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ABSTRACT

The aim of paper is to find the numerical solutions of sixth order linear and nonlinear differential equations with two point
boundary conditions. The well known Galerkin method with Bernstein and modified Legendre polynomials as basis
functions is exploited. In this method, the basis functions are transformed into a new set of basis functions, which satisfy
the homogeneous form of Dirichlet boundary conditions. A rigorous matrix formulation is derived for solving the sixth order
BVPs. Several numerical examples are considered to verify the efficiency and implementation of the proposed method.
The numerical results are compared with both the exact solutions and the results of the other methods available in the
literature. The comparison shows that the performance of the present method is more efficient and yields better results.
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1. INTRODUCTION

Agarwal [1] has discussed the theorems of the conditions for the existence and uniqueness of solutions of the sixth-order
BVPs thoroughly in a book, but no numerical methods are contained there in. Non-numerical techniques were developed
by Baldwin [2, 3] for solving such BVPs. Moreover, Chandrasekhar [4] determined that when an infinite horizontal layer of
fluid is heated from below and is under the action of rotation, instability sets in. When this instability is as ordinary
convection, the ordinary differential equation is sixth-order. Generally, sixth-order boundary value problem arises in the
mathematical modeling of astrophysics; the narrow convecting layers which are believed to surround A-type stars [5].
Boutayeb and Twizell [6] developed a family of numerical methods for the solution of special and general nonlinear sixth-
order BVPs. Numerical methods for the solution of special and general sixth-order BVPs with application to Benard layer
eigenvalue problem were introduced by Twizell and Boutayeb [7]. Glatzmaier [8] also noticed that dynamo action in some
stars may be modeled by such BVPs. Siddigi et al. [9] presented the Quintic spline solution of linear sixth-order BVPs.
Siraj-ul-Islam et al. [10] used nonpolynomial splines approach to the solution of sixth-order BVPs. Siddigi and Akram [11]
developed septic spline solutions of sixth-order BVPs. On the other hand, Chawla and Katti [12] presented numerical
methods of solutions implicitly, although the authors concentrated their attention on fourth order BVPs. A second order
method was introduced in [13] for solving special and general sixth-order BVPs and in later work Twizell and Boutayeb [7]
developed finite difference methods of order two, four, six and eight for solving such problems. Gamel et al. [14] used
Sinc-Galerkin method for the solution of sixth-order BVPs. Wazwaz [15] developed decomposition and modified domain
decomposition methods to find the solution of the sixth-order BVPs. Siddigi and Twizell [16] solved the sixth-order BVPs
using polynomial splines of degree six where spline values at the mid knots of the interpolation interval and the
corresponding values of the even order derivatives were related through consistency relations. Recently, Khan and
Sultana [17] used parametric quintic spline solution for sixth order two point BVPs. Fazal-i-Haq et al. [18] developed the
solution of sixth order BVPs by collocation method using Haar wavelets. Akram and Siddigi [19] presented the solution of
sixth order BVPs using non-polynomial spline technique. Logmani and Ahmadinia [20] derived numerical solution of sixth
order BVPs with sixth degree B-spline functions.

In this paper, we consider Galerkin method [21] with Bernstein and Legendre polynomials [22] as basis functions for the
numerical solution of a general sixth-order linear boundary value problem given by

aﬁﬂ+a5ﬂ+a ﬂ+a ﬂ+a ﬂ-kaﬂ-f-aou—r a<x<b (1)
dx® o dd e Cdd dx '
Subject to the following two types of boundary conditions

Type |: u(@) = Ay, u(b)=By, u'(@=A~A, ub)=B;, u"@=~Ay, u'(h)=B, (2a)
Type II: u@=A,, ub)=B, U'@=A, u'(t)=B, u@=a, uWp)=8, (2b)

where A,B;,i=0124 are finite real constants and g,i =01,---6 and r are all continuous and differentiable functions of
x defined on the interval [a, b]. The boundary value problem (1) is to be solved with both the boundary conditions of type |
and type II.

However, in section 2 of this paper, we give a short description on Bernstein and Legendre polynomials. In section 3, the
formulation for solving linear sixth-order BVP by Galerkin weighted residual method with Bernstein and Legendre
polynomials is described. In particular, the proposed method with the boundary conditions of type I, eqn. (2a) is presented
in section 3.1 where as the proposed method with the boundary conditions of type Il, egn. (2b) is presented in section 3.2.
Then we deduce similar formulation for nonlinear problems in the next section. In section 4, numerical examples for both
linear and nonlinear BVPs are considered to verify the proposed formulation. Finally the conclusions of the paper are
given in the last section.

2. PIECEWISE POLYNOMIALS
(a) Bernstein Polynomials

The general form of the Bernstein polynomials [22] of nth degree over the interval [@, D] is defined by

n Ak \N-i
Bin(x):[,jw, a<x<b i=012,...n.
’ ! (b-a)"
For example, the first 11 Bernstein polynomials of degree 10 over the interval [0, 1] are given bellow:
By (X) = (1—x)1° B, (X) = 21001 x)® x* Bg (x) = 45(1— x)%x®
By(x) =101 %)° Bs () = 252(1-x)°x° Bg (x) =10(1— )x°
B, () = 45(1— x)8x2 Bg (X) = 210(1— x)* x® Byo(x) = x*°
B (x) =1201—x)" x3 B, (X) =120(1-x)*x’
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Note that each of these n+1 polynomials having degree n satisfies the following properties:

(i) Bip()=0if i<Oori>n.

(i) D Bin(x) =1
i=0

(i) Bi,(a)=B;,(b)=0, i=12,...,n—1

For these properties, Bernstein polynomials are used in the trail functions satisfying the corresponding homogeneous form
of the essential boundary conditions in the Galerkin method to solve a BVP.

(b) Legendre Polynomials
The general form of the Legendre polynomials [22] of degree N is defined by
( 1)n dn

—[@-x)"], n=1
2" (nl) dx"

n()_

Now we modify above Legendre polynomials as

Pr(x) = {fi‘d n(x —XT (&) }(x 1), n>1
We write first few modified Legendre polynomials over the interval [0, 1]:
pL(X) = 2x(x=1), Po(X) =6xX(X—1)%, p3(X) = 2X(x—1)(10x? —15x+6), ps(X) = 20x —110x? +230x° — 210x* + 70x>
P (X) = —30X + 240x? —770x> +1190c* —882x° +252x°, pg(x) = 42x — 462x% +2100¢° — 4830x* +5922x° —3696x° +924x’
p; (X) = —56x +812x2 —4956¢% +15750* — 2818° + 286445 — 154447 + 34328
pg(X) =72x—13322 +10500¢ — 43890¢* +10672x° —156156° +135564 — 64350 +12870<°
Po(X) = —90x + 2070x? — 20460¢ +108570¢* —34234%° + 6726745 —832260” + 630630 — 267410 + 48620¢-°

Pro(X) = 110x—3080¢? +37290¢ — 244530¢* + 966966¢ — 24384365 + 401544%" — 43028708 + 2892890 —1108536°
+184756¢!

Pr1(X) =—132x + 4422 — 64350 +510510¢* — 2468466 + 77357285 —1621963 + 229729568 — 217088306 +13117676.°
— 458530&! + 705432

Since the modified Legendre polynomials have special properties at x=0 and x=1: p,(0)=0 and p,(1)=0, n>1

respectively, so that they can be used as set of basis function to satisfy the corresponding homogeneous form of the
Dirichlet boundary conditions to derive the matrix formulation of fourth order BVP over the interval [0, 1].

3. FORMULATION OF SIXTH ORDER BVP

In this section we first derived the matrix formulation for sixth order linear BVP and then we extend our idea for solving
nonlinear BVP. To solve the boundary value problem (1) by the Galerkin method we approximate u(x) as

n
GO0 =060+ D ai Bin(X) 3)
i=1
Here 6,(x) is specified by the essential boundary conditions and B; ,(a) =B; ,(b) =0 for eachi=1,2,...n. Using (3) into
eqn. (1), the weighted residual equations are

b
d dU d*u du d2a du
ag——+85—0+a4——+83——+8y ——+a — +agU —r |Bj ,(X)dx=0 (4)
-ﬂsd o taxt Cdd Cdk cdx 0 }"”()

3.1 Formulation |
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Integrating by parts the terms up to second derivative on the left hand side of (4), we get each term after applying the
conditions prescribed in type |, egn (2a) as

b

6~ 5~
J.aﬁ jxg j.n (X)dX—I:aG i n(X) :| J.(?X [aG Bj, n(X)]dxg dx

b 2
[a6 jn()]OI “} +Ij7a6 Jn(x)]—o|x [Since B; () = Bj (b) = 0]
dx

[ d i’ [ a2 [ ]d3u " d3 ]
| ax e Jn() + d7a68j,n(x) ™ I—ae i (X) dx

d a4l a’q |’
&[ jn(x)] :la l:d 2[a6 ]n(x)] X3:|

a

2 b
|:d 3[a6 ]n(x)]dxu:| J.j_ agB jn(x)] dx
s 2 3~ 3 =P [ 44 ~P b o5 ~
|:%[a651 n(X) ul{j?[%Bj’n(X)]ZTgL{%[%Bj’n(x)]ZTg}:lij?[aGBj’”(x)](;_iL_I%[%Bj'”(x)]%dx (5)

I%% Jn(X)dX—{as ]n(X) :l I; [as Jn(x)]d :

a

d a3 ]’} a2 d3a
:_lia[ag’Bj’n(X)]ﬁL+J‘d7[a55j’"(x)]ﬁdx
3-8 2 o0 b3 2
= _{% [asBj'n(X)](:ngL {:7 [asBj’n(X)]?jTl;L —J‘;?[asBjyn(x)](;Tl; dx
= | 9 [asB; (x)]ﬂb+ d—z[ B; (x)]ﬁb— d—s[ B, (x)]£ +j'i[ B, (x)]ﬂdx ®)
B an5 I 3 a dx? %) dx? ] dxd %) dx adx4 %) dx
j).a d_uB (x)dx=| a (x) 3G b [a (x)]—dx
) 4dX j,n > 4 j,n ) 4 j,n X
2= b, 2~
:_l:%[a‘lBj'n(x)]z?;L+J.j7[a48j‘n(x)]37l;dx
=19 [a,B; (x)]ﬁ b+ i[a B, (9] b—j'ﬁ[a B, 1 (0]9% ax @
dx AT e a ax - gy a adx3 AZ1M T dx
b 3
{asj—ajn(x)dx—{as (0S5 } jd 5B, 00012
——[i[a B. (x)]ﬂ}b+j'i[a B, 009 dx ®)
T xR gy | ) dx? $7In  dx

b 2~
2S5 By n00tx= | ag8 00 5 } jdxaz B0 00] g - jj[az B0 00) o ax ©

Substituting eqns. (5), (6), (7), (8) and (9) into eqn. (4) and using approximation for u(x)given in eqgn. (3) and after
rearranging the terms for the resulting equations we get a system of equations in the matrix form as
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Zn:Di‘jai = F]’J =1,2 ..... n (108)
where

b 45 94
Dy :H{ O a0l Leless o0y 0] L oo 0} a8y 0] a8 83,009 B0 9

a

. 2 .
+20B; (0B j,n(x)}dx{% 26850 00 B (X)L_a {37[%8 j,n(x)]Br:n(x)Lb - [% [aeB,-,n(xﬂBi(,'X)(x)L_b
2
—{%[%Bj,n(x)]smx)} | ebsBncorno] | SlsBy nt0lBrnco| (10b)

b 5 4 3 2
A =j{r8,—,n(x)+{:?[aes,-,n(x)]—j?[as(x)s,-,n(x)h%[a4B,-,n<x)]—5’7[a38,-,n(x)]+%[aZB,-,n<x)]—a18,-,n(x)}ea(x)

) . 2
_aOQO(X)Bj,n(X)}dX"' [%[%Bj,n(x)}g(g“’)(x):‘ —{%[%Bj‘n(x)kéw)(x)} _|: d [aGBJ n(X)]'go (X):l
x=b X=a

x=b

+

[ 42 3 3
%[aes,-,n(x)]egm} {;—Xg[aes,-,n(x)]} xBy —{%[aﬁs,-,nm]}
L X=a x=b

4
Slecs j,n(x)]} S P ) P SR

X=a

4
w{%[aeB,-,n(x)]] <By

X=a X=b

_|_

2
& bapo] -

Ane x=b

+

3
XB_I_—|:j_X3[aSBj,n(X)]j| XAJ.+|: [a4BJn(X)ﬂ x By

X= X=b

- 4 ,
j?[aSBj,n(X)]} x Py +|:(;j_X3[a5Bj,n(X)]:|

i :% [a4Bj,n (X)ﬂ

x=a x=b

2

d? d
XAZ— —2[a4Bj‘n(X)j| XBl+ —2
dx b dx

[a4Bj,n(X)]} ><A1+[%[a38j‘n(x)]} x By

X=a X=a X=b

- % [asBj,n(Xﬂ} < Ay (100)

X=a

Solving the system (10a), we find the values of the parameters ¢; and then substituting these parameters into eqn. (3),
we get the approximate solution of the desired BVP (1).

3.2 Formulation Il

In the same way of section (3.1), integrating by parts the terms consisting fifth, fourth, third, and second derivatives on the
left hand side of (4), and applying the conditions prescribed in egn. (2b), we get a system of equations in the matrix form
as

n
DD ja=Fji=12..n (11a)

where

b
Di,j :I{I: ¢ [aGB] n(X)]+ [a-SBJ n(x)]

3

d [a4BJn(X)] N [a3 Jn(X)] dx[aZ Jn(X)]"‘al Jn(X):|B;n(X)

2 2 4
+ 8B n (B}, n () Jdx+ 37[a68,-,n<x>]8{7n(x)} —{%[%Bj,n(x)]sﬁn(mlza+{j7[aﬁsj,n(x)]8;,n(x)}

x=b x=b

1184 | Page March 18, 2014



L

{%[355 ,-,n(x)]Bi',n(x)}

x=b X=a

_{j_; [aaBj,n(X)]Bi’,n(X)} {% [asBj,n(X)]Bi”,/n (X)} +[% [asBj,n(X)]Bi”,'n (X)}

x=a x=b

2
) |:(;j? [a4Bj, n (X)]B{,n (X):l - [% [a3Bj' n (X)]Bi"n (X)}

X=a

3 2
+ {% [asBj, n (X)]Bi',n (X)} + {% [a4Bj, N (X)]Bi',n (x)}

x=b x=b

o| S 0000 (11b)

X=a

b 5 4 3 2
F =j{rBj,n(x)+L%[aﬁsj,n(x)]—%[%Bj,n(x)h:?[a48,-,n<x)]—37[a38,-,n(x)]+%[azs,-,n(x)} 2480965 (%)

3
x Ay +[%[%Bj,n(x)]} x By

2000800+ | 2 [acB, 000]| By -l y

= X=a

3
_{%[aij,n(X)]:l x Ao +[%[a5BJ,”(X)}9g} _[%[aSBj'n(X)}%}

Xx=a x=b Xx=a

3
{%[ass,-,nm]ﬂ:n}

x=b

[ 43 2 2 2
o Sl ,-,n(x)]sa’,an {27[«3\581-, n(x)]L=b xBy+ {57[6158,-, n(x)]L < Ao {%[awj,n(w]ﬂinlzb

42
+_% [a4Bj' n(x)]t?,"n:lx_a + |:%[a4Bj’H(X)]:|x—b x By _[%[a‘lBj’n(X)]:L—a x Ay +[% [a3Bj' n(x)]&,’,nl_b
—_%[ag,sj,n(x)]e;’n} ) (11c)

Solving the system (11a), we find the values of the parameters ¢; and then substituting these parameters into eqn. (3), we
get the approximate solution of the desired BVP (1).

For nonlinear BVP, we first compute the initial values on neglecting the nonlinear terms and using the system (11). Then
using the Newton’s iterative method we find the numerical approximations for desired nonlinear BVP. This formulation is
described through the numerical examples in the next section.

4. NUMERICAL EXAMPLES

To test the applicability of the proposed method, we consider two linear and one nonlinear problems consisting of both
types of boundary conditions. For all the examples, the solutions obtained by the proposed method are compared with the
exact solutions. All the calculations are performed by MATLAB 10. The convergence of linear BVP is calculated by

E= |Gn+1 (x)—Up (X)l <3,
where U, (x) denotes the approximate solution using n-th polynomials and § depends on the problem which varies from

10"to 107%. In addition, the convergence of nonlinear BVP is assumed when the absolute error of two consecutive
iterations, o satisfies

~N+1 _ ~N

U, "~ —up [<J,

where N is the Newton’s iteration number and & varies from 107! to 1073,
Example 1: Consider the linear differential equation [9, 11, 17, 18, 19]

6
d—g—u:—GeX,Osxgl (12a)
dx
subject to boundary conditions of type | in egn. (2a):

u(0) =1, u() =0, u’(0) = 0,u’(L) = —&,u"(0) = -1, u"(1) = —2e. (12b)
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The analytic solution of the above problem is, u(x) = (1-x)e*.

ISSN 2347-1921

Using the method illustrated in the previous section and different number of polynomials, the maximum absolute errors

and the previous results obtained so far, are summarized in Table 1.

Table 1: Observed maximum absolute errors of example 1.

Number of Present method
Polynomial - Reference results
used Bernstein Legendre
10 1.216x10"° | 7.877x10"° | 14821x10°, Siddigi etal [9]
11 21331x1075 1.185x107%3 7.46x107°, Siddigi and Akram [11]
: : 9.39x107**, Khan and Sultana [17]

12 2.220x10"° | 5951x10™ | 43404x107, Fazal-i-Haq etal[18]
13 2.220%x1078 8771x10 | 2.55x107°, Akram and Siddigi [19]

Example 2: consider the linear differential equation [10, 17, 20]

dbu ’
— +u =6(2xcosx+5sinx), —1<x<1
dx
subject to boundary conditions of type Il in eqn. (2b):

u(-Y) =u@) =0, u"(-1) =—4cos(-1) +2sin1), u"(}) = 4cosl+2sinl,
u™ (=1) = 8cos(-1) —12sin¢-1), u™ (1) = -8cos1—12sinL.

The analytic solution of the above BVP is, u(x) = (x2 —1)sinx.

(13a)

(13b)

(13c)

Using the method mentioned in this paper, the maximum absolute errors, shown in Table 2, are listed to compare with

existing results obtained so far.

Table 2: Observed maximum absolute errors of example 2.

Number of Present method
Polynomial
L)J,sed Bernstein Legendre Reference results
11 5.905x107* 5.905x107*
E " 9.45%x107%, Siraj-ul-Islam et al [10]
12 7.655%10™ 6.928x10™
3.47x107°, Khan and Sultana [17]
13 7.661x107 6.932x107*
- 5.801x107°, Loghmani and Ahmadinia [20]
14 2.776x107" 7.400x107%

Example 3: consider the nonlinear differential equation [15]

consisting of boundary conditions of type | defined in egn. (2a)
u@©) =1 u@=e, u(0)=-Lu'@W)=—e1u"(0)=Lu"@W) =eL.

The exact solution of this BVP is, u(x) =e™ .

Consider the approximate solution of u(x) as

n

[I(x)zeo(x)+2ai Bin(x), n>1

i=1
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Here 6,(x)=1— x(l—e‘l) is specified by the essential boundary conditions in (14b). Also B; ,(0)=B; ,(1) =0 for each
i=12,...,n

Using (15) into equation (14a), the Galerkin weighted residual equations are

1
J.[Zx: —ﬁzeX}Bk’n(x)dx:O,k:1,2,-~-,n (16)

Integrating first term of (16) by parts, we obtain

101

d>a dBy o (X) d°0

—B dx=| B 2 —J"——d
J- k,n(X)dx= |: k,n(X) G :lo J dx G X

¥
__I:dBk,n(X) d4uj| +J'd Bk n(x) d u dx [S|nce Bkn(l) Bkn(o) 0]
0

dx  dx? A dx?  dx?
- 1
dBy n(X) d*u d? d7By,n () n(X) d u Bk n(X) d3a
- aul Y ax
dx  dx? dx? dx®

dBk,n(x)ﬂT{d Byn (X) 0% 1 ¢’ Bkn(x)d 1 +jd“sk,n(x)ﬂdx

dx  gx* dx® dx*  dx®

[d 4z [d2 5] [a3 25T [ 1
By,n (X) d Bi,n(X) d30 Bi,n(X) d?u By,n (X) du
=7 s llee came | T e 2 | 4
dx  dx A dx dx dx dx dx dx
L 0 0 0

J‘d Bi,n(X) du
0

U4 17
dx®  dx

Putting (17) into equation (16) and using approximation for u(x), we obtain

nll

5 n
2| —MW—WX Bi,n(x)Bk,n(x)—Za,—(Bi,n<x)B,-,n(x)Bk,n(x))e*]dx

5
i1| 0 dx -1

{dsk,nm d“Bi,n(xﬂ {dsk,nm d“Bi,n(x)} +[dzﬁsk,n(x) d3Bi,n(x>1 [dZBk,nm d3Bi,n(x)1
_ 4 4
=1 x=0 =1 x=0

dx dx* dx dx* dx? dx* dx? dx®

1
d%By 0 (0 6y 2« dBy n(x) d*g, dB n(X) dg d4%By (%) 034,
= ~ 4 9,%"B d o
=) Tae ax T Bk S Lo et | o dd .
. o -

d%Bn(¥) d%, Bn() | (@B | B ] [ d'Ben() (18)
1T ae el e N A RPN
x=0 x=1 x=0 x=1 x=0

The above equation (18) is equivalent to matrix form

(D+B)A=G (19a)

where the elements of A, B, D, G are a;,b; ,d;  and g respectively, given by

dx dx*

1
d®By (%) dB; o (X)
di k =I - =
dx dx

4 .
—20pe* Bi'n(x)Bk'n(x)}dx—{dBk'n(x) d B'*“(x)}
=1

0

dx dx* dx? dx® dx? dx®

+{dBk,n(x) d“Bi,n(x)} +{dsz,n(x) d3Bi,n(x)} {dsz,n(x) d3Bi,n(x>} (19b)
x=0 x=1 x=0
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n 1
B =- ;[ B (0B (0B n ()" % (190)
=0
145 3 3 4 4
d Bk n(X) dgo 2 X d Bk n(X) -1 d Bk n(X) d Bk n(X) -1 d Bk n(x)
= || —————=+6,°¢"B, ,(\)|dx+| ——| xe~" - . + . xe | ————
% J.[ o dx o )] dx dx® dx* dx*
0 x=1 x=0 x=1 x=0
2 2
. dBon(X) d*0p | [ dBn(¥) d% | | d°Byn(X) d3g .9 By, n(x) d3g, (19d)
dx  dx* | dx  dx* | d?  dx d  dx
x=1 x=0 x=1 x=0

The initial values of these coefficients ¢; are obtained by applying Galerkin method to the BVP neglecting the nonlinear
term in (14a). That is, to find initial coefficients we will solve the system

DA=G (20a)

where the matrices are constructed from

ir
d°By (¥) dB; (X) dB 1 (X) d*Bj (%) dB (%) d*Bj (%) d%By (%) d°B; (%)
di,k =J. - 5 dX_ 4 + ——4 o 2 3
dx dx dx dx dx dx dx dx
oL x=1 x=0 x=1
_dZB x) d3B (x
_ k,n( ) |,n( ) (20b)
dx? dx®
L x=0
145 3 3 4 4
d°By (%) dé, > d°By (%) 1 | 9B n(¥) d”By h(X) 1 | 97By n(¥)
= || ———— +6y%e*B, ,(X)|dX+| ——| xe - ' + ’ e 1 ==
% J‘{ e dx nt )] dx® dx® dx? dx*
0 x=1 x=0 x=1 x=0
2 2
i dBk,n(X) d400 N dBk,n(X) d400 y d Bk,;(x) dsgo s d Bk,zn(x) d390 (ZOC)
dx dx* | dx  dx* | dx dx® dx dx®
x=1 x=0 x=1 x=0

Once the initial values of the «; are obtained from eqn. (20a), they are substituted into eqn.(19a) to obtain new estimates
for the values of ¢; . This iteration process continues until the converged values of the unknown parameters are obtained.
Substituting the final values of the parameters into eqn. (15), we obtain an approximate solution of the BVP (14).

The maximum absolute errors, for different number of polynomials, are shown in Table 3 with 7 iterations.

Table 3: Observed maximum absolute errors of example 3 using 7 iterations.

Number of Present method
Polynomial
used Bernstein Legendre Reference results
6 2.145x107" 2.143x1077
-7 —7
& 2.242x10 2.240x10 1.389%10°, Wazwaz [15]
10 3.114x107 3.114x107
11 9.542x1078 9.540x107®

Example 4 Consider the nonlinear boundary value problem [10]

6
3—::20536” —40(1+x) 78, 0<x<1 (21a)
X

with boundary conditions type I, defined in egn. (2b)

u(0) =0, u(l):%an, u”(O):—%,u”(l):—2—14,u(i")(0):—1,u(i")(1):—1—16. (21b)
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The exact solution of this BVP is, u(x) = %In(l+ X).

Following the proposed method in this paper and as in example 3; the maximum absolute errors for this problem are
summarized in Table 4.

Table 4: Observed maximum absolute errors of example 4 using 5 iterations.

Number of Present method
Polynomial
zsed Bernstein Legendre Reference results
7 8.915x1077 8.915x1077
8 8.908x10°° 8.905x10°° ™
9 9.870x10° 9.864x10"° 2.68x107"", Siraj-ul-Islam et al [10]
10 4.794x1071 4.790x1071

5. CONCLUSIONS

In this paper, Galerkin method has been applied for the approximate solution of sixth-order BVPs using Bernstein and
Legendre polynomials as basis functions with two different types of boundary conditions. We have concentrated our
attention not only on the performance of the results but also on the formulation. Some numerical examples of both linear
and nonlinear BVPs have been demonstrated to verify the efficiency of the proposed method. We have found a good
agreement with the exact solutions and some results are better than the results obtained by the previous methods so far.
The proposed method can be coded easily and may be extended for numerical solutions of any even higher order BVPs
as well.
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