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ABSTRACT

In this paper, a bicomplex number is described in four- dimensional space and its a variety of algebraic properties is
presented. In addition, Pauli-spin matrix elements corresponding to base the real matrices forms of the bicomplex
numbers are obtained and its the algebraic properties are given. Like i and j in two different spaces are defined terms of
Euler's formula. In the last section velocities become higher order by giving an exponential homothetic motion for the
bicomplex numbers. And then, Due to the way in which the matter is presented, the paper gives some formula and facts
about exponential homothetic motions which are not generally known.
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INTRODUCTION

In 1892, in search for special algebras, Corrado Segre (1860-1924) published a paper (see [1]) in which
explained an algebra whose elements are called bicomplex numbers. In recent years many papers have been written on
the extension of the formalism of quantum mechanics. These generalizations have been done mainly over quaternions or
over the Cayley algebra (octonions), see for instance (see [2, 3, 4]). Theory of bicomplex numbers and bicomplex
functions has found many applications,( see [5,6]). Bicomplex numbers is a commutative ring with unity which contains the
field of complex numbers and the commutative ring of hyperbolic numbers. In 2006, Dominic Rochon and S. Tremblay,
puplished a paper based on bicomplex quantum mechanics: 1. The Hilbert Spaces (see [7, 8]). The bicomplex (hyperbolic)
numbers are given in this paper from a number of different points of view of Hilberty Spaces for quantum mechanics.

In this study, the commutative algebra of bicomplex numbers variable is considered. This algebra of the 4-th rank has the
properties of division, conjugation, taking the root and factorization of Euler's formula as that of complex numbers [see [9]).
Later, Given the algebraic properties of Pauli-Spin matrices. In [10,11] Hamilton motion has been defined and investigated
in four dimensional Euclidean space E*. In the final section, It is shown that this study can be done for bicomplex number,
which is a homothetic exponential motion and this homothetic exponential motion satisfies all of the properties.

BICOMPLEX NUMBERS

Bicomplex numbers is defined (see [1,8]) , as a complex number depending on four units +1, i, j, k where

i?=j*= —landk*=1

ij=ji=k;ik =ki=—j;jk = kj=-i
Where k has the properties of a hyperbolic unit.Thus, a bicomplex number € is defined as
E = (,l)o+i(1)1+j(1)2 +k(,l)3

where wo, Wy, W,, W3, are reel number components of §. Note that "Co=IR . All points of the set of bicomplex numbers
C, is given by

C: = {85 =wo+iwg +jw, + kws ; w1, w2, w3, w4 €Cp }
It is also convenient to write the set of bicomplex numbers as,
C; ={z1+j2z2 | z1,2,€Cy }.
Furthermore, rule of multiplication and addition of two complex numbers have the following algebraic properties.
(z14).22).(23+).24) = ( 21+ 23— 2224) +j ( 21+ 24 + 22 23)
(z1+j.22) + (z3+j.22) = (21 + 23) + j(22+24)
Z1+j.2, = 23+].24 © 73 = Zzand z, = 7z,

The system {C,, @, R,+,., o, ®} is a commutative algebra. This algebra is called bicomplex numbers algebra and are
denoted by C,, Note that one of the basis of this algebra is {1, i, j, k} and the dimension is 4.

Definition (Multiplication Operator) We define,
®R: TxT—> T
uw)—»u®w=wQ®u
The multiplication rule is given as follows;
u@®@w = w®u

= (UpWo — U1W1 — UpW3 + UzW3) + i(UgWy + U;Wo — U W3 — UsW3)
+j(uewz — u3wz + u;wo — uswy) + k(uews + usw, + u,wy + uzwy)

Definition (The Concept of Conjugacy for Bicomplex Numbers ) if €=(wo+iwq)+j(wz+iws)
is bicomplex number conjugates £ (i ), £ ), € (k ) are given as follows;
1.5x(1) = wo — w1 + jw, — ijws
2.8%() = wot iw; — jwz — ijws
3.8+ (k) = wo—iwg —jw, + ijws

Definition ( Norms of Bicomplex Numbers ) The norm of bicomplex of § is defined by the norms of the components i, j, k

respectively, In particular,
IEADIL 1EGII, 18RI and ImE(D), ImE(j), ImE(k) = O,
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where,

HKUH=J@&+wf—w£—wﬁ

G J@M—w3+mf—mﬁ

£ Jm&+m3+m5+mﬁ

Definition (ldempotent Element) Itis also important to know that every bicomplex number (z:+jz,) has the following
unigue idempotent representation:
Z1+jz; = (21 —izx)e1+(z1 + iz2) e

where
es = (1+k)/2,e = (1-Kk)/2;e1+e,=1e;.e,=0.

REAL MATRICES FORM OF BICOMPLEX NUMBERS

We can obtain the matrix in the 4-dimension for bicomplex number with Pauli-Spin matrices

(see [9]) . They are defined as
1 o _[0 1 _[0 —j _ o
IZ_[O il Tl oo 02_[1' 0] 03_[0 —1]

Consequently, we have

1 0 0 O 0 -1 0 O
_M2 01 _[o 1 0 0 _[—102 0]_1 0 0 0
%=g 12]‘0 o o ‘Bl 0. —jo,l T oRAED -1
0 0 0 1 -0 0 1 O
0 0 -1 0 0 0 0 1
_10 -1 _fo o 0 -1 _ 1 0y_ 0 0 -1 0
92‘[12 0]‘10 1 0 93_[0 =10 -1 10
0 1 0 1 1 0 0 1
Expression of a bicomplex number in the form of 4x4 matrix can be written as
E=(,l)o Q'O + W, Q.l + W, .Qz + w3 9.3.
Hence, we end up with
Wo —W1 — W2 W3
- - + . W1 Wo —W3 — W2
A (E) = A (E) - [OP) —Ws3 Wo —Wq
w3 (V) w1 Wo

Note that, A~( :c, ) and A*( :c, ) are similar to Hamilton operators. ( for Hamilton operators see [5,6] ). Here only one matrix
is obtain. Let E be the set of matrices A(§). Then E is a commutative algebra with respect to matrix addition and product.

Lemma: E and C, are isomorphic algebras.

Proof: Let us defined 3 : C,— E, by &— B (§) = A*(§). Since B (§Ra)=B (§) B (a) = A(§)A(a) and B (§+a) =B
€)*rB(@and B(ME) =H(PB(E)=pMA*), then B is a algebra isomorphism.

Following relations hold for Qo, Q4, Q, and Qs :
-Q12 = -Q-z2 =—0o; 010, = 0,0, =03 ; 005 = O30, = —(,.

THE EULER FORMULAS

Ifﬁ = Wo * iy + jw, + Kws is a bicomplex number and considering i and j as a product of spaces we have
{(a+lb)(C+jd) = Wp + iUJ1 +jUJ2 + kw; }

where we=ac, ws=bc, w,=ad, ws=bd. Here, Re {=wo+j w, and Im {=w,+jws. This gives rise to
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I8l = Va®c® + b2 c® + a®>d® + b*d®

V@@+ib) (c+jd) ="/l .expl(iarctan(b/a)+jarctan(d/c)+2m(s i+ 1 j)) \n],

where r,s =0,1,...,n-1 are natural numbers. Another interesting case is hypercomplex represented by only two
components:

P = a+kd = exp (k ¢) = cosh¢ + k sinh¢.
For | d/a| #1, there is the following representation:

P = a+kd = /|a® — d?| .exp (k.arctanh (d/a)).

Not that arctan(d/a) is real for |(d / @)| <1. Otherwise it is complex in either i-, or in the j- spaces. Analogously, for | d/a |
»1 there exists an additional representation in the i, j-space

P =k(d+ka) =k /|a®* — d?| . exp ( k. arctanh (a/d))
= J|a® — d?|.exp ( (i+) (7/2) + k arctanh (a/d))
In last case, when IIPII#0, we can give the Euler's formula in the following way:
P=a+ib+jc+kd=exp (wo+ iw + jw, + kws) = exp (¢)
where a relationship between P and ¢ may be found from system: Wo = In lIPII
X = sinw,; cosw; coshws-cosw; Sinw; sinhws
Yy = CoSw; Sinw, coshws-Sinw; cosw; sinhw;
v = Sinw; Sinw; coshws.
where X = b/IIPIl, y=c/IIPll and v =d /lIPIl are normalized components.
Example: Let (@&, b, ¢, d) =(1,1,1,4/3 ) be real numbers and then € have angles ¢ j and bj.
HOMOTHETIC EXPONENTIAL MOTIONS
Definition: Let f(t)=e” and B(t)=h(t)f(t) be the orthogonal matrix. Where h (t) # constant, t €R.
R F R R e R
1 0 11°'l1 0 11'l1
Which is called homothetic exponential motion in C, . The homothetic scale h the elements of f are continuously
differentiable function of a real parameters t [10,11].

Where X and X, correspond to position vectors the same point with respect to the rectangular coordinate systems of the
moving space Ro and the fixed space R, At first time t=t, we consider coordinate systems of R, and R coincident. Then
homothetic exponential motions of R, with respect to R will be denoted by Ro\R. Vi,

Let f "=Af, and suppose C#0 then
B'=dB / dt=h'f+hf'=(h'+hA).
where h=h(t) is a scalar matrix, its inverse and transpose are
h1=(1/h).I , h'=h
respectively. Since f is an orthogonal matrix, the inverse of B is
(1)... Bi=hT {1=fT;"Im (f(t)) = 0 = wows-wyw, =0 ".
Theorem: The matrix defined by the equation (1) is a orthogonal matrix.
Proof: Since AA'=AT A=l, ;" WoWs-w,=0" and detA=1.
Theorem: Homothetic exponential motion given by equation (1) is regular for all n and it is independent of h.
Proof: B'= h'f+h f=(h'+ hA) f=h f( A+ A1), where if we define A(t)=-(h'(t) / h(t)), then last equation is
@ . B=hf(A-Al).
From equation (2), we find that detB' =det( hf ) det( A- A I). As detB'=0, that is, B'is singular ,we get h=0 or
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det(A-A)=0. Here h#0. Otherwise,the motion will be pure translation.B' is always regular.

POLE POINTS OF EXPONENTIAL MOTIONS

Definition: To find the pole points, we have to solve the equation
B'Xo+C".

Any solution of the equation in (4,1) is a pole point of the motion at that instantin Ry. The equation in (4,1) has only one
solution

Xo=-(B)1C
at every t-instant [7].

Theorem: f'(t) is a derivation of f(t) .then, the pole points corresponding ty each t- instant in R is the rotation by
B' of the speed vector C” of the translation vector at the momoent.

Proof: Since B'is orthogonal , then the matrix ( B" )T is orthogonal. Thus it makes a rotation.

Theorem: If f is a orthogonal nxn matrix, the n™ -order derivatives of B are given by

n

B — [Z (I]l) h(-D AJYf,

j=0
Proof: The proof of this theoram can be defined by induction. For n=1,

1
B = Z (1) ha-Daj |
j=0 ]
Thus we have shown that it is true for (n-1) and

n—1

-1 — Z (1’1 ; 1) h(n—l—j)Aj £

j=0

It can now be shown that it is true for n. Thus,,for n:

B®™ = lzn: (r]l) h=DA|f,
j=0

Theorem: In spaces of n-dimension the high order velocities of homothetic exponential motions are given by

n |n7)
X = Z Z (") T heDa | f.co 4 ¢,
1
i=0 [i=0

1 . .
Example: § = 7 (sinm, cosn, sinn, cosn).
11 1 1
Example: § = (5 505 ,5)
Let f(t)=e™ be function and then f " (t), f "(t), f&)(t),.., fP(t) is available and provides related conditions.
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