The Real Matrices forms of the Bicomplex Numbers and Homothetic Exponential motions

Faik Babadağ
Kırıkkale University, Art \& Science Faculty (TURKEY) faik.babadag@kku.edu.tr

Abstract

In this paper, a bicomplex number is described in four- dimensional space and its a variety of algebraic properties is presented. In addition, Pauli-spin matrix elements corresponding to base the real matrices forms of the bicomplex numbers are obtained and its the algebraic properties are given. Like i and j in two different spaces are defined terms of Euler's formula. In the last section velocities become higher order by giving an exponential homothetic motion for the bicomplex numbers. And then, Due to the way in which the matter is presented, the paper gives some formula and facts about exponential homothetic motions which are not generally known.

KEYWORDS: Homothetic exponential motion; bicomplex number; Pauli-spin matrix; regular motion
2000 MATHEMATICS SUBJECT CLASSIFICATION: 15A90, 53A05, 53A17.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics
Vol 8, No. 1
editor@cirjam.com
www.cirworld.org, www.jam.cirworld.com

INTRODUCTION

In 1892, in search for special algebras, Corrado Segre (1860-1924) published a paper (see [1]) in which explained an algebra whose elements are called bicomplex numbers. In recent years many papers have been written on the extension of the formalism of quantum mechanics. These generalizations have been done mainly over quaternions or over the Cayley algebra (octonions), see for instance (see [2, 3, 4]). Theory of bicomplex numbers and bicomplex functions has found many applications, (see [5,6]). Bicomplex numbers is a commutative ring with unity which contains the field of complex numbers and the commutative ring of hyperbolic numbers. In 2006, Dominic Rochon and S. Tremblay, puplished a paper based on bicomplex quantum mechanics: II. The Hilbert Spaces (see [7, 8]). The bicomplex (hyperbolic) numbers are given in this paper from a number of different points of view of Hilberty Spaces for quantum mechanics.
In this study, the commutative algebra of bicomplex numbers variable is considered. This algebra of the 4 -th rank has the properties of division, conjugation, taking the root and factorization of Euler's formula as that of complex numbers [see [9]). Later, Given the algebraic properties of Pauli-Spin matrices. In [10,11] Hamilton motion has been defined and investigated in four dimensional Euclidean space E^{4}. In the final section, It is shown that this study can be done for bicomplex number, which is a homothetic exponential motion and this homothetic exponential motion satisfies all of the properties.

BICOMPLEX NUMBERS

Bicomplex numbers is defined (see $[1,8]$), as a complex number depending on four units $+1, i, j, k$ where

$$
\begin{gathered}
\mathrm{i}^{2}=\mathrm{j}^{2}=-1 \text { and } \mathrm{k}^{2}=1 \\
\mathrm{ij}=\mathrm{ji}=\mathrm{k} ; \mathrm{ik}=\mathrm{ki}=-\mathrm{j} ; \mathrm{jk}=\mathrm{kj}=-\mathrm{i} .
\end{gathered}
$$

Where k has the properties of a hyperbolic unit.Thus, a bicomplex number ξ is defined as

$$
\xi=\omega_{0}+\mathrm{i} \omega_{1}+\mathrm{j} \omega_{2}+\mathrm{k} \omega_{3}
$$

where $\omega_{0}, \omega_{1}, \omega_{2}, \omega_{3}$, are reel number components of ξ. Note that " $\mathbb{C}_{0} \cong I R "$. All points of the set of bicomplex numbers \mathbb{C}_{2} is given by

$$
\mathbb{C}_{2}=\left\{\xi: \xi=\omega_{0}+\mathrm{i} \omega_{1}+\mathrm{j} \omega_{2}+\mathrm{k} \omega_{3} ; \omega_{1}, \omega_{2}, \omega_{3}, \omega_{4} \in \mathbb{C}_{0}\right\}
$$

It is also convenient to write the set of bicomplex numbers as,

$$
\mathbb{C}_{2}=\left\{\mathrm{z}_{1}+\mathrm{j} \mathrm{z}_{2} \mid \mathrm{z}_{1}, \mathrm{z}_{2} \in \mathbb{C}_{1}\right\} .
$$

Furthermore, rule of multiplication and addition of two complex numbers have the following algebraic properties.

$$
\begin{aligned}
&\left(z_{1}+j \cdot z_{2}\right) \cdot\left(z_{3}+j \cdot z_{4}\right)=\left(z_{1}+z_{3}-z_{2} z_{4}\right)+j\left(z_{1}+z_{4}+z_{2} z_{3}\right) \\
&\left(z_{1}+j \cdot z_{2}\right)+\left(z_{3}+j \cdot z_{4}\right)=\left(z_{1}+z_{3}\right)+j\left(z_{2}+z_{4}\right) \\
& z_{1}+j \cdot z_{2}=z_{3}+j \cdot z_{4} \Leftrightarrow z_{1}=z_{3} \text { and } z_{2}=z_{4} .
\end{aligned}
$$

The system $\left\{\mathbb{C}_{2}, \oplus, R,+, ., \circ, \otimes\right\}$ is a commutative algebra. This algebra is called bicomplex numbers algebra and are denoted by \mathbb{C}_{2}, Note that one of the basis of this algebra is $\{1, \mathrm{i}, \mathrm{j}, \mathrm{k}\}$ and the dimension is 4 .
Definition (Multiplication Operator) We define,

$$
\begin{aligned}
& \otimes: \mathrm{T} \times \mathrm{T} \rightarrow \mathrm{~T} \\
& (\mathrm{u}, \mathrm{w}) \rightarrow \mathrm{u} \otimes \mathrm{w}=\mathrm{w} \otimes \mathrm{u}
\end{aligned}
$$

The multiplication rule is given as follows;

$$
\begin{aligned}
\mathrm{u} \otimes \mathrm{w} & =\mathrm{w} \otimes \mathrm{u} \\
& =\left(\mathrm{u}_{0} \mathrm{w}_{0}-\mathrm{u}_{1} \mathrm{w}_{1}-\mathrm{u}_{2} \mathrm{w}_{2}+\mathrm{u}_{3} \mathrm{w}_{3}\right)+\mathrm{i}\left(\mathrm{u}_{0} \mathrm{w}_{1}+\mathrm{u}_{1} \mathrm{w}_{0}-\mathrm{u}_{2} \mathrm{w}_{3}-\mathrm{u}_{3} \mathrm{w}_{2}\right) \\
& +\mathrm{j}\left(\mathrm{u}_{0} \mathrm{w}_{2}-\mathrm{u}_{1} \mathrm{w}_{3}+\mathrm{u}_{2} \mathrm{w}_{0}-\mathrm{u}_{3} \mathrm{~W}_{1}\right)+\mathrm{k}\left(\mathrm{u}_{0} \mathrm{w}_{3}+\mathrm{u}_{1} \mathrm{w}_{2}+\mathrm{u}_{2} \mathrm{w}_{1}+\mathrm{u}_{3} \mathrm{w}_{0}\right)
\end{aligned}
$$

Definition (The Concept of Conjugacy for Bicomplex Numbers) if $\xi=\left(\omega_{0}+i \omega_{1}\right)+j\left(\omega_{2}+i \omega_{3}\right)$ is bicomplex number conjugates $\xi^{*}(i), \xi^{*}(j), \xi^{*}(k)$ are given as follows;

1. $\xi *(i)=\omega_{0}-\mathrm{i} \omega_{1}+\mathrm{j} \omega_{2}-\mathrm{ij} \omega_{3}$
2. $\xi *(j)=\omega_{0}+i \omega_{1}-j \omega_{2}-i j \omega_{3}$
3. $\xi *(k)=\omega_{0}-\mathrm{i} \omega_{1}-\mathrm{j} \omega_{2}+\mathrm{ij} \omega_{3}$

Definition (Norms of Bicomplex Numbers) The norm of bicomplex of ξ is defined by the norms of the components $\mathrm{i}, \mathrm{j}, \mathrm{k}$ respectively, In particular,

$$
\|\xi(\mathrm{i})\|,\|\xi(\mathrm{j})\|,\|\xi(\mathrm{k})\| \text { and } \operatorname{Im} \xi(\mathrm{i}), \operatorname{Im} \xi(\mathrm{j}), \operatorname{Im} \xi(\mathrm{k})=0
$$

where,

$$
\begin{aligned}
\|\xi(\mathrm{i})\| & =\sqrt{\left(\omega_{0}^{2}+\omega_{1}^{2}-\omega_{2}^{2}-\omega_{3}^{2}\right)} \\
\|\xi(\mathrm{j})\| & =\sqrt{\left(\omega_{0}^{2}-\omega_{1}^{2}+\omega_{2}^{2}-\omega_{3}^{2}\right)} \\
\xi(\mathrm{k}) \| & =\sqrt{\left(\omega_{0}^{2}+\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}\right)}
\end{aligned}
$$

Definition (Idempotent Element) It is also important to know that every bicomplex number ($\mathrm{z}_{1}+\mathrm{j} \mathrm{z}_{2}$) has the following unique idempotent representation

$$
z_{1}+j z_{2}=\left(z_{1}-i z_{2}\right) e_{1}+\left(z_{1}+i z_{2}\right) e_{2}
$$

where

$$
e_{1}=(1+k) / 2, e_{2}=(1-k) / 2 ; e_{1}+e_{2}=1, e_{1} \cdot e_{2}=0 .
$$

REAL MATRICES FORM OF BICOMPLEX NUMBERS

We can obtain the matrix in the 4-dimension for bicomplex number with Pauli-Spin matrices (see [9]). They are defined as

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \sigma_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \sigma_{2}=\left[\begin{array}{cc}
0 & -j \\
j & 0
\end{array}\right] \quad \sigma_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Consequently, we have

$$
\begin{aligned}
& \Omega_{0}=\left[\begin{array}{cc}
\mathrm{I}_{2} & 0 \\
0 & \mathrm{I}_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \Omega_{1}=\left[\begin{array}{cc}
-\mathrm{j} \sigma_{2} & 0 \\
0 & -j \sigma_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& \Omega_{2}=\left[\begin{array}{rr}
0 & -\mathrm{I}_{2} \\
\mathrm{I}_{2} & 0
\end{array}\right]=\left[\begin{array}{rrrr}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \quad \Omega_{3}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Expression of a bicomplex number in the form of 4×4 matrix can be written as

$$
\xi=\omega_{0} \Omega_{0}+\omega_{1} \Omega_{1}+\omega_{2} \Omega_{2}+\omega_{3} \Omega_{3}
$$

Hence, we end up with

$$
A^{-}(\xi)=A^{+}(\xi)=\left[\begin{array}{cccc}
\omega_{0} & -\omega_{1} & -\omega_{2} & \omega_{3} \\
\omega_{1} & \omega_{0} & -\omega_{3} & -\omega_{2} \\
\omega_{2} & -\omega_{3} & \omega_{0} & -\omega_{1} \\
\omega_{3} & \omega_{2} & \omega_{1} & \omega_{0}
\end{array}\right]
$$

Note that, $\mathrm{A}^{-}(\xi)$ and $\mathrm{A}^{+}(\xi)$ are similar to Hamilton operators. (for Hamilton operators see $[5,6]$). Here only one matrix is obtain. Let E be the set of matrices $A(\xi)$. Then E is a commutative algebra with respect to matrix addition and product.

Lemma: E and C_{2} are isomorphic algebras.
Proof: Let us defined $\beta: C_{2} \rightarrow E$, by $\xi \rightarrow \beta(\xi)=A^{+}(\xi)$. Since $\beta(\xi \otimes \alpha)=\beta(\xi) \beta(\alpha)=A(\xi) A(\alpha)$ and $\beta(\xi+\alpha)=\beta$ $(\xi)+\beta(\alpha)$ and $\beta(\mu \xi)=\mu(\beta(\xi))=\mu A^{+}(\xi)$, then β is a algebra isomorphism.

Following relations hold for $\Omega_{0}, \Omega_{1}, \Omega_{2}$ and Ω_{3} :

$$
\Omega_{1}^{2}=\Omega_{2}^{2}=-\Omega_{0} ; \Omega_{1} \Omega_{2}=\Omega_{2} \Omega_{1}=\Omega_{3} ; \Omega_{2} \Omega_{3}=\Omega_{3} \Omega_{2}=-\Omega_{1} .
$$

THE EULER FORMULAS

If $\xi=\omega_{0}+\mathrm{i} \omega_{1}+j \omega_{2}+\mathrm{k} \omega_{3}$ is a bicomplex number and considering i and j as a product of spaces we have

$$
\left\{(a+i b) \cdot(c+j d)=\omega_{0}+i \omega_{1}+j \omega_{2}+k \omega_{3}\right\}
$$

where $\omega_{0}=a c, \omega_{1}=b c, \omega_{2}=a d, \omega_{3}=b d$. Here, $\operatorname{Re} \xi=\omega_{0}+j \omega_{2}$ and $\operatorname{Im} \xi=\omega_{1}+j \omega_{3}$. This gives rise to

$$
\begin{gathered}
\|\xi\|=\sqrt{a^{2} c^{2}+b^{2} c^{2}+a^{2} d^{2}+b^{2} d^{2}} \\
\sqrt[n]{(a+i b)(c+j d)}=\sqrt[n]{\|\xi\|} \cdot \exp [(\operatorname{iarctan}(b / a)+j \arctan (d / c)+2 \pi(s i+r j)) \mid n],
\end{gathered}
$$

where $r, s=0,1, \ldots, n-1$ are natural numbers. Another interesting case is hypercomplex represented by only two components:

$$
P=a+k d=\exp (k \phi)=\cosh \phi+k \sinh \phi .
$$

For $|\mathrm{d} / \mathrm{a}| \neq 1$, there is the following representation:

$$
P=a+k d=\sqrt{\left|a^{2}-d^{2}\right|} \cdot \exp (k \cdot \operatorname{arctanh}(d / a)) .
$$

Not that $\arctan (d / a)$ is real for $|(d / a)|<1$. Otherwise it is complex in either $i-$, or in the j - spaces. Analogously, for $|d / a|$ >1 there exists an additional representation in the i, j-space

$$
\begin{aligned}
P & =k(d+k a)=k \sqrt{\left|a^{2}-d^{2}\right|} \cdot \exp (k \cdot \operatorname{arctanh}(a / d)) \\
& =\sqrt{\left|a^{2}-d^{2}\right|} \cdot \exp ((i+j)(\pi / 2)+k \operatorname{arctanh}(a / d))
\end{aligned}
$$

In last case, when $\|P\| \neq 0$, we can give the Euler's formula in the following way:

$$
P \cong a+i b+j c+k d=\exp \left(\omega_{0}+i \omega_{1}+j \omega_{2}+k \omega_{3}\right) \cong \exp (\xi)
$$

where a relationship between P and ξ may be found from system: $\omega_{0}=\operatorname{In}\|P\|$

$$
\begin{aligned}
& x=\sin \omega_{1} \cos \omega_{2} \cosh \omega_{3}-\cos \omega_{1} \sin \omega_{2} \sinh \omega_{3} \\
& y=\cos \omega_{1} \sin \omega_{2} \cosh \omega_{3}-\sin \omega_{1} \cos \omega_{2} \sinh \omega_{3} \\
& v=\sin \omega_{1} \sin \omega_{2} \cosh \omega_{3} .
\end{aligned}
$$

where $\mathrm{x}=\mathrm{b} /\|P\|, \quad y=c /\|P\|$ and $v=d /\|P\|$ are normalized components.
Example: Let $(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=(1,1,1, \sqrt{3})$ be real numbers and then ξ have angles ϕ_{i} and ϕ_{j}.

HOMOTHETIC EXPONENTIAL MOTIONS

Definition: Let $f(t)=e^{t A}$ and $B(t)=h(t) f(t)$ be the orthogonal matrix. Where $h(\boldsymbol{t}) \neq$ constant, $\boldsymbol{t} \epsilon R$.

$$
\left[\begin{array}{c}
X \\
1
\end{array}\right]=\left[\begin{array}{cc}
B & C \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
X_{0} \\
1
\end{array}\right]=\left[\begin{array}{cc}
h A & C \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
X_{0} \\
1
\end{array}\right]
$$

Which is called homothetic exponential motion in C_{2}. The homothetic scale h the elements of f are continuously differentiable function of a real parameters $t[10,11]$.

Where X and X_{0} correspond to position vectors the same point with respect to the rectangular coordinate systems of the moving space R_{0} and the fixed space R, At first time $t=t_{o}$ we consider coordinate systems of R_{0} and R coincident. Then homothetic exponential motions of R_{0} with respect to R will be denoted by $\mathrm{R}_{0} \backslash \mathrm{R} . \forall t$,
Let $f^{\prime}=\mathrm{A} f$, and suppose $\mathrm{C} \neq 0$ then

$$
\mathrm{B}^{\prime}=\mathrm{dB} / \mathrm{d} t=h^{\prime} f+h f^{\prime}=\left(h^{\prime}+h \mathrm{~A}\right) f .
$$

where $h=h(t)$ is a scalar matrix, its inverse and transpose are

$$
h^{-1}=(1 / h) . I, h^{T}=h
$$

respectively. Since f is an orthogonal matrix, the inverse of B is
(1) $\ldots \quad B^{-1}=h^{-1} f^{T}, f^{-1}=f^{T} ; " I m(f(t))=0 \cong \omega_{0} \omega_{3}-\omega_{1} \omega_{2}=0 "$.

Theorem: The matrix defined by the equation (1) is a orthogonal matrix.
Proof: Since $A A^{\top}=A^{\top} A=I_{4},{ }^{\prime \prime} \omega_{0} \omega_{3}-\omega_{1} \omega_{2}=0 "$ and $\operatorname{det} A=1$.
Theorem: Homothetic exponential motion given by equation (1) is regular for all n and it is independent of h.
Proof: $B^{\prime}=h^{\prime} f+h f^{\prime}=\left(h^{\prime}+h A\right) f=h f(A+\lambda I)$, where if we define $\lambda(t)=-\left(h^{\prime}(t) / h(t)\right)$, then last equation is

$$
\text { (2) .. } \quad B^{\prime}=h f(A-\lambda I) \text {. }
$$

From equation (2), we find that $\operatorname{det} B^{\prime}=\operatorname{det}(h f) \operatorname{det}(A-\lambda I)$. As detB' $=0$, that is, B^{\prime} is singular , we get $h=0$ or
$\operatorname{det}(A-\lambda I)=0$. Here $h \neq 0$. Otherwise,the motion will be pure translation. B^{\prime} is always regular.

POLE POINTS OF EXPONENTIAL MOTIONS

Definition: To find the pole points, we have to solve the equation

$$
\mathrm{B}^{\prime} \mathrm{X}_{0}+\mathrm{C}^{\prime}
$$

Any solution of the equation in $(4,1)$ is a pole point of the motion at that instantin R_{0}. The equation in $(4,1)$ has only one solution

$$
X_{0}=-\left(B^{\prime}\right)^{-1} C
$$

at every t-instant [7].
Theorem: $f^{\prime}(t)$ is a derivation of $f(t)$.then, the pole points corresponding t_{0} each t - instant in R_{0} is the rotation by B^{\prime} of the speed vector C^{\prime} of the translation vector at the momoent.
Proof: Since B^{\prime} is orthogonal, then the matrix ($\left.B^{\prime}\right)^{T}$ is orthogonal. Thus it makes a rotation.
Theorem: If f is a orthogonal $n \times n$ matrix, the $\mathrm{n}^{\text {th }}$-order derivatives of B are given by

$$
B^{(n)}=\left[\sum_{j=0}^{n}\binom{n}{j} h^{(n-j)} A^{j}\right] f
$$

Proof: The proof of this theoram can be defined by induction. For $n=1$,

$$
B^{\prime}=\left[\sum_{j=0}^{1}\binom{1}{j} h^{(1-j)} A^{j}\right] f .
$$

Thus we have shown that it is true for $(\mathrm{n}-1)$ and

$$
B^{(n-1)}=\left[\sum_{j=0}^{n-1}\binom{n-1}{j} h^{(n-1-j)} A^{j}\right] f .
$$

It can now be shown that it is true for n . Thus,,for n :

$$
B^{(n)}=\left[\sum_{j=0}^{n}\binom{n}{j} h^{(n-j)} A^{j}\right] f
$$

Theorem: In spaces of n-dimension the high order velocities of homothetic exponential motions are given by

$$
X^{(n)}=\sum_{j=0}^{n}\left[\sum_{i=0}^{n-j}\binom{n-j-i}{i} h^{(n-j)} A^{i}\right] f \cdot C^{(n-1)}+C^{(n)}
$$

Example: $\xi=\frac{1}{\sqrt{2}}(\sin \eta, \cos \eta, \sin \eta, \cos \eta)$.
Example: $\xi=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
Let $f(t)=e^{t A}$ be function and then $f^{\prime}(t), f^{\prime \prime}(t), f^{(3)}(t), \ldots, f^{(n)}(t)$ is available and provides related conditions.

References

[1] Segre, C. 1892. Le Rappresentazioni Reali dell Forme Complesse a Gli Enti Iperalgebrici, Math. Ann., 1892, v. 40, 413-467.
[2] Finkelstein et al., F.G.1962.Foundations of quaternion quantum mechanics, J. Math Phys. 3, 207--220.
[3] Horwitz, L.P.1996. Hypercomplex quantum mechanics, Found. Phys. 26, No. 6, 851--862.
[4] Emch, G.1963. M'ecanique quantique quaternionienne et relativit'e restreinte. I and II, Helv. Phys. Acta 36, 770-- 788.
[5] Castaneda, A. and Kravchenko,V.V.2005. New applications of pseudoanalytic function theory to the Dirac equation, J. Phys. A.: Math. Gen. 38, 9207-9219.
[6] Rochon, D.2000. A generalized Mandelbrot set for bicomplex numbers, Fractal 8, 355--368.
[7] Rochon, D and Tremblay, S.2006. Bicomplex Quantum Mechanics: II. The Hilbert Space Adv. appl. Clifford alg. DOI 10.1007/s00006-003-0000 ,Birkh"auser Verlag Basel/Switzerland.
[8] Price, G.B.1991. An Introduction to Multicomplex Spaces and Functions, Marcel Dekker, Inc: New York. I(1)44(1).
[9] Smirnov, A. V.2007. Some Properties of Bikomplex Numbers. Space-Time Structure, Algebra and Geometry Russian Hypercomplex Society, USA,ISBN 5-94205-020-1,128-138.
[10] Yayli, Y.1992. Homothetic Motions at Mech. Mach Theory 27(3), 303-305.
[11] Agrawal, O.P.1987. Hamilton Operators and Dual Quaternions in Spatial Kinematics, Mech-Mach Theory (22), 569-575.

