Solvable subgroups of maximal order of some finite simple groups of Lie type
 Abdullah A. Abduh and Falih. A.M Aldosray
 Department of Mathematics - Umm Al-Qura University Makkah P.O.Box 56199,Saudi Arabia aaabduh@uqu.edu.sa fadosary@uqu.edu.sa

Abstract

The aim of this work is using the information in the ATLAS of Finite Groups and the GAP computational system, to determine the solvable subgroups of maximal orders in some finite non-abelian simple group of Lie type which have been appeared in the ATLAS. The ($\mathrm{p}, \mathrm{q}, \mathrm{r}$)-generators, the structures and permutation representations of these subgroups have been found.

Mathematics Subject Classification: 20D05, 20F05, 20C33, 20C15.
Keywords: Simple groups; Presentations; Representations; Characters.

Council for Innovative Research

Peer Review Research Publishing System
Journal: Journal of Advances in Mathematics
Vol 8, No 2
editor@cirjam.org
www.cirworld.org, www.cirworld.com

Introduction:

The classification of finite simple groups was declared accomplished in 1955 through 1983 by Daniel Gorenstein [8]. After announcement on the classification of finite simple groups investigation of known simple groups becomes one of the most important problem in finite group theory. In particular, subgroups structure of known finite simple group is of interest. The most important subgroups are maximal subgroups, maximal soluble subgroups, maximal nilpotent subgroups, and maximal abelian subgroups. In 2000 Vdovin, E. P. [12] devoted his work to abelian and nilpotent subgroups of maximal order of finite simple groups. In 1986 , Mann, A. [10], found all solvable subgroups of maximal order in symmetric and alternating groups, and between 2006 to 2012 , Breuer, T., [2] , determined the orders of solvable subgroups of maximal orders in sporadic simple groups and their automorphism groups, using the information in the ATLAS of Finite Groups [14] and the GAP system, he also determined the structures and the conjugacy classes of these solvable subgroups in the big group. In 2013 [Master project], Abduh and Alghawazi have determined, by using the information in the ATLAS of Finite Groups [14] and the GAP computational system, the solvable subgroups of maximal orders in the finite non-abelian simple group $\mathrm{L}_{2}(\mathrm{p})=\mathrm{PSL}_{2}(\mathrm{p})$, the projective special linear groups of dimension 2×2 on $\mathrm{GF}(\mathrm{p})$, and in the finite non-abelian simple groups of orders less than 10^{6}
Here we are using the information in the ATLAS of Finite Groups and the GAP computational system, to determine the solvable subgroups of maximal orders S in the twisted simple groups of Lie type which have been appeared in the ATLAS such as Suzuki groups Suz(8) and Suz(32), the Ree group Ree(27), and exceptional groups ${ }^{2} \mathrm{~F}_{4}\left(2\right.$)' and ${ }^{3} \mathrm{D}_{4}(2)$ The ($\mathrm{p}, \mathrm{q}, \mathrm{r}$)-generators, the structures and permutation representations of S have been found.
We use the axiom that any solvable subgroup of large order S of G is either one of the maximal subgroups of G or it is contained in one of them, so we deal with the maximal subgroups of G [2] and we get the following results

We summarized all results of our own GAP program in the following tables which list information about solvable subgroups of maximal order S in the twisted groups G. The first column in each table gives the names of twisted groups G, their orders and their presentations on their standard generators, their ($\mathrm{p}, \mathrm{q}, \mathrm{r}$)-generators from their character tables their maximal subgroups up to isomorphisms. The second column gives the structure of the solvable subgroup of large order S in G, its ($\mathbf{p}, \mathbf{q}, \mathbf{r}$)-generators, its permutation representations in G also it gives the fusion maps of the conjugacy classes of S into the conjugacy classes of G. The solvable subgroups of large order in the maximal subgroups in G and in their maximals are also computed.

The GAP Program :

Define the group and compute its maximal subgroups	Compute the set of generators and the structure of S		Compute fusions maps and permutation representations of S in G
Gap> g:=Group(a,b); (where a and b obtained from the first column of the groups tables below) 1-Cases where the Character Table of G is available in GAP Gap> c := " The name of G "; Gap> m=CharacterTable(c); max:=Maxes(m); for i in [1 .. Length(max)] do $\mathrm{k}:=$ CharacterTable(max[i]); 11:=IsSolvable (k); if $11=$ true then Display(max[i]); Display(Size(k)); Display("-------------"); fi;od; for i in [1 .. Length(max)] do $\mathrm{k}:=$ CharacterTable(max[i]); has:=HasMaxes(k); if has=true then Display(max[i]); Display(Maxes(k)); fi;od; 1-Cases where the Character Table of G is not available in GAP Gap> max:=MaximalSubgroupClassReps(g); sol:=List(max,IsSolvable); List(max,Size);	```Gap> gen := [];; \(1-\mathrm{G}=\mathrm{Suz}(8)\) and \(\mathrm{S} \cong \mathbf{2}^{3+3}: 7\) gen[1]:=a;;gen[2]:=b;; gen[3]:= gen[1]*gen[2];; gen[4]:= gen[3]*gen[2];; gen[5]:= gen[3]*gen[4];; gen[3]:= gen[4]*gen[5];; gen[5]:= gen[3]*gen[3];; gen[3]:= gen[5]^-1;; gen[6]:= gen[3]*gen[4];; gen[1]:= gen[6]*gen[5];; aa:=gen[1]; bb:=gen[2]; 2-G=Suz(32) and \(S \cong 2^{5+5}: 31\) gen[1]:=a;;gen[2]:=b;; gen[3]:= gen[1]*gen[2];; gen[4]:= gen[3]*gen[2];; gen[5]:= gen[3]*gen[4];; gen[3]:= gen[5]*gen[2];; gen[7] := gen[4]^18;; \(\operatorname{gen}[4]:=\operatorname{gen}[7]^{\wedge}-1\);; gen[6]:= gen[4]*gen[2];; gen[1]:=gen[6] *gen[7];; gen[6] := gen[5]^14;; \(\operatorname{gen}[5]:=\operatorname{gen}[6]^{\wedge}-1 ;\); gen[4]:= gen[5]*gen[3];; gen[2]:=gen[4]*gen[6];; aa:=get[1];bb:= get[2]; 3-G=Ree(27) and \(S \cong 3^{3+3+3}: 26\) gen[1]:=a;;gen[2]:= b;; gen[3]:=gen[1]* gen[2];; gen[4]:=gen[3]*gen[2];; gen[5]:=gen[3]*gen[4];; gen[6]:=gen[3]*gen[5];; gen[7]:=gen[6]*gen[3];;```	gen[7] := gen[6]^-1;; $\operatorname{gen}[8]:=\operatorname{gen}[7]]^{*}$ gen $[1] ;$; $\operatorname{gen}[1]:=\operatorname{gen}[8] * \operatorname{gen}[6] ; ;$ gen $[8]:=$ gen $[9]^{\wedge} 23$;; $\operatorname{gen}[7]:=\operatorname{gen}[8]^{\wedge}-1 ;$; $\operatorname{gen}[4]:=\operatorname{gen}[7] * \operatorname{gen}[5] ;$; $\operatorname{gen}[2]:=\operatorname{gen}[4] *$ gen $[8] ;$; aa:=gen[1];bb:=gen[2]; $4-G=F_{4}(2)^{\prime}$ and $S \approx 2 .\left[2^{8}\right] .5 .4$ gen[1]:=a; gen[2]:=b; gen $[3]:=\operatorname{gen}[1]$ * gen[2];; gen $[4]:=$ gen $[2]$ * gen[3];; gen[5] := gen[4] * gen $[1] ;$; gen $[6]:=$ gen $[5]^{\wedge-1 ; ;}$ $\operatorname{gen}[5]:=\operatorname{gen}[1] * \operatorname{gen}[4] ;$; $\operatorname{gen}[4]:=\operatorname{gen}[6] * \operatorname{gen}[5] ; ;$ $\operatorname{gen}[1]:=\operatorname{gen}[4] * \operatorname{gen}[4] ;$; $\underset{\operatorname{gen}[5]:=\operatorname{gen}[3] * \operatorname{gen}[2] ; ;}{ }$ $\operatorname{gen}[5]:=\operatorname{gen}[3] * \operatorname{gen}[4] ; ;$ $\operatorname{gen}[6]:=\operatorname{gen}[3] * \operatorname{gen}[5] ; ;$ gen $[2]:=$ gen $[6] \wedge 3 ;$ gen[5] := gen[4]^ gen $[6]:=\operatorname{gen}[5]^{\wedge}-1 ;$; $\operatorname{gen}[7]:=\operatorname{gen}[6] * \operatorname{gen}[2] ;$; $\operatorname{gen}[2]:=\operatorname{gen}[7] * \operatorname{gen}[5] ;$; gen $[4]:=$ gen $[3] \wedge 3 ;$; gen $[5]:=$ gen $[4]^{\wedge}-1 ;$; $\operatorname{gen}[6]:=\operatorname{gen}[5] * \operatorname{gen}[1] ; ;$ gen $[1]:=$ gen $[6] * \operatorname{gen}[4] ; ;$ aa $:=\operatorname{gen}[1] ; ;$ bb $:=\operatorname{gen}[2] ;$; $5-\mathrm{G}={ }^{9} \mathrm{D}_{4}(2)$ and $\mathrm{S}=\left[2[1]:\left(7 \times \mathrm{S}_{3}\right)\right.$ gen: $=[] ;$ gen $[1]:=\mathrm{a} ; \operatorname{gen}[2]:=\mathrm{b}$; gen $[3]:=$ gen $[1] * \operatorname{gen}[2] ; ;$ gen $[4]:=$ gen $[3] * \operatorname{gen}[2] ; ;$ gen $[5]:=$ gen $[3] *$ gen $[4] ;$; gen[6] := gen[5] * gen[2] ; ; $\operatorname{gen}[7]:=\operatorname{gen}[6] * \operatorname{gen}[2] ; ;$ $\operatorname{gen}[2]:=\operatorname{gen}[7] * \operatorname{gen}[7] ; ;$ aa $:=$ gen $[1] ; ;$ bb $:=$ gen $[2] ;$; Order(aa); $\operatorname{Order}(\mathrm{bb}) ; \operatorname{Order}(\mathrm{aa} * \mathrm{bb})$; $\mathrm{k}:=\operatorname{Group}(\mathrm{aa}, \mathrm{bb})$; x1:=Size(Centralizer(k,aa));	```a:=AllCharacterTableNames(IsSolvable , true); os:=The order of S ; \(\mathrm{s}:=\) "The name of the Group G "; for i in [1 .. Number(a)] do \(\mathrm{c}:=\) CharacterTable(a[i]); \(\mathrm{m}:=\) CharacterTable(s); cc:=m; if Size (c)=os then fus:=PossibleClassFusions(c,m);; fus \(1:=\) RepresentativesFusions(c,fus,m); get:=fus1[1]; Display(a[i]); cname:=ClassNames(c);; ccname:=ClassNames(cc);; ncc:=NrConjugacyClasses(cc);Display(" "); Print("The Fusion map of S into G is : "); Display(" ");Print(get);Display(" "); Display("Class in S"); for aa in [1 .. Number(cname)] do Print(cname[aa]); Print(" ");od; Display(" "); Display("Fusion in G"); for rw in [1 .. Number(get)] do tw:=get[rw];; qw:=ccname[tw];; Print(qw);Print(" "); od; \(\mathrm{p}:=\operatorname{PermChars}(\mathrm{m}, \operatorname{Size}(\mathrm{m}) / \operatorname{Size}(\mathrm{c})\)); ; perm:=PermCharInfo(m,p).ATLAS; Display(perm); Display(" "); fi; od; Display("Some properties of S: "); z1:=IsSimple(c);;```

The results :

The twisted simple groups of Lie type [atlas]

The Solvable subgroups of $\mathbf{G}=\operatorname{Suz}(\mathbf{8})$

 x3:=Size(Centralizer(k,aa*bb)); StructureDescription(k); z3:=IsNilpotent(c); z4:=IsSupersolvable(c);;
Suzuki group Suz(8)

It is a subgroup of $\operatorname{SL}(4 ; 8)$ of Order $=29120=2^{6} \cdot 5 \cdot 7.13$. and it is generated by
$\left\langle a, b \mid a^{2}=b^{4}=(a b)^{5}=\left(a b^{2}\right)^{7}=[a, b]^{13}=\left(a b a b^{-1} a b^{2}\right)^{7}=1\right\rangle$ $\mathrm{a}=(1,2)(3,4)(5,7)(6,9)(8,12)$
$(10,13)(11,15)(14,19)(16,21)$
$(17,23)(18,25)(20,28)(22,31)$
$(24,33)(26,35)(27,32)(29,37)$
$(30,39)(34,43)(36,46)(38,48)$
$(41,51)(42,44)(45,55)(47,50)$
$(49,58)(52,60)(53,61)(54,59)$
$(56,62)(57,63)(64,65)$;
$\mathrm{b}=(1,3,5,8)(4,6,10,14)(7,11,16,22)$
1- The solvable subgroup of large order S and its repesentations in $\mathbf{G}=\operatorname{Suz}(8)$: $\mathrm{S} \cong 2^{3+3}: 7=<$ (abbababb) ${ }^{-2}$ abb(abbababb), b.> of order 448
From the Character table of S, we found that S is $(7 A, 4 A, 7 B)$-group
The fusion map of S into $\operatorname{Suz}(\mathbf{8})$ is :

Classes in S

1a 7a 7b 7c 7d 7e 7f 2a 4a 4b
Fusions in $\operatorname{Suz}(8)$
1a 7a 7b 7a 7b 7c 7c 2a 4a 4b
The permutation character induced from S to $\operatorname{Suz}(8)$ is : $1 a+64 a$

Some properties of S :

S is SIMPLE : false
S is ABELIAN : false
S is NILPOTENT : false
S is SUPERSOLVABLE: false
2- The Lattice of Solvable subgroups of large orders in the maximal subgroups of \mathbf{G} $=\operatorname{Suz}(8)$:

$\mathbf{H} \in \mathbf{G}$	The Maximal Subgroups			
\mathbf{G}	$\mathbf{2}^{3+3}: 7$	$\mathbf{D}_{26} .2$	$\mathbf{D}_{10} .2$	\mathbf{D}_{14}
$\mathbf{2}^{3+3}: 7$	$\mathbf{2}^{3+3}$	$\mathbf{2}^{3}: 7$		
$\mathbf{D}_{26} .2$	\mathbf{D}_{26}	\mathbf{C}_{4}		
$\mathbf{D}_{10} .2$	\mathbf{D}_{10}	\mathbf{C}_{4}		
\mathbf{D}_{14}	\mathbf{C}_{7}	\mathbf{C}_{2}		

maximal subgroup M of $\operatorname{Suz}(8)$ is isomorphic to one of the following
1- $\quad \mathbf{2}^{3+3}: 7$ of order 448
2- 13:4 of order 52
3- $D_{10} .2$ of order 20
4- D_{14}, of order 14
By applying the GAP tester, we found that all maximal subgroups of $\operatorname{Suz}(\mathbf{8})$

are solvables		

The twisted group ${ }^{2} \mathbf{F}_{4}(\mathbf{2}){ }^{\prime}$
Of Order $=17971200=2^{11} \cdot 3^{3} \cdot 5^{2} .13$.. and it is generated by $\langle a, b| a^{2}=b^{3}=$ $\left.(a b)^{13}=[a, b]^{5}=[a, b a b]^{4}=\left((a b)^{4} a b^{-1}\right)^{6}=1\right)$

The standard generators of ${ }^{2} \mathbf{F}_{\mathbf{4}}(\mathbf{2})$ ' can be found in the section of the permutation representations of ${ }^{2} \mathbf{F}_{\mathbf{4}}(\mathbf{2})$ 'on 1600 points appears in the ATLAS(as b11 and b21). Let $\mathrm{a}=\mathrm{b} 11$ and $\mathrm{b}:=\mathrm{b} 21$

From the character table of ${ }^{2} F_{4}(2)$ ' , we found that ${ }^{2} F_{4}(2)$ ' is $(2 A, 3 A, 13 A)$ group

A maximal subgroup M of ${ }^{2} \mathbf{F}_{4}(2)$ ' is isomorphic to one of the following:
1- $\quad L_{3}(3): 2$ of order $5616=2^{4} \cdot 3^{3} \cdot 13$
2- $L_{3}(3): 2$ of order $5616=2^{4} .3^{3} .13$
3- $2 .\left[2^{8}\right] .5 \cdot 4$ of order $=10240=2^{11} .5$
4- $\mathrm{L}_{2}(25)$ of order $7800=2^{3} \cdot 3 \cdot 5^{2} \cdot 13$
5- $\quad 2^{2} \cdot\left[2^{8}\right] . S_{3}$ of order $=6144=2^{11} .3$.
6- $\quad \mathrm{A}_{6} \cdot 2^{2}$ of order $=2880=2^{6} \cdot 3^{2} .5$
7- $\quad \mathrm{A}_{6} \cdot 2^{2}$ of order $=2880=2^{6} \cdot 3^{2} .5$
8- $\quad 5^{2}: 4 \mathrm{~A}_{4}$ order $=1200=2^{4} \cdot 3 \cdot 5^{2}$
By applying the GAP tester, we found that all maximal subgroups of ${ }^{2} \mathrm{~F}_{4}(2)^{\prime}$, except the first and the second ones, are solvables

1- The solvable subgroup of large order \mathbf{S} and its repesentations in $\mathbf{G}={ }^{2} \mathrm{~F}_{4}(2)$ ':
$\mathrm{S} \cong 2 .\left[2^{8}\right] .5 \cdot 4=\left\langle\left((\mathrm{baba})^{-1}(\mathrm{abab})\right)^{2},(\mathrm{ab})^{-4}(\mathrm{~b})(\mathrm{ab})^{-4}.\right\rangle$
From the Character table of S, we found that S is $(2 A, 4 A, 16 A)$-group .
The fusion map of S into ${ }^{2} \mathrm{~F}_{4}(2)$ ' is :
Class in S
 10a 16a 16b 16c 16d
Fusion in G
 10a 16a 16b 16d 16c
The permutation character induced from S to ${ }^{2} \mathrm{~F}_{4}(2)$ ' is:
$1 a+78 a+351 a+650 a+675 a$
Some properties of S :
S is SIMPLE : false
S is ABELIAN : false
S is NILPOTENT : false
S is SUPERSOLVABLE : false
2- The Lattice of Solvable subgroups of large orders in the maximal subgroups of \mathbf{G}

$\mathrm{H} \leq \mathrm{G}$	The Maximal Subgroups					
G	$\mathrm{L}_{3}(3): 2$	$5^{2}: 4 \mathrm{~A}_{4}$	2. $\left[2^{8}\right] .5 .4$	$\mathrm{L}_{2}(25)$	$2^{2} .\left[2^{8}\right] . S_{3}$	$\mathrm{A}_{6} .2^{2}$
$\mathrm{L}_{3}(3): 2$	$\mathrm{L}_{3}(3)$	$3^{1+2}: \mathrm{D}_{8}$	2. $\mathrm{S}_{4} .2$	13:6	$\mathrm{S}_{4} \times 2$	
$5^{2}: 4 \mathrm{~A}_{4}$	$5^{2}: 2.2: 2: 2$	$5^{2}: 2 \mathrm{~A}_{4}$	$5^{2}: 3: 2.2$	$\mathrm{Q}_{8} .6$		
2. $\left[2^{8}\right] .5 .4$	$\begin{aligned} & 2^{2} .4: 2: 2: 2.2: \\ & 2: 5: 2 \end{aligned}$	$\begin{aligned} & 8: 2 \times 2: 2.2 \\ & : 2.2: 2: 2 \end{aligned}$	$2^{2}: 5: 2.2 \times 2$			
$\mathrm{L}_{2}(25)$	$5^{2}: 3: 2.2$	$\mathrm{A}_{5} .2$	D_{26}	D_{24}		
$2^{2} .\left[2^{8}\right] . S_{3}$	$\begin{aligned} & \mathrm{D}_{8} \mathrm{x} .2^{2}: 2.2: 2: \\ & 2.2: 3 \end{aligned}$	$\begin{aligned} & \hline 8: 2.2: 2.2 \\ & 2.2: 2: 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D}_{8} \times .4: 2.2 \\ & : 2: 2 . \mathrm{S}_{3} \end{aligned}$			
$\mathrm{A}_{6} .{ }^{2}$	3: $\mathrm{S}_{3} .2 .2: 2$	$\mathrm{A}_{6} .2$	$\mathrm{D}_{10} .2 \times 2$	M_{10}	$\mathrm{Q}_{8} .2^{2}$	

By applying the GAP tester, we found that the shadowed ones are the solvable subgroups of the large orders

2-The Lattice of Solvable subgroups of large orders in the maximal subgroups of $\mathbf{G}={ }^{2} \mathrm{~F}_{4}(2)$ ' :									
$\mathrm{H} \leq \mathrm{G}$	The Maximal Subgroups								
G	$2^{1+8}: \underline{L}_{\underline{2}} \underline{(8)}$	$\mathrm{S}_{3} \times \underline{\mathrm{L}}_{2}(8)$	[2 ${ }^{\text {I1 }}$]: $\left(7 \times \mathrm{S}_{3}\right)$	$\underline{U}_{3}(3): 2$	$\left(7 \times \underline{L}_{2}(7)\right.$)	$7^{2}: 2 \mathrm{~A}_{4}$	$3^{2}: 2 \mathrm{~A}_{4}$	$3^{1+2} .2 \mathrm{~S}_{4}$	13:4
$2^{1+8}: \underline{\mathrm{L}_{2}}(\underline{8)}$	$2^{1+8}: \mathrm{D}_{14}$	$2^{1+8}: \mathrm{D}_{18}$	$2^{1+8}:(2 \times 2 \times 2): 7$						
$\mathrm{S}_{3} \times \underline{\mathrm{L}}_{2}(8)$	$\mathrm{S}_{3} \times \mathrm{D}_{14}$	$\mathrm{S}_{3} \times \mathrm{D}_{18}$	$\mathrm{S}_{3} \times(2 \times 2 \times 2: 7$						
$\left[2^{11}\right]:\left(7 \times S_{3}\right)$	[2^{11}]: 7×2)	[2^{11}]:(7x ${ }^{\text {(}}$)	[2^{11}]: S_{3}						
$\underline{U}_{3}(3): 2$	(SL(2,3:4:2	((4 x4):3):2	((3×3 3)3):8):2	PSL(3,2)	,				
$\left(7 \times \underline{L}_{2}(7)\right.$)	$7 \times(7: 3)$	$7 \times{ }_{4}$	$7 \times \mathrm{S}_{4}$						
$7^{2}: 2 \mathrm{~A}_{4}$	$7^{2}: 2 .(2 \times 2)$	$7^{2}:(2.3)$,					
$3^{2}: 2 \mathrm{~A}_{4}$	$3^{2}: 2 .(2 \times 2)$	$3^{2}:(2.3)$		-					
$3^{1+2} \cdot 2 \mathrm{~S}_{4}$	$3^{1+2} .2 \mathrm{~A}_{4}$	$3^{1+2} .2 \mathrm{~S}_{3}$	$3^{1+2} .2 \mathrm{Q}_{8}$						
13:4	13:2	13	4			\square			
By applying the	tester, we	the shadowed	e solvable subg	ge orde					

Acknowledgements: The authors would like to thank Institute of Scientific Research and Revival of Islamic Heritage at Umm Al-Qura University (43305029) for the financial support)

References

[1] J. Bray, D. Hot and M. Colva "The maximal subgroups of the low-dimensional finite classical groups" .London mathematical society ,407 . , 2013
[2] Breuer,T., " Solvable Subgroups of Maximal Order in Sporadic Simple Groups" , Lehrstuhl Dfur Mathematik RWTH, 52056 Aachen, Germany ,version(1) in 2006 and version(2) in 2012.
[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A.Wilson. "An ATLAS of Finite Groups". Oxford University Press, 1985.
[4] Vahid Dabbaghian-Abdoly. "An algorithm to construct representations of finite groups".PhD thesis, Carleton University, 2003.
[5] John D. Dixon. "Constructing representations of finite groups". In Groups and computation(New Brunswick, NJ, 1991), volume 11 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 105-112. Amer. Math. Soc., Providence, RI, 1993.
[6] The GAP Group, GAP \{ Groups, Algorithms, and Programming, Version 4.4.10; 2007.(http://www.gapsystem.org)
[7] D. Gorenstein, "Finite Groups", Harper \& Row New York, Evanston and London, Harper's Series in Modern Mathematics, 1968.
[8] D Gorenstein., "The classification of finite simple groups". Vol. 1. Groups of non characteristic 2 type , 1983
[9] L. C. Grove, "Groups and Characters", John Wiley \& Sons, New York, 1997.
[10] Mann, A. , " Soluble subgroups of symmetric and alternating groups " , Israel Journal of Mathematics , Volume 55, Number 2, 1986.
[11] Simon Jon Nickerson , "An Atlas of Characteristic Zero Representations" , Ph.D Thesis , University of Birmingham, 2006
[12] Gordon James and Martin Liebeck. "Representations and characters of groups". Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1993.
[13] Vdovin, E. P. , " Abelian and Nilpotent Subgroups of Maximal Orders of Finite Simple Groups " , Ph.d thesis SB RAS, Institute of Mathematics,2000
[14] Robert Wilson, Peter Walsh, Jonathan Tripp, Ibrahim Suleiman, Stephen Rogers, Richard Parker, Simon Norton, Simon Nickerson, Steve Linton, John Bray, and Rachel Abbott. "Atlas of Finite Group Representations". Birmingham University, 2012

