<p \leq x+y} 1=\frac{y}{\log x}+O\left(\frac{y}{\log ^{2} x}\right), \text { if } x^{\frac{7}{12}+\varepsilon} \leq y \leq x
$$

Proof. The relations (5) are well-known (see,[7]), the inequality was proved Montgomery and Vaughan [5], and (7) proved M. Huxley [3].

Lemma 4:. Let α be a complex number, $\operatorname{Re} \alpha>0$. Then for $x^{x} \rightarrow \infty$ and any positive number M
$\gamma(\alpha, x):=\int_{0}^{x} \exp (-u) u^{\alpha-1} d u=r(\alpha)-x^{\alpha-1} \exp (-x)\left[1+\sum_{m=1}^{\mu} \frac{r(\alpha+m)}{r(\alpha)}(-1)^{m} x^{-m}+O\left(x^{-\mu}\right)\right]_{\text {where }}(\alpha)$
is the Euler's gamma-function; the constant in the symbol "O" can depend only of M.
(It is a well known estimate of the incomplete gamma- function through the complete gamma-function).

2. Main Results.

We put
(8)- $\quad F(x):=\sum_{n \leq x} f(n) \omega(n)$.

For each positive integer $\mathrm{n} \geq 2$ there exist primes $\mathrm{p}_{1}<\mathrm{p}_{2}<\ldots<\mathrm{p}_{\mathrm{r}}$, writhe $\mathrm{r}=\omega(\mathrm{n})$, such that.
${ }_{\mathrm{n}=} p_{1}^{a_{1}} \ldots p_{2}^{a_{2}}=p_{1}^{a_{1}} m_{1}=p_{2}^{a_{2}} m_{2}=\ldots=p_{r}^{a_{r}} m_{r}$,
whis some positive integers $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{r}} ;\left(\mathrm{m}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}}\right)=1, \mathrm{i}=1, \ldots, \mathrm{r}$.
It is clear that each n has $\omega(n)$ the representations as $n=p^{a} m,(m, p)=1$. Hence,

Now we shall prove the following theorem.

Theorem 1:

Let the multiplicate function $\mathrm{f}(\mathrm{n})$ belongs $\mathrm{t}_{0} \mathrm{M}(\mathrm{a})$. Then for $\chi \rightarrow \infty$
$\sum_{n \leq x} f(n) \omega(n)=B_{0} x \log x \log \log x+B_{1} x \log x+B_{2} x \log \log x+B_{3} x+O\left(\frac{x}{\log x}\right)$
where $B_{0}=A_{0} a_{1} \frac{a+b}{2}, B_{1}=A_{0} a_{0} \frac{a+b}{2}$, and $\mathrm{B}_{2}, \mathrm{~B}_{3}$ are the computable constants; the parameters A_{0}, a, b take from the definition of the class $\mathrm{M}(\mathrm{a})$, and $\mathrm{a}_{1}, \mathrm{a}_{0}$ are coefficient of the polynomial $\mathrm{P}(\mathrm{u})$ in the relation (2).
From (8),(9), by Lemma 2 we have:

$$
\begin{aligned}
& F(x)=\sum_{\substack{a, p \\
p^{a} \leq x}} f\left(p^{a}\right) D\left(\frac{x}{p^{a}} ; p\right) \\
& \sum_{p \leq x} f(p)\left(A_{p} \frac{x}{p}\left(a_{1} \log \frac{x}{p}+a_{0}\right)+O\left(x^{\theta}\right)\right)+ \\
& +\sum_{\substack{a \geq 2 \\
p^{a} \leq x}} f\left(p^{a}\right)\left(A_{p} \sum_{j=0}^{\infty} \frac{f\left(p^{j}\right)}{p^{j}} \frac{x}{p^{a}}\left(a_{1} \log \frac{x}{p^{a}}+a_{0}\right)+O\left(\left(\frac{x}{p^{a}}\right)^{\theta}\right)=\right. \\
& x \sum_{p \leq x}\left(\frac{f(p)}{p} A_{p}\left(a_{1} \log \frac{x}{p}+a_{0}\right)+O\left(\frac{x}{p}\right)^{\theta}\right)+ \\
& +\sum_{\substack{p^{a} \leq x \\
a \geq 2, j \geq 0}}^{A_{p}} \frac{f\left(p^{a}\right) f\left(p^{j}\right)}{p^{a}+j}\left(b_{1} \log \frac{x}{p^{a}}+a_{0}\right)+O\left(x^{\theta} \sum_{\substack{a, b \\
a \geq 2}}^{p^{a \theta}}\right)= \\
& =A_{0} x \sum_{p \leq x} \frac{f(p)}{p}\left(a_{1}(\log x-\log p)+a_{0}\right)+ \\
& A_{0} x \sum_{p} \frac{f^{2}(p)}{p^{2}}\left(a_{1}(\log x-\log p)+a_{0}\right)+ \\
& +A_{0} x \sum_{a \geq 2} \sum_{j \geq 0} \sum_{p^{a} \leq x} \frac{f\left(p^{a}\right) f\left(p^{j}\right)}{p^{a+j}}\left(a_{1}\left(\log x-\log p^{a}\right)+a_{0}\right)+O\left(x^{\theta}\right)=
\end{aligned}
$$

$=A_{0} a_{1} \frac{a+b}{2} x \log x \log \log 2+A_{0} a_{0} \frac{a+b}{2} \log x+C_{2} x \log \log x+C_{3} x+O\left(\frac{x}{\log x}\right)=$
$=B_{0} x \log x \log \log x+B_{1} x \log x+B_{2} x \log \log x+B_{3} x+O\left(\frac{x}{\log x}\right)$,
where $B_{0}=A_{0} a_{1} \frac{a+b}{2}, B_{1}=A_{0} a_{0} \frac{a+b}{2}, \mathbf{B}_{2}, \mathbf{B}_{3}$ are the computable constants, moreover, $\mathbf{B}_{0}=\mathbf{0}$ only if $\mathbf{a}_{1}=\mathbf{0}$,and $\mathbf{B}_{1}=\mathbf{0}$ only if $\mathbf{a}_{0}=\mathbf{0}, B_{0}^{2}+B_{1}^{2}>0$.

Remark:

For the calculation of the coefficients $\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}$ we take into account the following asymptic estimates.

$$
\sum_{p \equiv \pm 1(\bmod 4)} \frac{1}{p}=\frac{1}{2} \log \log x+C_{1}^{\prime}+O\left(\frac{1}{\log ^{2} x}\right),
$$

$$
\sum_{p \equiv \pm 1(\bmod 4)} \frac{\log p}{p}=\frac{1}{2} \log x-d_{1}^{\prime}+O\left(\frac{1}{\log x}\right)
$$

Moreover, the constants $c_{1}^{\prime}, d_{1}^{\prime}$, are analogical to the constants $\mathrm{c}_{1}, \mathrm{~d}_{1}$ from

Lemma 3.

Let $\mathrm{f}(\mathrm{n}) \in \mathrm{M}(\mathrm{a})$ and let $\mathrm{z} \in \mathrm{C},|z|=1$. We define the function
$F(s, z)=\sum_{n=1}^{\infty} \frac{z^{\omega(n)} f(n)}{n^{s}}, \operatorname{Re} s>1$.
Since $z^{\omega(n)} f(n)$ is a multiplicate function we infer

$$
\begin{aligned}
& F(s, z)=\prod_{p}\left(1+\frac{z f(p)}{p^{s}}+\frac{z f\left(p^{2}\right)}{p^{2 s}}+\ldots\right)= \\
& \prod_{\substack{p=1(\bmod 4) \\
p}}\left(1+\frac{a z}{p^{s}}+\frac{z f\left(p^{2}\right)}{p^{2 s}}+\ldots\right) . \prod_{p=3(\bmod 4)}\left(1+\frac{z}{p^{s}}+\frac{z f\left(p^{2}\right)}{p^{2 s}}+\ldots\right) G(s, z)
\end{aligned}
$$

where:. $G(s, z)=\prod_{p \in P_{0}}\left(1+\frac{z f\left(p^{2}\right)}{p^{2 s}}+\ldots\right)\left(1+\frac{z f(p)}{p^{s}}+\frac{z f\left(p^{2 s}\right)}{p^{2 s}}+\ldots\right)^{-1}\left(1+\frac{z f(2)}{2^{s}}+\frac{z f(4)}{2^{2 s}}+\ldots\right)$
this we have
(11) $\quad F(s, z)=\zeta(s)^{a z} G_{0}(s, z)$

Here $G_{0}(s, z)$ is a function defined by the Dirichlet's series $\sum_{n=1}^{\infty} b_{n}(z) n^{-s}$, which converges in the region $\mathbf{R e}$ $\mathrm{s}>1 / 2$, moreover
$\mathrm{b}_{\mathrm{n}}(\mathrm{z}) \ll \mathrm{n}$ (uniformly on $\mathrm{z},|\mathrm{z}|=1$)

Introduce the following notation

$A_{k}(x)=\sum_{\substack{n \leq x \\ \omega(n)=k}} f(n), A_{k}(x, h)=\sum_{\substack{x \leq n \leq x+h \\ \omega(n)=k}} f(n)$
$B(x, z)=\sum_{n \leq x} z^{\omega(n)} f(n), B(x, h, z)=\sum_{x<n \leq x+h} z^{\omega(n)} f(n)$

Theorem 2:.

Let z is a complex number, $|\mathrm{z}|=1$. Assume that $\mathrm{f}(\mathrm{n}) \in \mathrm{M}(\mathrm{a}), 0<\mathrm{a} \leq 1$, and $f(n) \geq 0$ for all $\mathrm{n} \in \mathrm{N}$. Then
$B(x, z)=\frac{x}{(\log x)^{1-a z}}\left[\frac{2 \psi_{0}(z)}{r(a z)}+\frac{\gamma_{1}(z)}{\log x}+\frac{\gamma_{2}(z)}{(\log x)^{2}}\right]+O\left(x e^{-c \frac{(\log x)^{3 / 5}}{\log \log x}}\right)$
Where $\quad \psi_{0}(z)=\lim _{s \rightarrow 1}\left(F(s, z) \times(s-1)^{a z}\right)$, and $\gamma_{1}(z), \gamma_{2}(z) \quad$ define by (21)-(22), moreover, $\psi_{0}(z), \gamma_{1}(z), \gamma_{2}(z)$ are regular functions for $|z| \leq 2$.

Proof:. We shall use the classic schema of E. Landau . By the relation
$\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{y^{s+k}}{s(s+1) \ldots(s+k)} d s=\left\{\begin{array}{l}\frac{1}{k!}(y-1)^{k} \\ 0\end{array}\right.$,
if $\mathrm{y} \geq 1$,
if $0<y<1$
and taking into account that the series for $\mathrm{F}(\mathrm{s}, \mathrm{z})$ converges for $\mathrm{Re} \mathrm{s}=\sigma=2$, we obtain
(12)- $\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} F(s, z) \frac{x^{s+1}}{s(s+1)} d s=\sum_{n=1}^{\infty} z^{\omega(n)} n f(n) \frac{1}{2 \pi i} \int_{2}^{2+i \infty} \frac{\left(x n^{-1}\right)^{s+1}}{s(s+1)} d s=$

$$
=\sum_{n \leq x} z^{\omega(n)}(x-n) f(n):=S(x, z)
$$

Since $B(x, 1)=\sum_{n \leq x} f(n)=A_{0} x P(\log x)+O(x)^{\theta}$ we can assume that $|\mathrm{z}|=1, \mathrm{z} \neq 1$.
Take $\mathrm{T}>3$. We set
(13)-

$$
\delta(t)=\frac{c_{1}}{2}(\log |t|+10)^{-2 / 3}(\log \log (|t|+10))^{-1}, \quad|t| \leq T, \delta_{0}=\delta(T)
$$

(here c_{1} takes from Lemma 1).
Let $\mathrm{J}=\mathrm{J} 1+\mathrm{J} 2+\mathrm{J} 3+\mathrm{J} 4+\mathrm{Jo}$
where J_{1} consists with points $\mathrm{s}=\sigma+\mathrm{it}$ for which
$\sigma=1-\delta(t), t>T ;$
J_{2} consists with points $\mathrm{s}=\sigma+\mathrm{it}$ for which
$\sigma=1-\delta(t), t<-T$
J_{3} (accorolingly, J_{4}) consists with that $\mathrm{s}=\sigma+\mathrm{it}$ for which
$\sigma=1-\delta_{0}, 0<t \leq T$ (accorolingly, $-T \leq t<0$);
J_{0} consists of the interval ($1-\delta_{0}, 1-\rho$) going in straight and back direction, an and the circle of the radius ρ with the centre in $\mathrm{s}=1$.

Thus we have
$\int_{P^{\prime}} F(s, z) \frac{x^{s+1}}{s(s+1)} d s=0$
Hence,
$S(x, z)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} F(s, z) \frac{x^{s+1}}{s(s+1)} d s=\frac{1}{2 \pi i} \int_{P} F(s, z) \frac{x^{s+1}}{s(s+1)} d s$
From (11) we have on the contour J
(14)- $\frac{1}{s(s+1)} F(s, z)=\frac{1}{(s-1)^{a z}} G_{1}(s, z)$,
where $G_{1}(s, z)$ is regular on P.
From the condition Re $\mathrm{z}<1$ we obtain that the integral on circle of radius ρ tends to 0 if $\rho \rightarrow 0$. Hence, we can consider P_{0} as the interval $\left(1-\delta_{0}, 1\right)$ which pass in straight and back direction. Thus we obtain
$(s-1)^{-a z}=\left\{\begin{array}{l}e^{-\pi i a z}(1-s)^{-a z} \\ e^{\pi i a z}(1-s)^{-a z}\end{array}\right.$
on back direction

So, we have
(15)- $I=\frac{1}{2 \pi i} \int_{P} F(s, z) \frac{x^{s+1}}{s(s+1)} d s=\frac{1}{2 \pi i}\left(\int_{P_{1}}+\int_{P_{2}}+\int_{P_{3}}+\int_{P_{4}}+\int_{P_{0}}\right):=I_{1}+I_{2}+I_{3}+I_{4}+I_{0}$

Applying Lemma 1 we easy infer for $\mathrm{T}=\exp \left(c_{2}(\log x)^{3 / 5}\right), c_{2}>0$,

$$
\begin{equation*}
I_{1}+I_{2}+I_{3}+I_{4} \leq x^{2} \exp \left(-c_{3}(\log x)^{3 / 5}(\log \log x)^{-1}\right), c_{3}>0 \tag{16}
\end{equation*}
$$

Moreover,
$I_{0}=\frac{1}{2 \pi i} \int_{P_{0}} F(s, z) \frac{x^{s+1}}{s(s+1)} d s=\frac{1}{2 \pi i} \int_{1-\delta_{0}}^{1}\left(e^{\pi i a z}-e^{-\pi i a z}\right) \frac{G_{1}(s, z)}{(1-s)^{a z}} x^{s+1} d s$
We set
(17)- $G_{1}(s, z)=\psi_{0}(z)+(1-s) G_{2}(s, z), \quad \psi_{0}(z)=G_{1}(1, z)$
$\mathrm{G}_{2}(\mathrm{~s}, \mathrm{z})$ is analytic function (as function on s), moreover, $\mathrm{G}_{2}(\mathrm{~s}, \mathrm{z})$ for $s \in\left[1-\delta_{0}, 1\right]$ is uniformly bound on $\mathrm{z},|\mathrm{z}|=1$.
Consider $\mathrm{G}_{2}(\mathrm{~s}, \mathrm{z})$ as function of variable s and continue periodically (with period δ_{0}) on all real axis.
Then we have
$I_{0}=\frac{x^{2} \sin \pi a z}{\pi}\left[\int_{1-\delta_{0}}^{1}(1-s)^{-a z} x^{s-1} \psi_{0}(z) d s+\int_{1-\delta_{0}}^{1}(1-s)^{1-a z} G_{2}(s, z) x^{s-1} d s\right]=$
$=\frac{x^{2} \sin \pi a z}{\pi} \frac{\psi_{0}(z)}{(\log x)^{1-a z}} \int_{0}^{\delta_{0} \log x} e^{-u} u^{(1-a z)-1} d u+\frac{x^{2} \sin \pi a z}{\pi(\log x)^{2-a z}} \int_{0}^{\delta_{0} \log x} e^{-u} u^{1-z} G_{3}(u, z) d u$,
Where $\mathrm{G}_{3}(\mathrm{u}, \mathrm{z})$ is a periodic function of u with period $\delta_{0} \log x$ and bounds by absolute constant.
Now by Lemma 4 for $\mathrm{M}=1$ we have
$I_{0}=\frac{x^{2} \sin \pi a z}{\pi(\log x)^{1-a z}} \psi_{0}(z)\left[r(1-z)+O\left(\delta_{0} x^{-\delta_{0}} \log x\right)\right]+\frac{x^{2} \sin \pi a z}{\pi(\log x)^{2-a z}} \times$
$\times\left(\int_{0}^{\infty} e^{-u} u^{1-a z} G_{3}(u, z) d u+O\left(\delta_{0}^{2} x^{-\delta_{0}} \log ^{2} x\right)\right)=\frac{x^{2} \psi_{0}(z)}{(\log x)^{1-a z} r(a z)}+$
$+\frac{x^{2} \gamma_{0}(z) \sin \pi a z}{\pi(\log x)^{2-a z}}+O\left(x^{2} \exp \left(-c_{4}(\log x)^{3 / 5}(\log \log x)^{-1}\right)\right),\left(c_{4}>0\right)$
where
(19)- $\quad \gamma_{0}(z)=\int_{0}^{\infty} e^{-u} u^{1-a z} G_{3}(u, z) d u,\left|\gamma_{1}(z)\right| \leq$ const
for $|z|=1$.
Collecting our previous estimates we get
(20)- $S(x, z)=\frac{x^{2}}{(\log x)^{1-a z}} \frac{\psi_{0}(z)}{2 r(a z)}+\frac{\gamma_{1}(z) \sin \pi a z x^{2}}{\pi(\log x)^{2-a z}}+O\left(x^{2} \exp \left(-c_{5}(\log x)^{3 / 5}(\log \log x)^{-1}\right)\right)$,
where $\mathrm{c}_{5}=\min \left(\mathrm{c}_{3}, \mathrm{c}_{4}\right)$.
For each $u, 0<u<x$, we have
(21)- $S(x+u, z)-S(x, z)=\int_{x}^{x+u} \frac{d}{d y}(S(y, z)) d y=\int_{x}^{x+u} B(y, z) d y$

From this, taking into account that $\mathrm{f}(\mathrm{n}) \geq 0$ we have, after a simple computations,
(22). $B(x, z)=\frac{x}{(\log x)^{1-a z}}\left[\frac{2 \psi_{0}(z)}{r(a z)}+\frac{\gamma_{1}(z)}{\log x}+\frac{\gamma_{2}(z)}{(\log x)^{2}}\right]+O\left(x e^{-\frac{c(\log x)^{3 / 5}}{\log \log x}}\right)$,
$\mathrm{c}=1 / 2 \mathrm{c}_{5}$
where $\gamma_{1}(z)=\frac{(a z-1) \psi_{0}(z)}{2 r(a z)}+\frac{2 \gamma_{0}(z) \sin \pi a z}{\pi}$,
(23)- $\quad \gamma_{2}(z)=\frac{1}{\pi}(a z-2) \gamma_{0}(z) \sin \pi a z$

Theorem 3:. Let $\mathrm{c}(\mathrm{x})$ is a real function tending to ∞ slow than $\sqrt{\log \log x}$
Than.
$A_{k}(x)=\sum_{\substack{\omega(n)=k \\ n \leq x}} f(n)=\frac{x(\log \log x)^{k-1}}{(k-1)!\log x} \frac{\psi_{0}\left(\frac{k-1}{\log \log x}\right)}{r\left(1+\frac{a(k-1)}{\log \log x}\right)}+O\left(k^{3 / 2}(\log \log x)^{-1}\right)$,
where ψ_{0} defined in Theorem 2.
Proof. By definion $B(x, z)$ we have
$B(x, z)=1+\sum_{k=1}^{\infty} A_{k}(x) z^{k}$
Obviously, that $\mathrm{A}_{\mathrm{k}}(\mathrm{x})=0$ if $\mathrm{k}>2 \log \mathrm{x}$. Hence, $\mathrm{B}(\mathrm{x}, \mathrm{z})$ is analytic function of z .
Then by formulas C_{0} we have
$A_{k}(x)=\frac{1}{2 \pi i_{c}} \int_{c} B(x, z) z^{-(k+1)} d z$,
where c is the circle with centre $\mathrm{z}=0$ of radius $r=\frac{k-1}{\log \log x}$. For $\mathrm{k}=1$ we put c
$|z|=1 / 2$. By Theorem 2 we infer

$$
A_{1}(x)=\frac{1}{2 \pi i} \int_{|z|=1 / 2} \frac{B(x, z)}{z^{2}} d z=\frac{2 x a}{\log x} \frac{1}{2 \pi i} \int_{|z|=1 / 2} \frac{\psi_{0}(z)(\log x)^{a z}}{r(1+a z) z} d s+\frac{x}{(\log x)^{2}} \frac{1}{2 \pi i} \times
$$

(24)- $\times \int \frac{\gamma_{1}(z)+\gamma_{2}(z) \log ^{-1} x(\log x)^{a z}}{z^{2}} d z+O\left(e^{-c(\log x)^{3 / 5}(\log \log x)^{-1}} \int_{|z|=1 / 2} \frac{|d z|}{|z|^{2}}\right)=$

$$
=\frac{2 a x}{\log x} \psi_{0}(0)+O\left(\exp \left(-c(\log x)^{3 / 5}(\log \log x)^{-1}\right)\right)
$$

For $k>1$ Theorem 2 gives
(25)- $A_{k}(x)=\frac{x}{\log x} \frac{1}{2 \pi i} \int_{c} \frac{\psi_{0}(z)(\log x)^{a z}}{r(a z) z^{k+1}} d z+O\left(\frac{x}{(\log x)^{2}} \int_{c} \frac{|\log x|}{|z|^{k+1}}|d z|\right)+$

$$
+O\left(x \exp \left(-c(\log x)^{3 / 5}(\log \log x)^{-1}\right) \int_{c} \frac{|d z|}{|z|^{k+1}}\right)=I_{1}+I_{2}+I_{3}
$$

we have:.
(26)

$$
I_{3} \ll x \exp \left(-c(\log x)^{3 / 5}(\log \log x)^{-1}\right)\left(\frac{1}{k-1} \log \log x\right)^{k}
$$

$$
\ll x \exp \left(\frac{-c}{2}(\log x)^{3 / 5}(\log \log x)^{-1}\right)
$$

$$
I_{2} \ll \frac{x}{r^{k}(\log x)^{2}} \int_{-\pi}^{\pi}(\log x)^{r \cos \alpha} d \alpha \ll \frac{x}{r^{k}(\log x)^{2}} \int_{-\pi}^{\pi} e^{r \cos \alpha \log \log x} d \alpha \ll
$$

(27) $-\ll \frac{x}{(\log x)^{2}}\left(\frac{\log \log x}{k-1}\right)^{k} \sum_{n=0}^{\infty} \frac{(r \log \log x)^{n}}{n!} \int_{0}^{1}(\cos 2 \pi \alpha)^{n} d \alpha \ll \frac{x}{(\log x)^{2}} \frac{(\log \log x)^{k} e^{k}}{(k-1) \sqrt{k-1}}$ $\ll \frac{x}{(\log x)^{2}} \frac{(\log \log x)^{k}}{(k-1)!} \frac{\log \log x}{k-1} ;$
(here we used the sterling's formulas for $(\mathrm{k}-1)!=\mathrm{r}(\mathrm{k})$).
Denote
$g(z)=\psi_{0}(z)(z \Gamma(a z))^{-1}=a \psi_{0}(z)(\Gamma(1+a z))^{-1}$
The function $\mathrm{g}(\mathrm{z})$ is analytic for $|\mathrm{z}|<3 / 2$, and thus
$g(z)=g(r)+g^{\prime}(r)(z-r)+O\left(\left|g^{\prime \prime}(z) \| z-r\right|^{2}\right),\left|g^{\prime \prime}(r)\right|<c o n s t$.
Hence,
(28) $\tau_{1}=\frac{x}{\log x} \frac{1}{2 \pi i} \int_{c} g(z) \frac{(\log x)^{z}}{z^{k}} d z=\frac{x g(r)}{z^{k}} \frac{1}{2 \pi i} \int_{c} \frac{(\log x)^{z}}{z^{k}} d z+\frac{x g^{\prime}(r)}{\log x} \frac{1}{2 \pi i} \int_{c} \frac{(z-r)(\log x)^{z}}{z^{k}} d z$

$$
+O\left(\int_{c} \frac{|z-r|}{|z|^{k}}\right)\left|(\log x)^{k} \| d z\right|
$$

Now, as in [] we obtain
(29)- $\quad I_{1}=\frac{x g(r)}{\log x} \frac{(\log \log x)^{k-1}}{(k-1)!}+O\left(k^{3 / 2}(\log \log x)^{-2}\right)=$

$$
=\frac{\psi_{0}\left((k-1)(\log \log x)^{-1}\right)}{r\left(1+a(k-1)(\log \log x)^{-1}\right)} \frac{x(\log \log x)^{k-1}}{(k-1)!\log x}+O\left(k^{3 / 2}(\log \log x)^{-2}\right)
$$

The relations (25)-(29) accomplish the proof our theorem. Using our Theorems 2 and 3, and also Lemma 3, and Theorems 1 and 2 of Katai [4], we immediately obtain the following assertions.

Theorem 4:-

Let the conditions of Theorem 2 satisfy. Let, furthermore, $x^{7 / 12+\varepsilon} \leq h \leq x^{2 / 3-\varepsilon}$,
where ε is arbitrary positive constant. Then

$$
B(x, h ; z)=\frac{h}{(\log x)^{1-a z}}\left(\psi_{0}(z)+O\left(\frac{1}{\log x}\right)\right)
$$

Theorem 5:.

Let the conditions of Theorem 3 satisfy. Then for each h, $x^{7 / 12+\varepsilon} \leq h \leq x^{2 / 3-\varepsilon}$, $\varepsilon>0$, the following asymptotic formula.
$A_{k}(x, h)=\frac{h}{\log x} \frac{(\log \log x)^{k-1}}{(k-1)!\log x} \frac{\psi_{0}\left((k-1)(\log \log x)^{-1}\right)}{r\left(1+(k-1)(\log \log x)^{-1}\right)}+$
$+O\left(k^{3 / 2}(\log \log x)^{-2}\right)+O\left(\frac{h}{\log x(l \log \log x)^{1 / 4}}\right) ;$
holds.

3. Conclusion:.

The condition $0<a \leq 1$ of Theorem 3 and 4 can expand on
$0<a \leq 2$. Then obviously that for the multiplication functions $\tau(n)$ and $1 / 4 \mathrm{r}(\mathrm{n})$
(the number of representations of n by sun of two squares) the appropriate asymptotic formulas of theorem 2-5 are hold, moreover, we easy can write the
function $\psi_{0}(z), \gamma_{1}(z), \gamma_{2}(z)$. For example, if $\mathrm{f}(\mathrm{n})=1 / 4 \mathrm{r}(\mathrm{n})$ we have
$\psi_{0}(z)=\left(\frac{\pi}{4}\right)^{z} \prod_{p \equiv 1(\bmod 4)}\left(1-\frac{1}{p}\right)^{z}\left(1+\frac{z}{p-1}\right) \prod_{p \equiv 3(\bmod 4)}\left(1-\frac{1}{p^{2}}\right)^{z}\left(1-\frac{1}{2}\right)^{z}(1+z)$

References:

[1] De Koninck I.M. and Ivic A., Topics in Arithmeyical Functions, North - Holland, Amsterdam, 1980.
[2] De Koninck I.M. and Katai I., On the average order of $d(n) \omega(n)$ and Similar function on short intervals, Ann. Univ. Sci. Budapestinensis de Rolando Eotvos Nominate, Sec. Computatorica, 25 (2005), BI -142.
[3] Huxley, On the difference between consecutive primes, Invent. Math. 15(1972), 164 - 170.
[4] Katai I. and Subbarao M.V., Some remarks on a paper of Ramachandra, Liet. Matem. rink., 43 (4) (2003), 497 505.
[5] Montgomery H. and Vaughan R., The large sieve, Mathematica, 20(1973), 119-134.
[6] Prosyanjuk N. and Varbanets S., On the average of $\tau(\alpha), \omega(\alpha)$ over the Gaussian integers, Proc. Sci. Sem. Faculty Physics and Math., Siauliai Univ., 8(2005), 104 - 125.
[7] Tenenbaum G., Introduction to analytic and probabilistic number theory, Cambridge Univ. Press, 1995.

