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ABSTRACT 

In this paper we investigate the solutions of boundary value problems for second-order fuzzy linear differential equations 
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1.  INTRODUCTION   

There are several approaches to studying fuzzy differential equations [1,4,5,8,12,14].The first approach was the use of 
Hukuhara derivative for fuzzy-number-valued functions. This approach has a drawback: the solution becomes fuzzier as 
time goes by [2,7]. Hence, the solution behaves quite differently from crisp solution. To solve the drawback, Bede and Gal 
[2] introduced a generalized definition of fuzzy derivative for fuzzy-number-valued function. He showed that the new 

generalization allows us to have 
' 'f (x) cg (x)  for all x (a,b)  when g :[a,b] is differentiable and 

f (x) cg(x) , where c is a fuzzy number.  

O’ Regan et. al. [15] showed that a two-point fuzzy boundary value problem is equivalent to a fuzzy integral equation. 
Bede [3] presented a counterexample to show that this statement does not hold. Also, Bede proved that a large class of 
fuzzy two-point boundary value problems cannot have a solution under Hukuhara derivative concept. 

In this paper, a investigation is made on the solution of two-point fuzzy boundary value problems by using generalized 
differentiability. 

As the fuzzy boundary value problems are given as the form 

(1)    
'' 'y (t) y(t),  y(0)=A , y ( ) B    

(2)    
'' 'y (t) y(t),  y(0)=A , y ( ) B    

fuzzy solutions are developed, where t T [0, ]   , A and B are symmetric triangle fuzzy numbers. We show that all 

solutions are symmetric triangle fuzzy functions of t but that some solutions are no longer a valid fuzzy level set. Several 
examples are presented.  

2. PRELIMINARIES 

In this section, we give some definitions and introduce the necessary notation which will be used throughout the paper. 

Definition 2.1 

 A fuzzy number is a function u : [0,1] satisfying the following properties:  

1) u is normal, 

2) u is convex fuzzy set, 

3) u is upper semi-continuous on  , 

4)  cl x u(x) 0   is compact where cl denotes the closure of a subset.  

Let F  denote the space of fuzzy numbers.   

Definition 2.2 

Let u F . The  -level set of u, denoted[u] , 0 1   , is      [u] x u(x)     . If  =0, the support of u 

is defined  0[u] cl x u(x) 0   . The notation, [u] [u ,u ]
  denotes explicitly the  -level set of u. We 

refer to u and u  as the lower and upper branches of u, respectively.  

The following remark shows when [u ,u ]  is a valid  -level set. 

Remark 2.1 

The sufficient and necessary conditions for [u ,u ]  to define the parametric form of a fuzzy number as follows: 

 1) u  is bounded monotonic increasing (nondecreasing) left-continuous function on (0,1] and right-continuous 

for 0  , 

 2) u  is bounded monotonic decreasing (nonincreasing) left-continuous function on (0,1] and right-continuous 

for 0  ,  

 3) u u  , 0 1   . 
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Definition 2.3 

 If A is a symmetric triangular number with support [a,a] , the  -level set of A is 

a
[A

a
aa

a

2
]

a
,

2


     
       

  


  

.    

Definition 2.4 

 For Fu,v  and ,    the sum u v  and the product u are defined by      v uu v
  

   , 

   u u
 

   , [0,1] , where    u v
 
 means the usual addition of two intervals (subsets) of  and 

 u


 means the usual product between a scalar and a subset of  . 

The metric structure is given by the Hausdorff distance 

 F FD: 0     , 

by 

 
[0,1]

D(u, v) sup max u v , u v  


   . 

Definition 2.5 

 Let Fu, v . If there exist Fw  such that u wv  , then w is called the H-difference of u and v and it is 

denoted 
H

u v .  

Definition 2.6 

 Let I=(a,b), for a,b , and FF: I  be a fuzzy function. We say F is differentiable at 0t I  if there exists an 

element 
'

0 FF (t )  such that the limits  

          
0 0

h 0

F(t ) F(t )
l

h
im

h

 
 and 

0 0

h 0

F(t ) F(t )
lim

h

h


 
   

exist and equal
'

0F (t ) . Here the limits are taken in the metric space F( ,D) .  

 The above definition is a straightforward generalization of the Hukuhara differentiability of a set-valued function. 

Note that this definition of derivative is restrictive; for instance, in [2], the authors showed that if f (t) cg(t) , where c is 

a fuzzy number and g :[a,b]  is a function with 
'

0g (t ) 0 , then f is not differentiable. To overcome this 

inconvenient, they [2] introduced a more general definition of derivative for fuzzy-number-valued function. In this paper, we 
consider the following definition [6].   

Definition 2.7  

Let I=(a,b) and FF: I  be a fuzzy function. We say F is (1)- differentiable at 0t I , if there exists an element 

'

0 FF (t )  such that for all h>0 sufficiently near to 0, there exist 0 0F(t )h F(t ) , 0 0F(t ) F(t h)  and the limits 

(in the metric D)  

          
0 0

h 0

F(t ) F(t )
l

h
im

h

 
=

0 0

h 0

F(t ) F(t )
lim

h

h


 
=

'

0F (t ) . 

F is (2)-differentiable if for all h<0 sufficiently near to 0, there exist 0 0F(t )h F(t ) , 0 0F(t ) F(t h)   and the limits 

(in the metric D)    

      
0 0

h 0

F(t ) F(t )
l

h
im

h

 
=

0 0

h 0

F(t ) F(t )
lim

h

h


 
=

'

0F (t ) . 
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Theorem 2.1 

 Let Ff : I  be a function and denote  f (t) [f (t), f (t)]


 , for each  0,1 . Then 

1) If f is (1)-differentiable, then f  and f  are differentiable functions and 
'''f (t) [f (t), f (t)]




    . 

2) If f is (2)-differentiable, then f  and f  are differentiable functions and 
' ''f (t) [f (t), f (t)]



 
     

Proof 

See [6]. 

Theorem 2.2 

 Let 
'

Ff : I  be a function, where f is (1)-differentiable or (2)-differentiable and  f (t) [f (t), f (t)]


 . Then 

1) If f and f '  (1)-differentiable , then 
'

f   and 
'

f  are differentiable functions and 
''''''f (t) [f (t), f (t)]




    . 

2) If f (1)-differentiable and f '  (2)-differentiable, then 
'

f   and 
'

f  are differentiable functions 

and
'' ''''f (t) [f (t), f (t)]



 
    . 

3) If f (2)-differentiable and f '  (1)-differentiable, then 
'

f   and 
'

f  are differentiable functions 

and
'' ''''f (t) [f (t), f (t)]



 
    . 

4) If f and f '  (2)-differentiable , then 
'

f   and 
'

f  are differentiable functions and 
''''''f (t) [f (t), f (t)]




    . 

Proof 

See [10]. 

3. Fuzzy Boundary Value Problems For Second-Order Fuzzy Linear Differential 
Equations with Constant Coefficients  

1) The case of positive constant coefficients 

Consider the fuzzy boundary value problem 

(3)     
'' 'y (t) y(t),  y(0)=A , y ( ) B        

where 0   and boundary conditions A and B are symmetric triangular numbers. The  -level set of A and B are 

a
[A

a
aa

a

2
]

a
,

2


     
       

  


  

and  
b

[B
b

bb
b

2
]

b
,

2


     
       

  


  

, respectively. 

Here, (i,j)-solution i,j=1,2 means that y is (i)-differentiable in and 
'y  is (j)-differentiable.                   

Theorem 3.1 

Let  y(t) [y (t), y (t)]



   be a solution of (3), where y (t)


 and y (t)

  are the lower and upper solutions.  

For (1,1)-solution, the lower and upper solutions are 

t t

1

t t

3

2

4

y (t) a ( )e e

y (t) a (

a ( )

a ( ))e e

  



  



 

 

 

 
   

where 



ISSN 2347-1921                                                           

1618 | P a g e                                                            M a y  2 0 ,  2 0 1 4  

1

a a b b

2
e a b

a ( )
e

2

( e )

 

  

    
  

   
       



    
   



   




 
   

2

e a b
a a b

a ( )
(e e

b

2 2

)



  

       
       

   

      
 

 








 
 

 3

a a b b
a b

2
e

a ( )
(e

2

e )

 

  

    
  

   
       



    
   



   




 
    

 4

e b
a a b b

a
2

a ( )
(e e )

2



  

   
        

  

    
     
   


 





 
 

For the (1,2)-solution, the lower and upper solutions are    

t t

1 2 3 4y (t) b ( )e ( )e b ( )sin( t) b ( )cos(b t)  


          

t t

1 2 3 4b by (t) b ( )e ( )e ( )sin( t b) ( )cos( t)  


           

where 

   
1

a be a
b ( )

2 (e e )

b 

  

  


 






 
  ,             

   
2

a b be a
b ( )

2 (e e )



  

 
 



 





 
 

       

 
3

a1 a sin
b ( )

2 co

b b

s

   
  



 






,   4

1
b ( ) a

2
a

 
  
 

  

For (2,2)-solution, the lower and upper solutions are 

t t

1

t t

3

2

4

y (t) c ( )e e

y (t) c (

c ( )

c ( ))e e

  



  



 

 

 

 
 

where 

1

a a b b

2
e a b

c ( )
e

2

( e )

 

  

    
  

   
       

   
    
 






 
 

2

e a b
a a b

c ( )
(e e

b

2 2

)
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3

a a b b
a b

2
e

c ( )
(e

2

e )

 

  

    
  

   
       



    
   



   




 
 

4

e b
a

c ( )
(

a b b
a

2

e )

2

e



  

    
   

   
       

   
    


 





 
 

For the (2,1)-solution, the lower and upper solutions are  

t t

1 2 3 4y (t) d ( )e ( )e d ( )sin( t) d ( )cos(d t)  


            

t t

1 2 3 4d dy (t) d ( )e ( )e ( )sin( t d) ( )cos( t)  


          

where 

                    
   

1

a be a
d ( )

2 (e e )

b 

  

  


 






 
 ,                      

   
2

a b be a
d ( )

2 (e e )



  

 
 



 





 
  

                    

       

 
3

a1 a sin
d ( )

2 co

b b

s

   
  



 






  ,        4

1
d ( ) a

2
a

 
  
 

  

Proof   

For (1,1)-solution, using Theorem 2.1 and Theorem 2.2, the lower solution and upper solution of (3) , satisfy the following 
equations  

'' '

'' '

a a b b
,  

2 2

a a b b
,

y (t) y (t),  y (0) a y ( ) b

y (t) y (t),  y (0) a  y b
2 2

( )

   

   

    
      
   

    
      
  


   








  






           

respectively. Hence the solutions can be obtained  

t t

1

t t

3

2

4

y (t) a ( )e e

y (t) a (

a ( )

a ( ))e e

  



  



 

 

 

 
 

Using boundary conditions, coefficients 1a ( ) , 2a ( ) , 3a ( )  and 4a ( )  are solved as  

1

a a b b

2
e a b

a ( )
e

2

( e )

 

  

    
  

   
       



    
   



   




 
   

2

e a b
a a b

a ( )
(e e

b

2 2

)
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 3

a a b b
a b

2
e

a ( )
(e

2

e )

 

  

    
  

   
       



    
   



   




 
    

 4

e b
a a b b

a
2

a ( )
(e e )

2



  

   
        

  

    
     
   


 





 
 

For (1,2)-solution, using Theorem 2.1 and Theorem 2.2, the fuzzy boundary value problem (3) is transformed into a linear 
system of real-valued differential equations  

''

''

y (t) y (t)

y (t) y (t)



 

  



 

     

with 

'a a b b
,   y (0) a y ( ) b 

2 2 

    
      
 

 
 

  

'a a b b
,    y by (0) a (

2
)

2
 

    
      
 

 
 

  

 Hence the solutions can be obtained 

t t

1 2 3 4y (t) b ( )e ( )e b ( )sin( t) b ( )cos(b t)  


          

t t

1 2 3 4b by (t) b ( )e ( )e ( )sin( t b) ( )cos( t)  


           

Using boundary conditions, coefficients 1b ( ) , 2b ( ) , 3b ( )  and 4b ( )  are solved as   

   
1

a be a
b ( )

2 (e e )

b 

  

  


 






 
  ,             

   
2

a b be a
b ( )

2 (e e )



  

 
 



 





 
 

       

 
3

a1 a sin
b ( )

2 co

b b

s

   
  



 






,   4

1
b ( ) a

2
a

 
  
 

  

 Similarly, for (2,2)-solution and (2,1)-solution, the following sistems are solved  

'' '

'' '

a a b b
,  y b

2 2

a a b b
,

y (t) y (t),  y (0) a ( )

y (t) y (t),  y  y(0) a ( b
2

)
2

   

   

    
      
   

    
      
  


   








  






 

'' '

'' '

a a b b
,  y b

2 2

a a b b
,

y (t) y (t),  y (0) a ( )

y (t) y (t),  y  y(0) a ( b
2

)
2
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respectively.   

Proposition 3.1 

 i)  For (1,1)-solution, the solution  y(t) [y (t), y (t)]



  of (3 ) is a valid fuzzy level set for all t [0, ]  . 

ii) For (1,2)-solution, the solution  y(t) [y (t), y (t)]



  of (3) is no longer a valid fuzzy level set as 

   
     

1
a a cos

b a a sin

1
t tan

b


  

   

  
   
    

  




.   

iii) For (2,2)-solution, the solution  y(t) [y (t), y (t)]



  of (3) is a valid fuzzy level set if 

   e a a b b    
. 

iv) For (2,1)-solution,  

a) if    a a sin bb     , the solution  y(t) [y (t), y (t)]



  of (3) is no longer a valid fuzzy level 

set as 
   

     
1

a a cos

b a a sin

1
t tan

b


  

    

  
   
    

  




.  

b) if    a a sin bb     , the solution  y(t) [y (t), y (t)]



  of (3)  is no longer a valid fuzzy 

level set as 
   

     
1

a a cos

b a a sin

1
t tan

b


  

    

  
   
    

  




.  

Proof 

 i)  For (1,1)-solution, given  t 0,  , 

   

    

t t

3 1 4 2

t 2 t

3 1 4 2

y (t) y (t) a ( ) a ( ) e a ( ) a ( ) e

                     =e a ( ) a ( ) e a ( ) a ( )

  

 

  

       

     


 

Let    2 t

3 1 4 2f (t) a ( ) a ( ) e a ( ) a ( )       . Then   f (0) a a 1 0     and  

   

 
   

' 2 t

3 1

2 t

f t 2 a ( ) a ( ) e

e a a b b
        =2 1 e 0.

e e



 



  

    

   
  
 




 



 

 

Hence,  for (1,1)-solution, the solution  y(t) [y (t), y (t)]



  of (3 ) is a valid fuzzy level set for all t [0, ]  . 

 ii) For (1,2)-solution,    3 4y (t) y (t) 2b sin t 2b cos t
 

     

   3 4y (t) y (t) 0 b ( )sin t b ( )cos t
 

         . 
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As 0 t
2


     , we  have 

   a a b bsin
0

cos






 






 and cos t 0  . Hence 

 
   

ca a

a a b b

ossin t

cos t sin

     
    




 





 ; that is 

 
   

1
cos1

t tan
si

a a

a a bn b



   
   
    

 



  





. 

This implies that  the solution  y(t) [y (t), y (t)]



  of (3) is not valid fuzzy level set as 

   
     

1
a a cos

b a a sin

1
t tan

b


  

   

  
   
    

  




. 

 For  iii) (2,2)-solution and iv) (2,1)-solution, proof is similar. 

Proposition 3.2 

For any t [0, ]  , the solution  y(t) [y (t), y (t)]



  of (3) is a symmetric triangle fuzzy number. 

Proof 

 For (1,1)-solution, we have 

t t

11

a a b b a a
e e

y (t) e e

b b

2
y (t)

(e e ) (e

2 2 2

e )

  

  

     

          
        

       
 

 

 
 

 

   
 

and  

  t t

11

a a b b a a b b

2 2
e e

y (t) y (t) 1 e e y (t) y (t)
(e e ) (e e )

2 2

  

  

     

          
 


  

     


       
       

   
 
 
 

 

   

 

For (1,2)-solution we have  

1

t

11 2

t( ) b ( )y (t) b e e y (t)        

and  

3 4 11
y (t) y (t) b ( )sin( t) ( )cos( t) y (t) y (t)b


        . 

For (2,2)-solution and (2,1)-solution, proof is similar. 

Hence solutions are symmetric fuzzy function of t.                        

Example 3.1 

Consider the fuzzy boundary value problem  

'1 1

y ''(t) y(t),  t 0,
4

y(
1 1

,20)= 1 ,  y ( )=[3 ] 
4

,4-
2 2 2 2

   

  
  

  


 
 







 

For (1,1)-solution , the fuzzy solution is obtained as 
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t t

1

t t

3

2

4

y (t) a ( )e e

y (t) a (

a ( )

)e a ( )e









 

 

 

 
 

where  

4

1

4 4

1 1
1

2
e 3

a ( )

e e

2




 


   
   
 
    



     ,            

4

2

4 4

1 1
1 3

2
e

(

e

2
a )

e



 


   
   

 
   



      

4

3

4 4

1 1
2 4

2 2
e

a ( )

e e




 


   
   
 

    



     ,         
4 4

4

4

1 1
2 4

2
e

(

e

2
a )

e

 



   

   
 

   



                      

For (1,2)-solution, fuzzy solution is obtained as 

t t

1 2 3 4y (t) b ( )e ( )e b ( )sin(t) b ( )cos(b t)


        

t t

1 2 3 4b by (t) b ( )e ( )e ( )sin(t) ( )cos(t)b


        

where 

                 

4

1

4 4

73e
b ( )

2(e e )




 






   ,

4

2

4 4

73e
b ( )

2(e e )



 







  ,  3

1
1b ( ) 2

2

 
   

 
  , 4

1
b ( )

2


                                   

For (2,2)-solution, fuzzy solution is obtained as 

t t

1

t t

3

2

4

y (t) c ( )e e

y (t) c (

c ( )

)e c ( )e









 

 

 

 
      

where 

4

1

4 4

1 1
1 4

2 2
e

c ( )

e e




 


   
   
 
    



   ,       

4

2

4 4

1 1
1 4

2
e

(

e

2
c )

e



 


   
   

 
   



    

4

3

4 4

1 1
2 3

2 2
e

c ( )

e e




 


   
   
 

    



   ,      

4

4

4 4

1 1
2 3

2
e

(

e

2
c )

e



 


   
   

 
   



    

For (2,1)-solution, fuzzy solution is obtained as 

 
t t

1 2 3 4y (t) d ( )e ( )e d ( )sin(t) d ( )cos(d t)


              

  
t t

1 2 3 4d dy (t) d ( )e ( )e ( )sin(t) ( )cos(t)d


       

where  

               

4

1

4 4

73e
d ( )

2(e e )




 






  ,

4

2

4 4

73e
d ( )

2(e e )



 







  ,  3

1
d ( ) 1 2

2

 
    

 
 , 4

1
d ( )

2
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Using Proposition 3.1, (1,1)-solution is a valid fuzzy level set for all t 0,
4

 
 
 

, (1,2)-solution is not a valid fuzzy level set 

when  1t tan 1 2  , (2,2)-solution is not a valid fuzzy level set since 4e 1




 , (2,1)-solution is not a valid fuzzy 

level set when  1t tan 1 2  .  

All solutions are symmetric triangle fuzzy function of t. 

2) The case of negative constant coefficients 

Consider the fuzzy boundary value problem 

(4)     
'' 'y (t) y(t),  y(0)=A , y ( ) B       

where 0   and boundary conditions A and B are symmetric triangular numbers. The  -level set of A and B are 

a
[A

a
aa

a

2
]

a
,

2


     
       

  


  

and  
b

[B
b

bb
b

2
]

b
,

2


     
       

  


  

, respectively. 

Here, (i,j)-solution i,j=1,2 means that y is (i)-differentiable in and 
'y  is (j)-differentiable.                   

Theorem 3.2 

 Let  y(t) [y (t), y (t)]



   be a solution of (4), where y (t)


 and y (t)

  are the lower and upper solutions.  

For (1,1)-solution, the lower and upper solutions are 

t t

1 2 3 4y (t) a ( )e a ( )e a ( )sin( t) a ( )cos( t)  


          

t t

1 2 3 4y (t) a ( )e a ( )e a ( )sin( t) a ( )cos( t)  


         

where  

 
   
 

1

e a b b1
a ( ) a

2 e e

a
a



  

               
 









 
  

   
 

2

e a b b1
a ( )

2 e e

a

  

          










 
 

     
 

3

b b a sin
a ( )

2 c

a

os

   
 

 




 

4

a
a ( )

2

a
 


  

For (1,2)-solution, the lower and upper solutions are 

1 2y (t) b ( )cos b( t) ( )sin( t)


      

3 4y (t) b ( )cos b( t) ( )sin( t)


      

where 
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                  1

a
b ( )

a
a

2

 
 


 


,     

 

 
2

b b a a
b

2 2
a sin

b ( )
cos

     
       

  

 
      

 







  




 

                     3

a
b ( )

a
a

2

 
 


 


,     

 

 
4

b b a a
b a

2 2
sin

b ( )
cos

    
       
  

   
       

    









 

For (2,2)-solution, the lower and upper solutions are 

t t

1 2 3 4y (t) c ( )e c ( )e ( )sin( t) ( )cos( t)c c  


          

t t

1 2 3 4c cy (t) c ( )e ( )e ( )sin( t c) ( )cos( t)  


          

where 

 
   
 

1

e a b b1
c ( ) a

2 e e

a
a



  

              














 
 

   
 

2

e a b b1
c ( )

2 e e

a

  

 



          
 



 
 

     
 

3

b b a sin
c ( )

2 c

a

os

   
 

 




  

4

a
c ( )

2

a
 


 

For (2,1)-solution, the lower and upper solutions are 

1 2y (t) d ( )cos d( t) ( )sin( t)


      

3 4y (t) d ( )cos d( t) ( )sin( t)


      

where     

1

a
d ( )

a
a

2

 
 


 


  ,

 

 
2

b b a a
b

2 2
a sin

d ( )
cos

     
       

  

 
      

 







  




   

3

a
d ( )

a
a

2

 
 


 


  ,  

 

 
4

b b a a
b a

2 2
sin

d ( )
cos

    
       
  

   
       

    









  

Proof 

For (1,1)-solution, using Theorem 2.1, Theorem 2.2 and x (t), x (t) x (t), x (t) , 0  
            , the 

fuzzy boundary value problem (4) is transformed into a linear system of real-valued differential equations  
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''

''

y (t) y (t)

y (t) y (t)



 

  



 

     

with 

'a a b b
,   y (0) a y ( ) b 

2 2 

    
      
 

 
 

  

'a a b b
,    y by (0) a (

2
)

2
 

    
      
 

 
 

       

 Hence the solutions can be obtained  

t t

1 2 3 4y (t) a ( )e a ( )e a ( )sin( t) a ( )cos( t)  


          

t t

1 2 3 4y (t) a ( )e a ( )e a ( )sin( t) a ( )cos( t)  


         

Using boundary conditions, coefficients 1a ( ) , 2a ( ) , 3a ( )  and 4a ( )  are solved as   

 
   
 

1

e a b b1
a ( ) a

2 e e

a
a



  

               
 









 
  

   
 

2

e a b b1
a ( )

2 e e

a

  

          










 
 

     
 

3

b b a sin
a ( )

2 c

a

os

   
 

 




 

4

a
a ( )

2

a
 


 

For (1,2)-solution, using Theorem 2.1, Theorem 2.2 and x (t), x (t) x (t), x (t) , 0  
             the lower 

solution and upper solution of (4) , satisfy the following equations  

'' '

'' '

a a b b
,  

2 2

a a b b
,

y (t) y (t),  y (0) a y ( ) b

y (t) y (t),  y (0) a ( y b
2 2

)

   

   

    
      



  

  

    
   



  
   






   






           

respectively. Hence the solutions can be obtained  

1 2y (t) b ( )cos b( t) ( )sin( t)


      

3 4y (t) b ( )cos b( t) ( )sin( t)


      

Using boundary conditions, coefficients 1b ( ) , 2b ( ) , 3b ( )  and 4b ( )  are solved as 



ISSN 2347-1921                                                           

1627 | P a g e                                                            M a y  2 0 ,  2 0 1 4  

1

a
b ( )

a
a

2

 
 


 


,     

 

 
2

b b a a
b

2 2
a sin

b ( )
cos

     
       

  

 
      

 







  




 

3

a
b ( )

a
a

2

 
 


 


,     

 

 
4

b b a a
b a

2 2
sin

b ( )
cos

    
       
  

   
       

    









 

Similarly, for (2,2)-solution and (2,1)-solution  the following sistems are solved  

'' '

'' '

a a b b
,  y b

2 2

a a b b
,

y (t) y (t),  y (0) a ( )

y (t) y (t),  y (0) a  y )
2

b
2

(

  

  

    
      



  

  

    
   



  
   






   






 

'' '

'' '

a a b b
,  y b

2 2

a a b b
,

y (t) y (t),  y (0) a ( )

y (t) y (t),  y  y(0) a ( b
2

)
2

   

   

    
      
   

    
      
  


   








  






   

respectively.   

Proposition 3.3 

 i) For (1,1)-solution, the solution  y(t) [y (t), y (t)]



  of (4) is a valid fuzzy level set for all  t 0,   if 

1a ( ) 0  . 

ii) For (1,2)-solution, the solution  y(t) [y (t), y (t)]



  of (4) is no longer a valid fuzzy level set as 

  
1

1 a a1
t tan

c



  
 
 
 

, 

where  

       
 

a a 1 sin

s

b 1
c

co

b     

 

 





. 

iii) For (2,2)-solution, the solution  y(t) [y (t), y (t)]



  of (4) is a valid fuzzy level set for all  t 0,   if 

1c ( ) 0  . 

iv) For (2,1)-solution,  

a) if      a a sin b b     , the solution  y(t) [y (t), y (t)]



  of (4) is no longer a valid fuzzy 

level set as 
  

1
1 a a1

t tan
c



  
 
 
 

. 
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b) if      a a sin b b     , the solution  y(t) [y (t), y (t)]



  of (4) is no longer a valid fuzzy 

level set as 
  

1
1 a a1

t tan
c



  
 
 
 

. 

where  

       
 

b b 1 a a 1 sin

co
c

s

    

 

 





. 

Proof 

 i) For (1,1)-solution, the difference of x and x is  

t

1

t

2y (t) y (t) 2(a ( ()e )a )e



 


    

                        1

t

2

2 t2 a ( )( ))ee a (     . 

Let 1 2

2 ta ( )ef (t) a ( )   . Then 
1

f (0) (a a) 0
2

 
   

 
 and 

2 t

1

'f 2 a (( ) 0t )e     as 

1a ( ) 0  . Therefore, y (t) y (t) 0
 

   as 1a ( ) 0  . 

ii) For (1,2)-solution,  

      y (t) y (t) a a 1 cos t tin ,cs
 

       

where 

       
 

a a 1 sin

s

b 1
c

co

b     

 

 





 and 

 12n

2

 



 , for all integer n. 

 

      y (t) y (t) 0 a a 1 cos t si tc n
 

         . 

As 0 t
2


     , we have 

   sin t

c

a a 1

cos t

 
  

  
 

 
; that is 

  
1

1 a a1
tan t

c



  
  
 
 

. This 

implies that the solution  y(t) [y (t), y (t)]



  of (4) is not a valid fuzzy level set as 

  
1

1 a a1
t tan

c



  
 
 
 

. 

For  iii) (2,2)-solution and iv) (2,1)-solution, proof is similar. 

Proposition 3.4 

 For any t [0, ]  , the solution  y(t) [y (t), y (t)]



  of (4) is a symmetric triangle fuzzy number. 

Proof 

 For (1,1)-solution, we have 
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         3 4 11
y t a sin t a cos t y (t)       

and  

t t

1 2 11
y (t) y (t) a ( )e a ( )e y (t) y (t)  


      . 

For (1,2)-solution, we have 

  
 

 
  11

b b a a

2 2
sin

a a
y (t) cos t sin t y (t)

2 cos

   
    

         
 

 



 

 


  

 and  

   
     

 
  11

1 1 sin
a a

y (t) y (t) 1 cos t sin t y (t) y (t).
2 co

a

s

b b a

2 2


 


   
      

            
  





 

For (2,2)-solution and (2,1)-solution, proof is similar. 

Hence solutions are symmetric fuzzy function of t.                        

Example 3.2 

 Consider the fuzzy boundary value problem  

'1 1 1

y ''(t) y(t),  t 0,
4

y
1

,2 ,4-
2 2 2 2

(0)= 1 ,  y ( )=[3 ]   

  
   

  


    


 

 

For (1,1)-solution, the lower and upper solutions are 

4 4
t t

4 4 4 4

7 21 e 1 1 e 1 3
y (t) 1 e e sin t cos t

3

2
e

2 2 2
e e e

 



    





    
                          

 



  





 

4 4
t t

4 4 4 4

7 21 e 1 1 e 1 3
y (t) 1 e e sin t cos t

3

2
e

2 2 2
e e e

 



   
 






    
                         

 



  





 

For (1,2)-solution, the lower and upper solutions are 

 y (t) 1 cos t sin
1 1 2

1 2
2 2

t3


  
        

 
  

 
 

 

 y (t) cos t sin
1 1 2

2 2 4 2
2

t
2



  
        

 
  

 
 

 

For (2,2)-solution, the lower and upper solutions are 
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4 4
t t

4 4 4 4

7 2 3

2
e

1 e 1 1 e 1 3
y (t) 1 e e sin t cos t

2 2 2
e e e

 



   




  


    
                      

 
 

     

 

 

4 4
t t

4 4 4 4

7 2 3

2
e

1 e 1 1 e 1 3
y (t) 1 e e sin t cos t

2
e

2 2
e e

 



  






  


    
                     

 
 

     

 

For (2,1)-solution, the lower and upper solutions are 

 y (t) 1 cos t sin
1 1 2

1 2
2 2

t4


  
        

 
  

 
 

 

 y (t) cos t sin
1 1 2

2 2 3 2
2

t
2



  
        

 
  

 
 

 

Using Proposition 3.3, (1,1)-solution is a valid fuzzy level set since 
4

4

4

1 e

e

1
1 0

2
e








  
            

  

, (1,2)-solution is not 

a valid fuzzy level set when  1 1 2t tan  , (2,2)-solution is not a valid fuzzy level set since 

4

4

4

1 e

e

1
1 0

2
e








  
           

  





, (2,1)-solution is not a valid fuzzy level set when  1 1 2t tan  .   

All solutions are symmetric triangle fuzzy function of t. 
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