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ABSTRACT

The aim of this paper is to define the concept of compatible maps for n-tupled maps, a new notion propounded by
M.Imdad et.al.[13] and prove n-tupled coincidence and n-tupled fixed point theorems in partially ordered metric spaces.
Our results generalize, extend and improve the results of [3,7,8,12,13,19.25,26].
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1. INTRODUCTION:

The Banach contraction principle is the most natural and significant result of fixed point theory. It has become one of the
most fundamental and powerful tools of nonlinear analysis because of its wide range of applications to nonlinear equations
arising in physical and biological processes ensuring the existence and uniqueness of solutions. It is widely considered as
the source of metric fixed point theory. Also, its significance lies in its vast applicability in a number of branches of
mathematics. Generalization of the above principle has been done by various mathematicians see [1,3,4,7,8,20-26].
Existence of a fixed point for contraction type mappings in partially ordered metric space and applications have been
considered by many authors. There already exists an extensive literature on this topic, but keeping in view the relevance
of this paper, we merely refer to [3-6,10-13,15,18,19,25-26].

Bhaskar and Lakshmikantham [25] introduced the notions of mixed monotone property and coupled fixed point for the
contractive mapping F: X X X, where X is a patrtially ordered metric space, and proved some coupled fixed point theorems
for a mixed monotone operator. As an application of the coupled fixed point theorems, they determined the existence and
uniqueness of the solution of a periodic boundary value problems. It is very natural to extend the definition of 2-
dimensional fixed point (coupled fixed point), 3-dimensional fixed point (tripled fixed point), 4-dimensional fixed point
(quadrupled fixed point) and so on to multidimensional fixed point (n-tuple fixed point) ,(see also [5,9,16, 17,19]). The last
remarkable result of this trend was given by M.Imdad et al. [13] by introducing the notion of multidimensional fixed
points.(see also[1,12,15,,18]).

The purpose of this paper is to establish some n-tupled coincidence and fixed point results for compatible maps in
complete partially ordered metric spaces. Our results generalize and improve the results of [3,7,8,12,13,19,25,26].

2. PRELIMINARIES AND DEFINITIOS:

As usual, this section is devoted to preliminaries which include some basic definitions and results related to coupled fixed
point and n-tupled fixed point in partially ordered metric spaces.

Definition 2.1 [26] Let (X, <) be a partially ordered set equipped with a metric d such that

(X, d) is a metric space. Further, equip the product space X x X with the following partial ordering:

For (x,y), (u,v) € X X X, define (u,v) < (x,y) ©x = u,y < v.

Definition 2.2 [26] Let (X, <) be a partially ordered set and F: X —X then F enjoys the mixed monotone property if F(X,
y) is monotonically non-decreasing in X and monotonically non-increasing in y, that is, for any x, y €X,

x1, %26X,%1 < X2 = F(x1,¥)= F(x2,y) and yy, ¥26X,y1 2 ¥2 = F(x,71) = F(x,¥2).
Definition 2.3 [26] Let (X, <) be a partially ordered set and F: X x X = X, then (x, y) € X x X is called a coupled fixed
point of the mapping F if F(x,y) =x and F(y,x) =y.

Definition 2.4 [26] Let (X, <) be a partially ordered set and F: X XX - X and g: X - X then F enjoys the mixed g-
monotone property if F(x,y) is monotonically g-non-decreasing in x and monotonically g-non-increasing in y, that is ,for
any x,y € X,

X1, %2 €X,9(x1) < g(x3) = F(x1,y)=< F(xy,y),forany y € X,

Yi,¥2 €X,901) 2 g(2) = F(x, y1)= F(x,y,), forany x € X.

Definition 2.5 [26] Let (X,<) be a partially ordered setand F: X XX - X and g: X - X , then (x,y) € X X X is called
a coupled coincidence point of the maps F and g if F(x,y) = gx and F(y,x) = gy.

Definition 2.6 [26] Let (X,<) be a partially ordered set, then (x,y) € X x X is called a coupled fixed point of the maps
F: XxX > Xand g: X->X ifgx=F(x,y)=x and gy =F(y,x) =y.

Throughout the paper, r stands for a general even natural number

Definition 2.7 [13] Let ( X, <) be a partially ordered set and F:[]/_; X! » X then F is said to have the mixed monotone

property if F is non-decreasing in its odd position arguments and non-increasing in its even positions arguments , that is,
if,

0] Forall x},x} € X,x{ < xd = F(x},x%,x3,...,x7) < F(xd, x%,x3, .., x7),
(i) For all x?,x% € X,x? < x% = F(x!,x%,x3, ..x") = F(x',x2,x3, ...,x"),
(iii) Forall xi,x3 € X,x} < x3 = F(x, x%,x3,x%, .., x") < F(xb, x%, %3, x4, ..., x7),

For all x], x5 € X, x] < x§ = F(x', x2,x3,...,x]) = F(x',x%,x3, ..., x%).
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Definition 2.8 [13] Let ( X, <) be a partially ordered set and F:[]/_; X! - X and g: X—X be two maps. Then F is said to
have the mixed g-monotone property if F is g-non-decreasing in its odd position arguments and g-non-increasing in its
even positions arguments , that is, if ,

0] For all x},x} € X, gxi < gxd = F(x},x?,x3, ...,x") < F(x},x%,x3, ..., x7),
(i) For all x?,x% € X, gx? < gx? = F(,x', x},x3,...,x") = F(x', x%,x3, ..., x7),
(i) For all x3,x3 € X, gx3 < gx3 = F(x', x%,x3, ...,x") < F(x', x%,x3, .., x"),
For all x], x5 € X, gx] < gx} = F(x%, x%,x3, ..., x]) = F(x',x%, ..., x}).
Definition 2.9 [12] Let X be a nonempty set. An element (x? ,xz,x3, e wnn,x7) € [TV, X' is called an r-tupled fixed point of

the mapping F: [T/ X! - X if

L= F(xx%, %3, ...,x7),
x2 =F(x%,x3,...,x",x1),

x3 =F(@3, .., x", xt, x2),

=F(x",xt,x2, ..., x" ).
Example 1 Let (R, d) be a partial ordered metric space under natural setting and let F:[]'_; X - X be mapping defined by

3

1 2 1 2 3
F(xt,x?%,x3,

,x7) = sinffix! - x2 - x3 - .- x7), forany x1,x2,x3,..,x" € X,
then (0,0,0,...,0) is an r-tupled fixed point of F.

Definition 2.10 [13] Let X be a nonempty set. An element (x!,x?,x3,...,x") € [T'_; X’ is called an r-tupled coincidence
point of the maps F:[I'_; X! > X and g: X - X if

gx! = F(x',x2,x3, ..., x7),
gx? = F(x%,x3, ..., x",x1),

gx3 = F(x3,...,x",x1,x?),

gx" =F(x",x%,x3, ..., x" 7).

Example 2 Let (R, d) be a partial ordered metric space under natural setting and let F:[[/_; X! > X and g: X > X be
maps defined by

3

1,2 2. o 4 P
F(x!, x2, %3, ilw, 3, . r—1

,x") = sinx! - cosx? - sinx® - cosx* - ...» sinx" ! - cosx”,
g(x) = sinx,

forany x!,x%,x3%,..,x" € X, then {(x!,x%x3,..,x"),x' =mm,m € N,1 <i <r}is an r-tupled coincidence point of F and
g.

Definition 2.11 [13] Let X be a nonempty set. An element (x!,x2,x3, ........,x") € [T'—; X! is called an r-tupled fixed point
ofthe maps F:[[l.;X!—>X and g: X - Xif
xl = gx! = F(x1,x%,x3,...,x7),

x% = gx? = F(x%,x3, ..., x7,x1),

x3 = gx® = F(x3,...,x",x1,x2),

x" =gx" =F(x",x',x?, ..., x""1).
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Now, we define the concept of compatible maps for r-tupled maps.

Definition 2.11 Let ( X, <) be a partially ordered set, then the maps F:[]/_; X' > X and g: X — X are called
compatible if

lim, . g(F(x}, x2, ..., x5), F(gx}t, gx2, ..., gx5)) = 0,
lim g(F (x2,x3, ..., x5, x3), F(gx2, gx3, ..., gxh, gxi)) = 0,
n—oe

lim g(F(x3, ..., x5, x},x2,), F(gx3, ..., gx}, gx}, gx2)) =0,
n—w

lim g(F(xf, x}, %2 ..., x5 1), F(gx}, gx}, gx2, ..., gx; ™)) = 0,
now

whenever, {x}}, {x2},{x3}, ..., {x]} are sequences in X such that

imF (xg, x5, %3, .., %) = lim g (xz) = x,

n-o« n-ow

limF (x2,x3, ..., x5, x1) = limg(x2) = x2,

n—oo n—oo

limF(x2, xk, ..., x},,x2) = limg(x2) = x3,

n-e n—w

2

lim F(xh, 2L, x2, ..., 22~ 1) = limg () = x".
N0

n—e

For some x1,x%,x3,...,x" € X.
3. MAIN RESULTS:

Imdad et al. [13] proved the following theorem:
Theorem 3.1 Let ( X, =) be a partially ordered set equipped with a metric d such that (X, d) is a complete metric space.
Assume that there is a function @' [0, oo) - [0,00) with qo(t) <t andlim,_,+ ¢(r) < t for each t> 0. Further let

F:TI'_; X! > X and g: X—X be two maps such that F has the mixed g-monotone property satisfying the following
conditions:

() F(IT=1 XY € 9(X),

(i) g is continuous and monotonically increasing ,

(iii) the pair (g, F) is commuting,

V) d(FGL, %% %3, o, @), FO, 32,53, y) < 9 (F25o1d(g ), gO™))

3

forall x%,x2,x3,...,x", v,y ¥3, ...,y" € X, with gx! < gy!, gx? = gy?,

gx3 < gy3,..,gx" > gy". Also, suppose that either

(a) F is continuous or

(b) X has the following properties:

(@) If a non-decreasing sequence {x,} — x then x,, < x for alln = 0.
(i) If a non-inecreasing sequence {y,} - y theny <y, foralln = 0.

If there exist x3, x3,x3, ..., x} € X such that
(iv) gxd < F(xd, x3,x3, ..., x%),
gxé = F(x¢,x8, ..., x5, x}),

1.2
gx3 < F(xd, ..., x}, x4, x3),

gxb = F(xb, xd,x3,x3, ..., x5~ D).
Then F and g have a r-tupled coincidence point, i. e there exist x!, x?,x3, ..., x™ € X such that
(v) gxl = F(x',x2,x3,...,x7),

gx? = F(x%,x3, .., x", x1),
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gx® = F(x3, ..., x", x1,x2),

gx" = F(x",xl,x%,x3, .., x" D).
Now, we prove our main result as follows:
Theorem 3.2 Let ( X, <) be a partially ordered set equipped with a metric d such that (X, d) is a complete metric space.
Assume that there is a function @ [0, OO) —> [0,00) with (o(t) <1t andlim,_,+ ¢(r) < tfor each t> 0. Further let

F:TT/—; X! - X and g: X — X be two maps such that F has the mixed g-monotone property satisfying the following
conditions:

@1 F(ITi-; X*) € g(X),

(3.2) gis continuous and monotonically increasing,

(3.3) the pair (g, F) is compatible,

(3.4) d(FO!, 223, ., x7), FL, 2,93, y7) < o(max{ d(g(x™), g(y™)}) ,
Forall x1,x2,x3,..,x",y%,y2,y3, ..,y" € X,n=1,2,..,r and gx! < gy', gx% = gy?,
gx3 < gy3,..,gx" > gy". Also, suppose that either

(c) F is continuous or
(d) X has the following properties:
@) If a non-decreasing sequence {x,} - x then x,, < x foralln = 0.
(iii) If a non-inecreasing sequence {y,} - y then y <y, foralln > 0.
If there exist x3, %8, x3, ... ..., x§ € X such that
(3.5) gxd =< F(xd, x3,x3, ..., x5),

1
gxt = F(x$,x3, ..., x5, xb),

1.2
gxg < F(x3, ..., x5, x4, x3),

gxy = F(xb, xd,x¢, %3, .., x5~ 1).
Then F and g have a r-tupled coincidence point, i. e there exist x!,x2,x3, ..., x™ € X such that
(3.6) gx' = F(x',x%,x3, ..., x7),
gx? = F(x%,x3,...,x",x),
gx® = F(x3, ..., x", x1, x2),
gx" = F(x",x',x%,x3, .., x"71).
Proof. Starting with x3,xZ,x3, ..., x5 € X , we define the sequences {x;}, {x2}, {x3}, ..., {7} in X as follows:
@7 GXni1 = F Ok, x5, %, 0, X7),
gx2 = F(x2,x3, .., x5, x5),
g% 1 = FOG, o, X7, %3, %5),
gxh1 = FOG, xh, x5, %3, 0, X071,
Now, we prove that for all n > 0,
(38) gxi = gXny1, 8X5 = gXii1, 8 X BXnat, o BXh 2 EXh41
(3.9) gxg < F(xd, x8,x3, ..., x§) = gxi,
gx§ = F(x§, %3, ., x4, %5) = gxf,

gx§ S F(x§, ..., x5, x§,x3) = gx3,
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So (3.8) holds for n = 0. Suppose (3.8) holds for some n > 0. Consider

gxb = F(xb, x3,x2,x3, ...,

gxti1 = F(xh, x2,x3, ..., x5)
F(xn+1,xn,xn,.. i)
= FQy 41, X541, X35 ) X7)
= F(Xqi1, X5 410 Xt 0 X7)

IA

1 2 r — 1
F(xn+1'xn+1' ""xn+1) - gxn+21

gX,ZlH = F(xn,xn, e, X0 xn)

= F(x2q,x3, .,x0,xh)

> F( an,x,fH, xn,xn)

z F(x721+1'xr31+1'---'x1r1+1,x111)

= FQtna1, Xp gt w0 Xna1, X 41) = Xk 12,
xS =F(x3, .., xhxt, x2)

= F( xn+1! ...,x,ﬁ,x,{,xﬁ )

2 F(X3 410 X415 w0 X0, X3, XB)

= F( xr:i+1lxr?+1! '"!xr71+1 ) x%rxrzz)

= F(xr:i+llx;t+l'xrsl'""x;+1'x}l+1'xrzl)

= FQG 1, Xty oo a1 Xng 1) Xpg1) = GXngas
9xn1 = F( xn!x%uxn! e 1)

= F(xl,q,xk,x2, ...,xr‘l)

= F(xn+1'x11+1rxrzuxn yc 1)
F( xn+1'xn+1' n+1 1)

= F(xhi1, X511 %m - X031) = g% 42,

Thus by induction (3.8) holds for all n = 0. Using (3.7) and (3.8)

(3.10) d(gCxh), 80ckh11)) = d(FGeh_y, X, s Xha—1), PR, X5 o XE))
< o max{d(g(xa ), gGa))}).

Similarly, we can inductively write

311 d(gGd)g(hi) <

p(max{d(g (-1, gGi))}),

d(g(eh), g(xhs)) < @(max{d(gCe_1), g(xi))})-
Therefore, by putting

(3.12) Yy = max {d(g(x}n),g(x,}wl)), d(g(x,zn),g(xrznﬂ)), .

We have,

(313) Y = max {d(g0ch), 9Cchan) ), (9 G, 9 Cclisn)), -
<

< o(max{d(g(x2_1), gx))}) = ¢ (¥m-1)-

ISSN 2347-1921

d(g(en), 9 s)) -

d(gGn), glxh, +1))}

Since ¢(t) <t for allt> 0, therefore, y,, < y,,_; for all m so that {y,, } is a non-increasing sequence. Since it is bounded

below, there is some y = 0 such that

(3.14) limy, 0 ¥ = +Y.
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We shall show that y = 0. Suppose, if possible y > 0. Taking limit as m — « of both sides of (3.13) and keeping in mind
our supposition that lim,._,,+ ¢(r) < t for all t> 0, we have

(3.15) Y= limyw¥in < 0(¥m-1) = @(y) <7,

this contradiction gives y = 0 and hence

(3.16) }LI—I}‘}O [max {d(g(x}n),g(x}nﬂ)),d(g(x,zn),g(xrznﬂ)), ...,d(g(xfn),g(xfnﬂ))}] =0.

Next we show that all the sequences {g(x1)},{g(x2)}, {g(x3)}, ... ... .. ,and {g (x5 )} are Cauchy sequences. If possible,

suppose that at least one of {g(x})},{g(x2)}, ...,and

{g(x)} is not a Cauchy sequence. Then there exist € > 0 and sequences of positive integers {l(k)} and {m(k)} such
that for all positive integers k,

m(k) > (k) > k,
(3.17)  max{d(gxigy 9% x))» A(9XT ey 9% 10y ) -» A(9XT 1y GXTmiy)} = € and
max{d(gle(k),gxi(k)q)' d(gxzz(k)'gqu(k)q)' ---'d(gx{(k)»gx;(k)ﬂ)} <&
Now,
(3.18) d(gxll(k)'gxrln(k)) =d (F(xll(k)—l'xlz(k)—l' “"xlr(k)—l)'F(xrln(k)—l'xrzn(k)—l' ---'xrrn(k)—l))
< ¢(max{d(gxig)-1 9xmar-1)}). n = 1.2, 7.

Similiarly, d(gxlz(k),gx,zn(k)) < <p(max{d(gxl”(k)_1,gx,':l(k)_l)}), n=12..,r1r

(g 9xma) < @(max{d(gxipy-1 9xn@-1)}). n =12, .7
Thus,

(3.19) & < max{d(gxiwy 9%m ) 49Ty 9% aey): -+ A(9X @y X i)}

< p(max{d(gxji) -1, 9%may-1)}). n =12, ..., 7
Again, the triangular inequality and (3.17) gives
(3:20)  d(9Xyx)-10 9%m (1) < A(9%iG)-1 9%i0) + A(IXiky T¥maor-1)
< d(gxll(k)_l,gxll(k)) +en=1.2,..,r and

d(9x00)-1, 9%m1y-1) < d(gxjpy-1, 9%igy) +€ . n =127

d(9x] )1 9%ma-1) = A(gxly_1, 9%[4) +€ ., n=12,..,7.
i. e, we have
(3:21)  max{d(gxig)-1, 9%m 1), A(IXi) -1 9%m o1 ) +r 49X -1, 9% 10)-1)}
< max{S d(gx{l(k)_l,gxl"(k))} +e,n=12,..,7r
Also,

(3.22) d(gxm ey 9%10) < A(9%m 60 9%mr—1) + A(9%m )1, 9% 101y -1)

+d(gx11(k)—1» gxll(k))

d(gxi(k):gxzz(k)) = d(gxrzn(k)'gxi(k)—ﬂ + d(gxrzn(k)—pgxzz(k)—l) + d(gxlz(k)—l'gxlz(k))

d(9xn a0y 9%10y) < (9% 60y 9% iy—1) + A(9%m )-1, %1 )—1) + 49Xy -1, 9XT 1)
Using (3.17),(3.19) and (3.22), we have
(3.23) e< max{d(gxll(k), gx,ln(k)), d(gxlz(k), gx,zn(k)), . d(gxlr(k), gx,rn(k))}

< max{d(gxy, iy 9%m -1 (9% 60y 9% G)-1)> -+ A G 1y X iy-1)}
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+max{d(9%y -1, 9%100-1), A% -1 9% TG0 -1)> A% G0r—1 I¥TG10)-1) }

+ max{d(gx/gy_1, 9%y ) A(9% 0y -1, 9%y )s - A(9XT Gy -1, X1 (1)) }-
Letting k — « in above equation, we get
(3.24) limy .o (max{d(gx]4)—1, 9%m G)-1)» A(9%i )10 9% G0)-1)» -» A(GX] 1)1, FHm(1)-1)}) = €
Finally, letting k = « in (3.17) and using (3.19) and (3.23) , we get

(3.25) €< max{d(gxll(k),gx,ln(k)),d(gxlz(k),gx,zn(k)), e d(gx{(k),gx;(k))} < (e <k,

which is a contradiction. Therefore, {g(x})},{g(x2)}, {g(x3)}, ....., {g(x)} are Cauchy sequences. Since the metric
space (X, d) is complete, so there exist x!,x?, .....,x" € X such that

(3.26) limg, e g(x) = x5, 1limpy 40 g(x2) = %2, e e e, limy L g(xh,) = 7.

As g is continuous, so from (3.26), we have
(38.27) limy, o g(gCen)) = 9@, lim g(g (i) = g2, oo, limy e g (9 (x)) = 9.

By the compatibility of g and F, we have
(3.28) limy o d (g(FCeh, 2,0, 60)), F(g ek, 902D, -, 9 () = 0,

limy, e d (g(F(x,Zn, e X, 1)), F(g(x2), o) g(xr’n),g(x}n)))

0,

lim,, .. d (g ((F(x:n,x,ln, ...,x,ﬁ;l))),F( 9Gh), g (), ---,g(xfn‘l))) =0.

Now, we show that F and g have an r-tupled coincidence point. To accomplish this, suppose (a) holds, i. e F is continuous,
then using (3.28) and (3.8), we see that

d(gGch), F(xt,x?, ..., x7))
= limnwd(g(g(x%m)),F(g(x#). g(x%),---,g(xfn)))

= limy . d (g(FCeh, %%, o %)), F(9 Gk, g(x), s 9(3))) = 0,
which gives g(x!) = F(x',x2, ..., x™). Similarly, we can prove g(x?) = F(x?,...,x",x1), ..,
gx™) = F(x",x!, .., x"™ 1)
Hence (x%,x?, ...,x7) € [I'_; X" is an r-tupled coincidence point of the maps F and g.

If (b) holds. Since g(x, ) is non-decreasing or non-increasing as i is odd or even and g(x%,) - x' as m — «, we have
g(x4) = x%, when i is odd while g(x%,) > x%, when i is even. Since g is monotonically increasing, therefore

(3.29)  g(g(xin)) < g(x') when'iis odd,

g (g(x;n)) = g(x") when i is even.
Now, using triangle inequality together with (3.8), we get

(3.30) d(gGh), F(xt,x?, ..., x7))
< d(g(xl),g(x}nﬂ)) + d(g(x}nJrl),F(xl,xz, ...,xr))

< d(g(), glehan)) + d (g(F Gt s s x3)), F(gGe), 903D, -, g (x3)))
—>0asn— .

Therefore, g(x!) = F(x!,x2, ..., x7). Similarly we can prove g(x?) = F(x?, .., x7,x1), ..,

g(x™) = F(x",x', ...,x"~1).Thus the theorem follows.

Now, we furnish our theorem by an example.

Example 3. Let X = [0,1] be complete metric space under usual metric and natural ordering < of real numbers. Define
the maps F:[I/_; X! - X and g: X—X as follows
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1 2 3 r—1 T
—2x°+3x° = +(r=1)x" " —rx i+1 -
) _{ 0 xR <xhi=13, ...,r—l}

0 otherwise,

g(x) =rxand F(x!,x% x3

For all x1,x%,x3, ...,x" € X. Then F enjoy the mixed g-monotone property. Also F is g-compatible in X. Now choose
{xd, %%, .., x0} = { % 0, %,,%}

(r+1)

Set@(t) = t. Then we see that

g(xp) = 9(0) =0 = F(xg, %5, ., ),
(x1)—F(xo:-- xo,x0)<g() (xo)

9(x3) = g(0) =0 = F(x§,x§, ..., x}),

9Gd) = F(ep, 28, 58) < g (3) = 9 (b,
Now, we check contactive condition(3.4) of theorem 3.2. We take
xl,x%,x3, ., %7, y4, y%, ...,y" L, y" € X such that
gyt < gxtgx? < gy?, ..gx" < gy
Let K =max(d(gx', gy"),d(gx? gy?), ..., d(gx", gy"))
= max{lgx' — gy'l,1gx* = gy*|, ..., 19x" = gy}
= r.max{|x — y|, |x% — y2|, ..., |x" — y"[}
The following four cases arise
Case 1: Let x1, x%,x3, ..., x",y.,¥%, ...,y"~L,y" € X such that x'*1 < xf,yi*1 <y,
i=13,..,r—1. Then

x1=2x243x3 — A (r—D)x" L —rx” yl-2y243y3—p(r—1)y" 1 —Ty’)
r241 1 r241

d(F(Xl,xz, o, XL XD, F(yL, v2, .,y T, yr)) =d (

D W 2x? L . B 1)x" PSR )
1 | GRS 2y 3y° — SR — 1)y" SEy")

{(xt =y ]+ 20x2 — Y2 + -+ rlx” —y" )}

—r+1

i r(r+1)
2+1 27 n=am) = 2(r2+1)K

Case 2: Let x!,x%,x3, ..., x",y',y%, ...,y"~L,y" € X such that x'*1 < x%,i = 1,3,..,
r—1and y! < y'*! for atleast one i. Then (for y* < y?)

d(F(xL, %%, ., x5, x7), F(yL y?, ..,y Ly")

1 2 3 r—1 T
x1—2x%43x3—+(r—1Dx" " t—rx
=d ( ,0)

il
2+1 [(x! —2x2 +3x3 — -+ — Dx" 1 —rx") + 2y2 —yH)I.
_ ) _ r(r+1)
—TH{(lx YU+ 2% = y? ] + -+ rlx” YD} =

Case 3: Let x1,x2,x3,...,x",y%, y%, ...,y""Ly" € X such that y'*1 < y',i = 1,3, ..,
r — 1 and x* < x'*1 for atleast one i. This case is similar to Case 2.

Case 3: Let x1,x2,x3, ..., x",yL, %, ...,y"~Ly" € X such that x! < xi*1,y! < yi+1
i=13,..,r—1. Then

(PG X2, o, X770 x0), B(yL, y2, o,y y0)) = d(0,0) < 550

2(r2+1)

K.

Thus, in all the cases,

- - (r+1) +1
d(FG o2, x 7 x), B Y2,y ") S oK < ((:2+1))

r.K < p(max{d(gx™, gy™)}).

Hence all the conditions of our theorem 3.2 are satisfied and (0,0,...,0) is an r-tuple coincidence point of F and g.
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The following corollary is a generalization of corollary 1[10] and theorem 2.1[9]

Corollary 3.1 Let ( X, <) be a partially ordered set equipped with a metric d such that (X, d) is a complete metric space.
Further let F:J]'—; X - X and g: X—X be two maps satisfying all the conditions of theorem 3.2 ,with replaced (3.4) by

(3.31) (d(F(xY, %%, ..., x"), F(yL,y%, ..,y")) < k(max{d(g(x™), gy™)}),n=12,..,7
and k € [0,1).Then F and g have a r-tupled coincidence point.

Proof: If we put ¢(t) = k.t with k € [0,1) in theorem 3.2, we get the corollary.
Uniqueness of r-tupled fixed point
For all (x!,x?,..,x7), (', y2, ..,y") € X",

(L x?, o, x™) 2 L y% Ly

1 r r

= y .
Theorem 3.3 In addition to the hypothesis of theorem 3.2, suppose that for every

We say that (x1,x2,...,x") = (¥}, %, ...,y") ox =y,x2 =92, . ,x
(a2, ., xn), (L, v2, ., yT) EXT

There exist (21,22, ...,z") € X" such that

F((z4,2%,...,2"),(2%, 25, ..., 2", 2Y), ..., (2", 2%, ..., 2" 71)) is comparable to

F((xb %2, o, x), F(x?, %3, 0,27, x1), o F (27, x4, o, 7)) and

F(ON Y% Y FGA Y2, oy ¥, o FOT Y, oy D)

Then F and g have a unique r- coincidence point, which is a fixed point of g: X - X and F:[[i_; X! - X. That is there
exists a unique (x',x?2,...,x") € X" such that

xt=g(x") =F(x\,x, ..., x"Y) foralli € {1,2,...,7}.

Proof. By theorem 3.2, the set of r-coincidence points is non-empty. Now, suppose that (x!,x?,...,x") and (y1,y?, ...,y")
are two coincidence points of F and g, that is

g(x") = F(x',xt, ...,x"" ) foralli € {1,2,...,r}and

g(y) =F(Lyt, ..,y forallie{12,..,7}.

We will show that

(3.32) g(x') =g(y") forallie{1,2,..,r}

By assumption, there exists (z!, 22, ...,z") € X" such that

F((z},2%,..,2"),F (2%, 23, .., 2", 2Y), .. ,F(2", 2, ...,2" 1)) is comparable to

F((xbx?, o, x7), F(x?, %3, 0, x7, x1), ., F(x7, x4, ..., x™™1)) and

F(OLy2% oy ) FO2A e, oy ¥, v FGL Yy )

Letzi =z foralli € {1,2,...,7}. Since F(X") € g(X), we can choose zi € X such that

9(zt) =F(2},2}, ..., zy™') foralli € {1,2,..,r}. By a similar reason, we can inductively define sequences {g(z})},n € N for
alli € {1,2,...,r} such that

g(z,il+1) = F(Z,il,z}l, ...,Z,il_l) foralli € {1,2,...,7}.

In addition, let xj = x* and y = y' for all i € {1,2,...,7} and in the same way, define the sequences {g(x})} and {g(3)},
n € Nforalli € {1,2,...,7}. Since

F(xl,x%, .., x"), F(x?,x3, ..., x",x1), ., F(x", x%, ..., x™™1) = (gx}, gx?, ..., gx]) and
F(z',2%, ..,2"),F(z%,2%,..,2",zY), ..., F (2", 2%, ..., 2" Y) = (g2}, gZ?, ..., gz})

are comparable, then
g(xi) < g(zi) foralli e {1,2,..,7}if i is odd,
g(xi) = g(zi) foralli € {1,2,...,r} if i is even.

We have
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g(x21) = g(x¥1) < g(21) < - < g(2271),
g(x*) = g(xf') 2 g(#3') = - = g(2%).

Then (g(x), g(x?), ..., g(x™)) and (g(z}), g(z2), ..., g(z},)) are comparable for all n € N. It follows from condition (3.4) of

theorem 3.2
d (g(xi),g(z,‘;ﬂ)) =d (F(x",xl, v, X7, F(2h, 21, ...,z;',‘l))
< p({maxd(gx’, gz.)}), forall i € {1,2, ..., 7}.
Therefore,
(3.33) [maxd(g(x"), g(z})), d(g(x?), g(2D)), .., d(g(x"), g(z1))]

< ¢({maxd(g(x1), g(z})), d(g(x?), 9(z2)), ..., d(g(x"), g(z))})

< o™ (max{d(g(x'), g(z})),d(g(x?),g(z2)), ..., d(g(x"), g(z}))})

For alln = 1. Note thatp(0) = 0, p(t) < t,lim,_+¢(r) < t for t > 0 imply that lim,,_,.¢™(t) = 0 for all t > 0. Hence from
(3.33) we have

(3.34) lim,,_d (g(x"),g(z411)) = 0foralli € {12, ..,7}.
Similarly, one can prove that

(3.35) lim,.d (g(y"),g(z,ilﬂ)) =0foralli €{1,2,..,r}.
Using (3.34), (3.35) and triangle inequality we get
d(9(x),9(»)) = d (9(x).9(zh11)) + & (9(zh11). (1)) = 0,
As n - <forall i €{12,..,7}. Hence, g(x') = g(»').

Since g(x") = F(x',x!,..,x=1) for all i € {1,2,...,}, hence, we have

(3.36) g (g(xi)) =g (F(xi,xl, ...,x"‘l)) =B g g 5
Denote gx! =u! foralli € {1,2,...,r}. From (3.36), we have
(3.37) g(u) =g(gx") = F(u,ul,...,u'"Y) foralli € {1,2,..,7}.
Hence (u!,u!,..,u’"!)is ar-coincidence point of F and g.

It follows y! = u’ and so

gy =g@') forallie{1,2,..,r}.

This means that

g =ul forallie{1,2,..,rr}

Now, from (3.37), we have

ul =g = F(uiul, ..., ut™t) forallie{12,..,7}

Hence, (ul,u?, ..,u") is ar-fixed point of F and a fixed point of g.
To prove the uniqueness of the fixed point, assume that (v',v?, ...,v") is another r-fixed point. Then, we have
u=g)=vi=g@)for alie{1.2,..,r}

Thus, (u!,u?,..,u") = (WL, v?, ...,v"). This completes the proof.

In the following theorem, we replace the continuity of g, the compatibility of F and g and the completeness of X by
assuming that g(X) is a complete subspace of X.

Theorem 3.4 Let ( X, X) be a partially ordered set equipped with a metric d such that (X, d) is a complete metric space.
Assume that there is a function @ [0, oo) —> [0,00) with Q)(t) <t and lim,_,;+ @(r) < t for each t> 0. Further let

F:TT/—; X! - X and g: X — X be two maps such that F has the mixed g-monotone property and satisfying (3.1), (3.4) and
the following conditions:

(3.38) g(X) is a complete subspace of X,
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Also, suppose that either X has the following properties:

(k) If a non-decreasing sequence {x,} - x then x,, < x foralln = 0.

(iv) If a non-inecreasing sequence {y,} - y then y <y, foralln = 0.
If there exist x3, x3,x3, ... ..., x5 € X such that (3.5) holds. Then F and g have a r-tupled coincidence point.
Proof: We construct the sequences {x;}}, {x2}, {x3}, ..., {x%} as in theorem 3.2. As in the proof of theorem 3.2, the
sequences {g(xI)}, {g(x2)},{g(x3)}, ... ... .., and {g(x],)} are Cauchy sequences. Since g(X) is complete, there exist
x1, %2, .....,x" € X such that
(3.39) lim,, . g(xL) = gxl, im0 g(x2) = X%, e e e, limpy L g(x5) = gx™.

Since g(x,in) is hon-decreasing or non-increasing as i is odd or even and g(x,in) - x! asm - «, we have g(x,in) < xi,
when i is odd while g(x,in) > x!, when i is even. Since g is monotonically increasing, therefore

(340)  g(g(xin)) = g(x") when iis odd,
9(9(xin)) = g(x) when iis even.
(3.41) d(gxh), F(xt,x?, ..., x7))
< d(gG"), gl 40)) + d(g e 1), PGt 2, 1, x)
< d(g(x"), gk 1)) + d (FOeh, s oy 20), F(x, 2%, ., 7))

d(gGe), Gt ) + o(max{d(g(ep), g™}

> 0asn > .,
Therefore, g(x!) = F(x!,x2, ..., x7). Similarly we can prove g(x?) = F(x?, ..., x7,x1), ...,
gx™) = F(x",x%, ...,x"~1). Thus the theorem follows.

4. CONCLUSION:

Our work sets analogues, unifies, generalizes, extends and improves several well known results existing in literature, in
particular the recent results of [1-4,7-10,12,13,15,19,21,25,26] etc. in the frame work of ordered metric spaces as the
notion of compatible maps is more general than commuting and weakly commuting maps. Our theorems 3.2 and 3.3 have
been proved by assuming much weaker condition than in analogous results and our corollary 3.1 is a generalization of
corollary 1[10] and theorem 2.1 [9]. Also, our theorem 3.4 does not need completeness of space and continuity of maps
involved therein. The results concerning commuting and weakly commuting maps being extendable in the spirit of our
theorems, can be extended verbatim by simply using wider class of compatibly in place of commuting and weakly
commuting maps.
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