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ABSTRACT

In this paper we investigate the solutions of boundary value problems for second-order fuzzy linear differential equations
with constant coefficients. There are four different solutions for the problems by using a generalized differentiability.
Solutions and several comparison results are presented. Some examples are provided for which the solutions are found.
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INTRODUCTION

There are several approaches to studying fuzzy differential equations [1,4,5,8,12,14].The first approach was the use of
Hukuhara derivative for fuzzy-number-valued functions. This approach has a drawback: the solution becomes fuzzier as
time goes by [2,7]. Hence, the solution behaves quite differently from crisp solution. To solve the drawback, Bede and Gal
[2] introduced a generalized definition of fuzzy derivative for fuzzy-number-valued function. He showed that the new

generalization allows us to have f (X)=cg (X) for all X e(a,b) when g:[a,b]—>Ris differentiable and
f(X) =cg(X), where c is a fuzzy number.
O’ Regan et. al. [15] showed that a two-point fuzzy boundary value problem is equivalent to a fuzzy integral equation.

Bede [3] presented a counterexample to show that this statement does not hold. Also, Bede proved that a large class of
fuzzy two-point boundary value problems cannot have a solution under Hukuhara derivative concept.

In this paper, a investigation is made on the solution of two-point fuzzy boundary value problems by using generalized
differentiability.

As the fuzzy boundary value problems are given as the form

) y (t) =Ay(t), y(0)=A,y (¢)=B
@) y (t) =—2y(t), y(0)=A,y (/) =B

fuzzy solutions are developed, where te T = [O, E], A and B are symmetric triangle fuzzy numbers. We show that all

solutions are symmetric triangle fuzzy functions of t but that some solutions are no longer a valid fuzzy level set. Several
examples are presented.

2. PRELIMINARIES

In this section, we give some definitions and introduce the necessary notation which will be used throughout the paper.

Definition 2.1
A fuzzy number is a function U : R — [0, 1] satisfying the following properties:

1) uis normal,

2) uis convex fuzzy set,

3) uis upper semi-continuous on R,

4) cl {X € R|U(X) A 0} is compact where cl denotes the closure of a subset.

Let RF denote the space of fuzzy numbers.

Definition 2.2

Letue R . The o -level set of u, denoted[U]” ,0 < <1,is [u]® = {X € R|U(X) > OL} . If oL=0, the support of u
is defined [u]’ =cl {X € R|U(X) > 0}. The notation, [U]* Z[QQ,GQ] denotes explicitly the o -level set of u. We
refer to U and G as the lower and upper branches of u, respectively.

The following remark shows when [ga ) Ga] is a valid Ol -level set.

Remark 2.1

The sufficient and necessary conditions for [ga, U« ] to define the parametric form of a fuzzy number as follows:

1) U, is bounded monotonic increasing (nondecreasing) left-continuous function on (0,1] and right-continuous

for =0,

2) Uq is bounded monotonic decreasing (nonincreasing) left-continuous function on (0,1] and right-continuous
for =0,

3 U, <U,, 0<a <1,
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Definition 2.3

If A is a symmetric triangular number with support [Q,a], the o -level set of A s
a-a) - (a-a
[A]* =|a+| — |o,a—| —= |
2 2
Definition 2.4
For u,veR_andAeR, the sum U+V and the product AU are defined by [u+v]“:[u]“+[v]“,
o o o o
[ku] ZX[U] , Va€[0,1], where [u] +[V] means the usual addition of two intervals (subsets) of R and

o
k[u] means the usual product between a scalar and a subset of IR .
The metric structure is given by the Hausdorff distance
D:R, xR, >R, U{0},
by

U(x _Vq

D(u,v) = sup max{[u, ~V,|.
oe[0,1]

b

Let U,V eR_. If there exist W e R such that U=V+W, then w is called the H-difference of u and v and it is

Definition 2.5

denoted U—V.
H

Definition 2.6
Let I=(a,b), for 8,D € R, and F:1 — R_ be a fuzzy function. We say F is differentiable at t, € | if there exists an
element F (t,) € Ry such that the limits

lim F(t0+h)_F(t0) and lim F(to)_E(tO_h)

h—0" h h—0*

exist and equal F (to) . Here the limits are taken in the metric space (]RF, D) g
The above definition is a straightforward generalization of the Hukuhara differentiability of a set-valued function.
Note that this definition of derivative is restrictive; for instance, in [2], the authors showed that if T(t) =cg(t), where c is

a fuzzy number and g:[a,b] — R"is a function with g (t,) <O, then f is not differentiable. To overcome this

inconvenient, they [2] introduced a more general definition of derivative for fuzzy-number-valued function. In this paper, we
consider the following definition [6].

Definition 2.7
Let I=(a,b) and F: 1 — R be a fuzzy function. We say F is (1)- differentiable at t; €|, if there exists an element

F (t,) € R, such that for all h>0 sufficiently near to 0, there exist F(t, +h) —F(t,), F(t,) —F(t, —h) and the limits
(in the metric D)

lim F(to +h)_F(t0) = lim

h—0" h h—0"

F(to) — E(to — h) - F (to) .

F is (2)-differentiable if for all h<0 sufficiently near to 0, there exist F(t, +h)—F(t,), F(t,) —F(t, —h) and the limits
(in the metric D)

lim F(tO +h)_F(t0) = lim

h—0" h h—0"

F(to) - E(to — h) _ F(to) .
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Theorem 2.1

Let f 11 = R be afunction and denote [f (t)]a =[f, (t),fa (t)]. for eacha € [0,1]. Then
1) Iffis (1)-differentiable, then f and f . are differentiable functions and [f'(t)}a = [ia (1), f'a ]

2) Iffis (2)-differentiable, then f and f . are differentiable functions and [f'(t)T = [.Fa ), f, (0]

Proof
See [6].
Theorem 2.2

Let f 11— IR, be afunction, where f is (1)-differentiable or (2)-differentiable and [f (t)]a =[f (D), fo(t)]. Then

1) Iffand f' (1)-differentiable , then f , and f‘a are differentiable functions and [f“ (t)]a =[f, (t),F”a 1].

2) If f (1)-differentiable and f' (2)-differentiable, then f and fare differentiable functions

and[ £() " =[F « (0., (O]

3) If f (2)-differentiable and f' (1)-differentiable, then f _ and foare differentiable functions

and[£() | =[F o (0., (O]

4) Iffand ' (2)-differentiable , then fa and fla are differentiable functions and ':f“ (t)]a — [ta (t),f”a 1].

Proof
See [10].

3. Fuzzy Boundary Value Problems For Second-Order Fuzzy Linear Differential
Equations with Constant Coefficients

1) The case of positive constant coefficients

Consider the fuzzy boundary value problem

3) y (t)=2y(t), Y0)=A,y () =B

where A >0 and boundary conditions A and B are symmetric triangular numbers. The 0. -level set of A and B are

[A]" = {g + (5_;@] o,a— [5_;@1] oc} and [B]* = {b + (B—fJ a,b— (B%Dj on} , respectively.

Here, (i,j)-solution i,j=1,2 means that y is (i)-differentiable in and y' is (j)-differentiable.

Theorem 3.1
Let [y(t)]OL = [)_/a (1), )_/a ()] be a solution of (3), where Yy, (t) and §/a (t) are the lower and upper solutions.
For (1,1)-solution, the lower and upper solutions are

y () =a,(c)e" +a,(c)e

y, (1) =a (a)e™ +a,(a)e ™™

where
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_\ﬁk“m(§+[a;§ja]+[b+[B;bjaj

)= Jr(Ee™ +e )
e
00 = S +e)
e
o= rEe™ +e )
s B
& ] (e +e™)

For the (1,2)-solution, the lower and upper solutions are

y_ () =b,(c)e™ +b,(a)e ™ —b, (o) sin(v/At) — b, (o) cos(v/At)

y. (t) =b,(@)e™ +b, (o)e ™ + b, (o) sin(x/At) + b, (o) cos(v/At)
where

Jre (5+g)+(5+9) N (5+§)—(5+Q)

e) = 21 (™ +e ) P 20 (@™ +e )
_(1—a)[ﬁ(5—g)sin(\/ﬂ)+(5—9)} 4=}
b, () = zﬁcos(\/ﬂ) 1 b4(0t)—(7j(a—§)

For (2,2)-solution, the lower and upper solutions are
- it —Jat
y () =c,(a)e™ +c,(a)e

y, (1) =c,(a)e’™ +c, (a)e ™

ol QU0 O

where

a(a)= JrEe™ +e
22
C,(a) = ﬁ(eﬁa N efﬁ/)
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Xe“m[a [a_—]a}r(lﬁr[g_gja}
2 2
() = @™ +e
o i[5 Yoo 552)]
Calor) = Jr@e™ +e

For the (2,1)-solution, the lower and upper solutions are
y._ (1) =d,(0)e™ +d,(a)e ™ —d, (o) sin(vAt) —d, () cos(v/t)

y. (t) =d, (0)e™ +d, (o)e ™™ +d, (o) sin(vAt) + d, (o) cos(/At)

where
. NRE (5+g)+(5+l_3) ) NYE (5+§)—(5+p)
1) = 2Jn (e +e) ()= 2 (@™ +e )
_(1—a)[\/x<5—g)sin(\/xﬁ)+(l_)—5)} ) =
] 2 cos(o) o s@-(52)E-o
Proof

For (1,1)-solution, using Theorem 2.1 and Theorem 2.2, the lower solution and upper solution of (3) , satisfy the following
equations

y,®=1y (), ga(0)=@+[a_2§ja, X;(f>=9+[%ja

Y. (0=2Y,), y,(0)=a —(a—f]a, y.()=b _[b_;b}x

respectively. Hence the solutions can be obtained
y () =a,(c)e”™ +a,(c)e
Yo () =85 ()e’ +a, (a)e "

Using boundary conditions, coefficients al((x) , Ay (OL) , g (O() and a, (OL) are solved as

o5 o332

al ((l) = \/x(eﬁ[ +e—«ﬁ€)
N (g+£a;§ja}—[p+£5;b]a]
(@)= @™ +e
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(o) = (e +e)
R )
a(0)= S +e

For (1,2)-solution, using Theorem 2.1 and Theorem 2.2, the fuzzy boundary value problem (3) is transformed into a linear
system of real-valued differential equations

y () =-1y,(t)
Y. (0=-2y (1)

with

y_(0) =@+[%@Ja,

9a(0):5—(%§]a, 9;(@:5_(5;9]&

Hence the solutions can be obtained
y. (1) =D, (a)e ™ +Db, (a)e ™ —b,(ar) sin(x/At) — b, () cos(v/2t)
y. (t) =b, (@)e™ +b,(c)e ™ + b, (o) sin(x/At) + b, (o) cos(\/At)
Using boundary conditions, coefficients b, (at), b, (a), bs(a) and b,(ct) are solved as

Ny (5+§)+(5+Q) Jul (5+g)—<5+t_))

. a) =
2 (@™ +e (@) 20 (@ + e

(1-a) \/x(a—g)sin NV +(5_9) el
[ Zﬁcos(\(/@)) } b4(a)=(7)(a—a)

Similarly, for (2,2)-solution and (2,1)-solution, the following sistems are solved

b, (o) =

by(a) =

D |
|
|
I
ol
|
1o

y_ ()=2ry (1), y (0)=a+

Q |

| N

(F<%)

I <
Q

o

| N

1o

y.(0)=1y. (1), v, (0)=a-

N ‘

D |
|
I
I
ol
|
oy

y, =1y, (), y (0)=a+

N ‘

D |
|
1
|
ol
|
(=2

y.(0=2y (1), y,(0)=a-

N ‘
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respectively.

Proposition 3.1

i) For (1,1)-solution, the solution [y(t)]u = [)_/a (1), ;la (t)] of (3) is a valid fuzzy level set for all t €[0, /].

i) For (1,2)-solution, the solution [y(t)]a z[)_/a(t),gla(t)] of (3) is no longer a valid fuzzy level set as

s [t e

iii) For (22)-solution, the solution [y(t)]“:[)_/a(t),ya(t)] of (3) is a valid fuzzy level set if
ﬁe"m@—a)z(ﬁ—p).
iv) For (2,1)-solution,

a) if (a a)\/_ sm(«/_ ) ~b. the solution [y()]" =[y (1), y,,(D)] of (3) is no longer a valid fuzzy level

' | [ [< () )

b) if (a a \/_sm < , the solutlon y(t)] —[ya(t),y_/a(t)] of (3) is no longer a valid fuzzy

a a \/_cos(«/_()
level set as t>—tan
a a fsm(fﬁ)

Proof

i) For (1,1)-solution, given t € [0, /],
Y. (=Y, (1)=(a5(0) ~a,(c) Je ™ +(a, () -, () Je "
(a0 —ay(e) )€™ + (2, (@) —az(oc)))
Let F(£) = (a(cr) —a, () )e>™ +(a,(c) —a,(cx) ) . Then F(0) = (5— a)(1-a)>0 and
(1) = 242 (2 () —a, (a) )™
=2(1—0L)[\/xem(a(’i)Jr(bD>Je2‘ﬁt >0.

e g

Hence, for (1,1)-solution, the solution [y(t)]“ = [)_/a (1), )_/a (t)] of (3) is a valid fuzzy level set for all t €[0, /].
ii) For (1,2)-solution, ya () -y, (t) =2b,sin (\/Xt) +2b, cos (ﬁt)

Y. () -y (1)20 by(o)sin (\/Xt) > b, (0) cos(ﬁt).
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«/X(a—g)sinx/ﬂjt(ﬁ—t_))

As 0O< ﬁt < x/%ﬂ < g . we have \/XCOS \/XE >0 and COS ﬁt >0. Hence
sin /At (a—a)v/a cos/as 1 (a—2)r cosr

>— = = ; that is t=>—=tan | — = —
cos/At xﬁ(a—g)sin«/ﬂ%b—p) Jr ﬁ(a—g)sinﬁ£+(b—k_))
This implies that  the solution [y(t)]“ = [Xa (1), {/a (t)] of (3 is not valid fuzzy level set as

t<itan‘l - (5_§)%COSN@)
Ny (5—p)+(5—g)ﬁsin(\/ﬂ)

For iii) (2,2)-solution and iv) (2,1)-solution, proof is similar.

Proposition 3.2
Foranyt €[0, /], the solution [y(t)]“ = [ya (1), ;la ()] of (3) is a symmetric triangle fuzzy number.

Proof

For (1,1)-solution, we have

Jem(a+a | [ b+b Jew[a+a) (b+b
2 2B - 2 2
+

A (e +e ) d Jr(Ee™ +e ™) e "=v
and
], i
3 e =Y, (0-y.(

y,0-y,O=1-c) e e T e e )

For (1,2)-solution we have
y, (t) =b,(a)e " +b, (o)e " =y, (1)
and
y, (0 —y_ (8)=by(a)sin(vAt) +b,(a) cos(x/At) =y, (1) -y, (1) .

For (2,2)-solution and (2,1)-solution, proof is similar.
Hence solutions are symmetric fuzzy function of t.
Example 3.1

Consider the fuzzy boundary value problem
CRTORE (%

y@){“%ai—%a} y'(%)=[3+%a,4-%a]

For (1,1)-solution , the fuzzy solution is obtained as
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y_ (D) =a,(a)e' +a,(a)e™

Y. (0) =a,(a)e' +a,(a)e”

ez(1+1aj+(3+locj ez(1+1ocj—(3+locj
2 2 2 2
(o) =

al(a’): [ n ! a2 n _r

et +e? et +e?
e4(2—;oc)+(4—;ocj 64(2—;01,)—(4—;&)

a, (OL) = ™ K ) a, (OL) = n _

et +e 4 e’ +e’

For (1,2)-solution, fuzzy solution is obtained as

where

y_(t)=b,(c)e" +b,(c)e™ ~b,(e)sin(t) —b,(a)cos(t)

y. () =b,(c)e' +b,(cr)e +b,(cr)sin(t) + b, (o) cos(t)

(@) -2 b o)== =T () <(V2 1) 22) by -2
2(e* +e %) 2(e +e %)

For (2,2)-solution, fuzzy solution is obtained as

where

y () =c,(a)e' +c,(a)e

Y, (1) =cy(@)e' +¢,(a)e™

e 4|14t asla b (12 |- 488
2 2 2 2
+

Cl(a) = n o ’ CZ (a) = T T
et +e 4 et +e 4
e_“(Z—loc + 3+10c e“(Z—loc - 3+10Lj
2 2 2 2
C3 (OL) == n T ’ C4 (a‘) - n T
et +e? et +e?

For (2,1)-solution, fuzzy solution is obtained as

where

y_(t)=d,(a)e’ +d, (o)™ ~d,(cx)sin(t) —d, () cos(t)

y. () =d,(c)e' +d,(c)e +d,(cr)sin(t) +d, () cos(t)

T T

(o) =—E T 4= ET dg(a)=(1—ﬁ)(1‘—°°j d@="1

2(e* +e ) 2(e* +e 4) 2
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T
Using Proposition 3.1, (1,1)-solution is a valid fuzzy level set for all T € I:O,Z} , (1,2)-solution is not a valid fuzzy level set

T

when t<tan™ (1—\/5), (2,2)-solution is not a valid fuzzy level set since e7 <1, (2,1)-solution is not a valid fuzzy
level set when t > tan™ (l+ \/E) .

All solutions are symmetric triangle fuzzy function of t.
2) The case of negative constant coefficients

Consider the fuzzy boundary value problem

@) y (t) =—2y(t), (0)=A,y (/)=B

where A >0 and boundary conditions A and B are symmetric triangular numbers. The o -level set of A and B are

[A] = {@ N {a%@ja, a _(5_;@}1} and [B]* = {p " (5_;9]% b _(B—EDJOL} , respectively.

Here, (i,j)-solution i,j=1,2 means that y is (i)-differentiable in and y' is (j)-differentiable.

Theorem 3.2

Let [y(t)]a < [Za (1), ;10( (t)] be a solution of (4), where y, (t) and ;/a (t) are the lower and upper solutions.

For (1,1)-solution, the lower and upper solutions are

y ()=-a, (o)e™ - a, (o) + a, () sin(xv/At) +a, (o) cos(+/At)

Yo () =a,(o)e™ +a,(o)e " +a,(a) sin(v/At) +a, (o) cos(v/it)
where
(o, [V (3-2)-(6-t)
al(a)z(Taj (a_g)_ ﬁ(eﬁ[-keﬂ/m)

1—(1] Jre'(a-a)-(b-b)
x/X(e‘/D +e”ﬁ”)

(5+Q)+(5+g)»\ﬁsin (»\/ﬂ)

Zﬁcos(ﬁﬁ)

(o) =

For (1,2)-solution, the lower and upper solutions are

y_ (1) =b, (o) cos(/it) + b, (ar) sin(\/2t)
¥, (t) =b,(ar) cos(v/At) + b, (a) sin(/it)

where
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b, () =@+(5%§]a, o) (b{bzqu]ﬁ;&j\é})&}ﬁsin(ﬁﬁ
it

For (2,2)-solution, the lower and upper solutions are

y_ (1) =—c,(a)e"™ —c,(a)e ™ +cy(a)sin(v/At) +c, () cos(v/At)

Y. (1) =c,(a)e™ +c,(a)e ™ +cy(a)sin(v/at) + ¢, () cos(v/At)

oo [ )
B e

(5 +Q)+(e_1 +§)\/xsin (\/XE)
Zﬁcos(\/ﬂ)

where

c,(a) =(

Cs(a) =

a+a
c,(a) = 2_

For (2,1)-solution, the lower and upper solutions are

y_(t) =d, (o) cos(v/At) +d, (er) sin(\/At)
Y, (t) =d; (o) cos(v/at) +d, (a)sin(v/At)

o
dl(oc)=§+[a_2@ja Gl = | [ : } ﬁcog(}}) —

dg(a)=5—[a%§}x | d4(°‘)[b+(b2b]a}i/(;mE:j;j)aJﬁsm(ﬁg)
Proof

For (1,1)-solution, using Theorem 2.1, Theorem 2.2 and —7{&1 (t),)_((x (t)]:[—k;a(t),—Kxa(t)], A>0, the

fuzzy boundary value problem (4) is transformed into a linear system of real-valued differential equations
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y ()=-1y,(1)
Y. (0=-2y (O

with

ya(0)=a+f$]a, y'a(€)=b+(5_p]a

9a(0)=5—(%]a, 9;(@:6—(ﬂ]a
Hence the solutions can be obtained

y_ () =-a,(c)e™ —a,(c)e " +a,(a) sin(v/At) +a,(cr) cos(vAt)

Y. () =a,(c)e’™ +a,(c)e " +a,(a)sin(v/At) +a, (o) cos(vit)

Using boundary conditions, coefficients a,(a), a,(a), a,(a) and a,(a) are solved as

2,(0) =(1_7°‘)[(59){ﬁ3§((j;); ‘(/E)_D)H
az(a)[12()()[@3’/;((65&)6%9@

B (5+p)+(5+g)xﬁsin («/ﬂ)
R 2 cos(\/ﬂ)

a,(a)=——=

For (1,2)-solution, using Theorem 2.1, Theorem 2.2 and —A [Xu (1), Xo (t)] = |:—7\4;(x (t),—Ax, (t)], A > 0 the lower

solution and upper solution of (4) , satisfy the following equations

y ®=-1y (1), y (0)=a {a_;é‘}a, y (1)=b +(%}l

a-a

Y. (H)=-2y,(1), 9a(0):5—(_7)a, ya(£)=b—£7]a

respectively. Hence the solutions can be obtained

y_ (t) = b, (a) cos(v/At) + b, (er) sin(v/t)
Y, (1) =b,(ar) cos(v/At) + b, () sin(/it)

Using boundary conditions, coefficients b, () , b,(ct), by(a) and b, (ct) are solved as
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(b s

i o P

Similarly, for (2,2)-solution and (2,1)-solution the following sistems are solved

Vi)
} J\/_sm i)
it

O

o

w
—

y;a)z—xixo,yaw>=a+(9§2]a,ygw)=b—

y.(H)=-1y (8, 9a<0>=5—(%}x, Yo()=b+| 2= o
y =1y (1), (0)= a+[a;aja,g;w)=6—(—§2)a
Y. =2y, (0, v, 0)=a —(a—j‘ja Y.(0)=b {E—f}x

respectively.

Proposition 3.3

i) For (1,1)-solution, the solution [y(t)]” =[3_/a(t),3_/a(t)] of (4) is a valid fuzzy level set for all te[0,/] if
a,(a) >0.

i) For (1,2)-solution, the solution [y(t)]“ = [Xq (1), ;/(x (t)] of (4) is no longer a valid fuzzy level set as

t<%tan{%}

where
(b—b)(1-a)+(a—a)(1-a)Vnsin(rs)
C= .
JA cos \/ﬁ)
iii) For (2,2)-solution, the solution [y(t)]a =[¥a(t),)_/a(t)] of (4) is a valid fuzzy level set for all te[O,E] if
c,(a)>0.
iv) For (2,1)-solution,
a) if (a a)\/_sm \/_K > , the solution [y(t)] —[y (1), y (t)] of (4) is no longer a valid fuzzy
level setas t < L tan™
evel setas { < —
NGy
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b) if (a a \/_sm \/_f < , the solution [ (t)]OL :[)_/a (t),)_/a (t)] of (4) is no longer a valid fuzzy

1 1 OL
level setas t > Wtan

(B—l_))(a—l) (a a)(l oc)\/_sm(\/_E)
ﬁcos(\/_é)

C=

Proof

i) For (1,1)-solution, the difference of ;a and X is
Y. () -y (1) =2(a,(c)e™ +a,(o)e ™)

= 2e"™(a,(0)e>™ +a, (o).

Let f(t)=a,(a)e?™ +a,(a). Then f(0)=(a— a)( j>o and f(t)=2Vra,(@)e*™ >0 as

a,(o) > 0. Therefore, )_/OL (1) o (t)>0as a,(a) >0.
ii) For (1,2)-solution,
Y ()= () :(5—@)(1—a)cos(ﬁt)+csin(\/Xt),
where
(5—Q)(l—a)Jr(a—g)(l—a)\/XSin(\/XE) o (2n+1)n
ﬁcos(\/ﬂ) : 2n

(s

for all integer n.

)_/a(t)—za(t)20<:>(5—@)(1—a)cos(ﬁt)z—csin(ﬁt).
As 0<\/Xt<ﬁf<g' we have [(5 )( )] sm\/_t that is itan {_(1&)(5@)J<t. This

—C cos/At’ e —C

implies  that the solution [y(t)]a:[ya(t),)_/a(t)] of (4 is not a valid fuzzy level set as

t< %tanl[%].

For iii) (2,2)-solution and iv) (2,1)-solution, proof is similar.

Proposition 3.4
Foranyt €[0, /], the solution [y(t)]a = [)_/a (1), )_/a (t)] of (4) is a symmetric triangle fuzzy number.

Proof

For (1,1)-solution, we have
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y, (t)=2,()sin (\/xt)+a4 (oc)cos(ﬁt) =y, (1)
and
y,()-y_ () =a,(c)e™ +a,(a)e " =y, (1) -y, (1).

For (1,2)-solution, we have

)z
i cos ()

y, (1) =[5%§j005(ﬁt) sin(\/it) =y, (t)

and

b;l‘)J(l— o) +(5;§](1_a)ﬁsin (1)
rcos (Vi)

y,()-y ()= (_2 J(l a)cos(«/_t)( sin(ﬁt)zy_/a(t)—y_/l(t).

For (2,2)-solution and (2,1)-solution, proof is similar.
Hence solutions are symmetric fuzzy function of t.
Example 3.2

Consider the fuzzy boundary value problem

Y1) = ~y(1). te(o, Ej

o

y(0)= {1+%a, 2 —%a}, y (n)=[3+%o¢,4-%a]

For (1,1)-solution, the lower and upper solutions are

4 _ . 4y 4
y ()= (a 1) 1- f 1n e‘+(a21] f 1n e '+ 3+;\Fsmt Ecost
et +e ¢ et te ¢
i P i
y, ()= = 1-| £ ! e' + L pTe 1 e '+ 3+7\Fsmt+ cost
o == 7 - 2 2
et +e 4 et +e 4

For (1,2)-solution, the lower and upper solutions are

y (0= (1+%a}cost +((1+ 3&)+(#}a}sint

y, ()= (2—%ajcost+[(2+4«/_) (“\/_J Jsmt

For (2,2)-solution, the lower and upper solutions are
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T

4 _ 4
y ()= (a 1j 1- S—Jrl Jeh{az 1}{ f LT P 3+7\/_S|nt+2cost

2 L L
et +e 4

f i
y, (t)= ( jl— e+l e+l e '+ 3+7\/_smt+ cost
2 . 2
e4+e s et+e 4

For (2,1)-solution, the lower and upper solutions are

3_/a(t) [1+ o cost+[<l+4\/_ (1 2\/5 a |sint
Qa(t):(Z—%a cost+£ 2+3\/_ ! f o [sint

. y - . - (l-a et-1 .
Using Proposition 3.3, (1,1)-solution is a valid fuzzy level set since | —— || 1—-| ———— | | >0, (1,2)-solution is not

a valid fuzzy level set when t<tan‘1(1—\/§), (2,2)-solution is not a valid fuzzy level set since

2 -

1- et +1
( aj 1- — | |<0, (2,1)-solution is not a valid fuzzy level set when t > tan™ (l—i— \/E) :

All solutions are symmetric triangle fuzzy function of t.
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