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ABSTRACT 

In this paper, 4-dimensional space-time geometry has been discussed. The smallness of the effective cosmological 
constant constitutes the most difficult problems involving cosmology. Recent observations of Type Ia supernovae and 
measurements of the cosmic microwave background suggest that the universe is in an accelerating expansion phase.  
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1-INTRODUCTION: 

In 1880 Charles Howard Hinton’s has written his famous article what is the fourth dimension? [1] in reply to it, in the 
journal nature in the year 1885, an anonymous letter writer signing “s”, introduced time as the fourth dimension and dealt 
with a 4-dimensional “time-space”. s. mastered what we now call the space-time picture, and even managed to correctly 

describe the hypercube by looking at the motion of a cube in time-space[2]. It was made clear that time is not considered 
as a fourth space like dimension as the German translation of wells book came out in 1904 [3], but a philosopher 
Menyh´ert (melchior) concluded this debate in his published work “new theory of space and time” in 1901 [1], he has 
given the name to a 4-dimensional entity as “flowing space”, according to him “the coordinates of a point in flowing 

space could be represented by   x + it, y + it, z + it [3].  

In sharp contrast, around 1905, and before Minkowski, Poincar´e also had a 4-dimensional (space-time) formalism for the 
wave equation and electrodynamics [4]. Johannes kepler who had related physical bodies, the planets, to geometric 
objects, i.e., to the five regular polyhedral, certainly was far from what we now understand by geometrization of physics, i. 
e. the embedding of physical objects (matter, fields) into a geometrical framework. A weakening of the rigid understanding 
of space seems to have occurred when the notion of non-Euclidean geometry came up, in the 19th century. The suitable 
answer to the question of what kind of geometry, the space we live is under investigation from long time.  

2-SCHWARZSCHILD INVESTIGATION 

Schwarzschild investigated the question scientifically with bodies far away in the heavens (1900) [5]. Also in 
the 19th century, the mechanics of rigid bodies reformulated within non-Euclidean geometry, with the 
exception of clifford, Latter on scientific community said it as space-time by Hermann minkowski  after  
famous speech about the “union of space and time” [6]. A few mathematicians, fiction writers, and 
philosophers presented it quite clearly before Minkowski, but not as a mathematical theory.  

The mathematical formulation of the spatial homogeneity and isotropy of the universe gives the following 
results: 

(i). The hyper surfaces with constant cosmic time are maximally symmetric subspaces of the whole space 
time. 

(ii).Not only the metric ijg but all cosmic tensors such as the energy momentum tensor ijT , are invariant w. r. t. 

isometery of subspaces.  

iii) The metric of space with homogeneous & isotropic sections which being maximally symmetric, is the Robertson Walker 
Metric (R.W). This may be explained as: 
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where R(t) is an unknown  function of time. This sets the scale of the geometry of the space, therefore is called the scale 

factor. k is a constant and may be chosen  to be  -1, 0, 1. The coordinates ),,,( tr  form a commoving 

coordinate system in the sense that the fundamental particles are at rest w. r. t.  ),,( r . Now we wish to discuss the 

EFE (Einstein Field Equations) 

3- EINSTEIN FIELD EQUATIONS 

The Einstein field equations (EFE) or Einstein's equations are a set of 10 equations in Albert Einstein's General theory of 

Relativity which describe the fundamental interaction of gravitation as a result of space-time being curved by matter and 
energy. First time the result was published by Einstein himself in 1915 as a tensor equation, the EFE equate local space-
time curvature with the local energy and momentum within that space-time as discussed in detail below: 

Einstein Field Equations describes the gravitational field resulting from the distribution of matter in the universe. It is 
expressed as:  
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where ijR is the Ricci tensor, R is the curvature scalar, ijT is the energy momentum tensor of the source producing 

the gravitational field and G is the Newton‟s Gravitational constant.  

The Einstein field equations are used to determine the curvature of the space time resulting from the presence of mass & 
energy. Because of that they determine the metric tensor of the space time for a given arrangement of stress energy in the 
space time. The energy momentum tensor satisfies the following conditions: 
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i) ijT  is symmetric w. r. t. interchange of i & j. 

ii) ijT  is divergence-less for energy and momentum to be conserved.   

 i.e.                    0; 
i

ijT     ,                )4,3,2,1,( ji                                           (3)    

Here,               jiij uuT                                                                                      (4)    

The symmetric tensor   ijT   is the material energy momentum tensor. 

we can define 
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If, ju  is regarded as a field function (i.e. meaningful not just on one world line   but a whole set of worldliness filling up all 

space time or a region thereof), we obtain  
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we get by using other relations 
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with the use of (1.5) and (1.7), we can get 

                       0; 
i

ijT
    

So that the tensor 
ijT can be used in the right hand side of Einstein equations. However the tensor given by  

jiij uuT  is a special case, which occurs in  

                                    ijjiij pguupT  )(                                                                         (8) 

here  is the mass energy density being obtained from the later by setting 0p . This zero-pressure case obtains when 

there is no random motion of the material particles that is associated with pressure, so that the particles move solely under 
the influence of gravitation and so move along geodesics 
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The Ricci tensor is defined by: 
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and                  ij

ij RgR                                                                                                               (11) 

where ijg  is the metric tensor & g is its determinant. 
i

jk  are Cristoffel symbols related to ijg . The constant 

4

8

c

G
on the right hand side of the equation is obtained by the weak & static field approximation of the equation (1.2) 

and then comparing it with Poisson‟s equation:  
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                                       G42                                                                                       (12) 

governing the gravitational field in Newtonian mechanics.  is the gravitational potential &   is the density of the 
matter. 

4- DIRAC APPROACH FOR VARIABLE     CONSTANT OF GRAVITATION „G‟ 

 We wish to bring the attention of the reader regarding Dirac approaches leading towards a variable constant of 
Gravitation. This approach is known as the Dirac large number hypothesis [7]. The ratio of the gravitational to the 

electrostatic force is of the order 
4010

. There is no convincing explanation of why such a small dimensionless number 

appears in the fundamental laws of physics. Dirac pointed out that a dimensionless no. of the order of  
4010

 may be 

constructed with G, h, c and the Hubble‟s constant 0H . It means if H is not a constant due to the expansion of the 

universe then the constant G may also vary with time. 

5- REGARDING FUNDAMENTAL “CONSTANTS” 

The discrepancy of fundamental “constants” is one of the most spectacular and unsettled problems in cosmology. The 

Einstein‟s field equations (with c = 1) necessitate two of such constants viz., the gravitational constant (G) and the 

cosmological constant (Λ), where G plays the role of coupling constant between geometry and matter while, Λ was 
introduced by Einstein in 1917 as the universal repulsion to make the universe static in accordance with generally 
accepted picture of that time. Subsequently, a general expansion of the universe was observed by Hubble in 1927. Recent 
observations also incertitude the stability of fundamental constants and “Equivalence Principle of General Relativity.  

 As stated in the above section 4, Dirac [8-9] was first to introduce the time variation of the gravitational constant G in his 
large number hypothesis and since then it has been used frequently in numerous modifications of General theory of 

Relativity. G has many interesting consequences in astrophysics. It is shown that G-varying cosmology is consistent with 

whatsoever cosmological observations available at present [10]. 

6-CONCLUDING REMARKS: 

The problem of the cosmological constant is one of the most salient and unsettled problems in cosmology so one of the 
basic purpose of this paper is to draw the attention of young researchers on this topic where a lot of unaddressed problem 
is waiting for the suitable reply in the world of work. The smallness of the effective cosmological constant recently 

observed (Λ0  ≤10
-56

cm−2) constitutes the most difficult problems involving cosmology and elementary particle 

physics theory. To discuss the striking cancellation between the “bare” cosmological constant  Λ  & ordinary vacuum 

energy contributions of the quantum fields, many suitable ways have been proposed during last few years [11]. This 

problem may be expressed as the discrepancy between the minimum value of Λ for the present universe. The values 

10
50

 larger expected by the Glashow-Salam-Weinberg model [12] or by grand unified theory (GUT) where it should be 

10
107

 larger [13]. The cosmological constant Λ is then smaller value at the present epoch. Many cosmological models 

with variable G and variable cosmological constant have been constructed and published by several authors[14-18] in 

search of exact mystery regarding expansion of the universe. This is one of the important areas of the research now in 

these days. Recent observations of Type Ia supernovae [19−22] and measurements of the cosmic microwave 

background [23] suggest that the universe is in an accelerating expansion phase.  
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