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ABSTRACT 

In this work, we extend the notion of retractability to s- retractability. An R-module M is called s-retractable if 

 hom , 0R M U   for all nonzero  U Z M . Also we extend coretractable modules to semi-coretractable modules. An 

R-module M  is called semi-coretractable if  hom / , 0R M K M   for all maximal essential submodule K of M . We 

investigate theseclasses of modules and extend some of main theorems on retractable and coretractable modules to s-
retractable and semi-coretractable modules, respectively. 
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INTRODUCTION  

Throughout this paper, all rings are associative with identity and all modules are unitary right modules unless stated 

otherwise. Semisimple rings are in the sense of Wedderburn and Artin. By a right max ring, we mean a ring R  such that 

every nonzero right R-module has a maximal submodule. For a module RM  we write  Rsoc M ,  RZ M  and 

 Rrad M  for the socle, the singular and the Jacobson radical of RM , respectively. Also  RJ  denotes the Jacobson 

radical of a ring R . The notation K M , smK M , and MK ess  denote that K  is a submodule, a small 

submodule and an essential submodule of M , respectively. Following Khuri [7], an R-module M  is said to be  

retractable if   0,hom NMR  for any nonzero submodule N  of M . Retractable modules have been investigated by 

some authors (see, for example, [2, 3, 4, 8, 9, 11]). In section 2 we define the concept of s-retractability of modules. 

Coretractable modules are the dual notion of  retractable modules and it defined by B. Amini, M. Ershad and H. Sharif in 

the  paper [1] as follows: An R-module M  is called coretractable if, for any proper submodule K  of M , there exists a 

nonzero homomorphism MMf :  with    0Kf , that is,   0,/hom MKMR .  In section 3, we 

introduce the notion of semi-coretractability of a module RM . A module M  is called semi-coretractable if  

 hom / , 0R M K M   for all maximal essential submodule K  of RM . We show that a ring R  is semi-coretractable as a 

right R-module if and if only R  is right Kasch ring. 

Definition 1. An R-module RM  is called s-retractable (sssrad-retractable) if  hom , 0R M U   for all nonzero 

 U Z M  (  U rad M ). 

Example 1. 

1. Every nonsingular right R-module is s-retractable. 

2. Every right R-module with zero radical is rad-retractable. 

3. Every retractable right R-module is s-retractable. 

4. Since Q is nonsingular Z-module so Q is s-retractable.  

We have  hom , 0Z Q Z  , then Q is not retractable. 

Lemma 1. If the R-module M  is uniform with   0Z M   and  hom , 0R M K   for all  K Z M , then M  is 

retractable. 

Proof. Take  0 K Z M   then there exist a nonzero homomorphism : M Kf  . Since M  is uniform so 

essK M  and for any submodule L  of M , 0L K  . Hence, there exist a nonzero homomorphism 

:g M L K L  . Therefore, M  is retractable.                                                                                                                

Corollary 1. If   essZ M M , then M  is retractable if and if only M  is s-retractable 

Proof. Let M  be an s-retractable and K  be a nonzero submodule of M . Then,   0K Z M   and there exist a 

nonzero homomorphism  :g M K Z M K  . Therefore, M  is retractable.  

Recall that an R-module M  is Goldie torsion if  2M Z M , where  2Z M is the second singular submodule of 

M . 

Corollary 2. Let M be Goldie torsion. Then M is retractable if and if only M  is s-retractable. 

Proof. Let M be an s-retractable and K be a nonzero submodule of M . Then,   0K Z M   and there exist a 

nonzero homomorphism  :g M K Z M K  . Therefore, M is retractable.  

Recall that an R-module M is semi-hollow if every finitely generated submodule of M is small. 

Corollary 3. Let M be semi-hollow. Then M is retractable if and only if M  is rad-retractable. 

Corollary 4. If M is semi-hollow and every cyclic submodule of M is injective, then  hom , 0R M K    for all 
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 K rad M .  

Proof. Let  K rad M  be a nonzero submodule. If 0 mR K  , then mR  is injective and it is a summand of 

M . Thus, there exist a nonzero homomorphism  : M mR  . Hence, we have nonzero homomorphism .M K   

Definition 2. A ring R is called right SC-ring if every singular right R-module is semisimple. 

Corollary 5. Let R be a right SC-ring. If M is an R-module such that  hom , 0R M K   for all  K soc M , then 

M is s-retractable. In particular, R is s-retractable. 

S-retractability for group modules 

Tamer Kosan and Jan Zemlicka [9], showed that if M is an R-module and G  is finite group, then the group module 

MG is a retractable RG-module if and if only RM  is retractable. In the following we show that MG is s-retractable as R-

module if and if only RM is s-retractable. Throughout this section G  is a group and M is a module over a ring R . Let 

MG  denote the set all formal linear combinations of the form gg G
m g

  where gm M and 0gm   almost for 

every g. For elements gg G
m g

  and gg G
n g

  in MG , by writing gg G
m g

 = gg G
n g

  we mean that 

g gm n  for all g G .  

We define the sum in MG   component wise: ( )g g g gg G g G g G
m g n g m g n g

  
     . 

For gg G
r g RG


 , the scalar product of gg G

m g
  by gg G

r g
  is defined by  

  g g gg G g G g G
m g r g k g

  
    where g h hhh g

k m r 
   .  

It is routineto check that, with these operations, MG becomes a right module over the group ring RG . Note that M  is 

an R-submodule of MG such that 1m m  , where 1   here denotes the identity element of G . It is well known that the 

identity element in G  is also the identity element of RG . 

Lemma 2. [9] If MG  is the group module, then RG RMG M RG  . 

Lemma 3. [9] Let MG  be the group module of G  by M over RG . Then for any x MG  and any RG , 

     M Mx x     . In particular, M  is an R-homomorphism and R  is a ring homomorphism.  

Proposition 1. Let M  be an R-module. MG  is s-retractable R-module if and if only RM  is s-retractable. 

Proof. If  
1

i

n

g i R

i

m g Z MG


 , then 

1
i

n
ess

g i

i

r m g R


 
 

 
 . But 

1
i

n

g i

i

x r m g


 
  

 
    implies that 

1

0 0
i i

n

g i g

i

m g x m x


 
   

 
  for all 1,2,.....,i n  and  

igx r m for all 1,2,.....,i n , thus 

 
1 1

i i

nn

g i g

i i

r m g r m
 

 
 

 
   and  

i

ess

gr m R  for all 1,2,.....,i n . Hence,  
igm Z M  and 

   R RZ MG Z M G . Also the other inclusion is true, therefore    R RZ MG Z M G . 

Now suppose that MG  is s-retractable, so for every nonzero singular submodule K of M   there exist a nonzero R-

homomorphism : MG KG  . Then, there exist a nonzero R-homomorphism :K Mi M K     where Mi is 

the inclusion :Mi M MG . For the converse if M is s-retractable, so for every nonzero singular submodule K of 

M there exist a nonzero R-homomorphism  : M K  . Then, there exist a nonzero R-homomorphism  

:K Mi MG KG   where Ki  is the inclusion :Ki K KG and M  is natural epimorphism 

P  
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: .M MG M   

Proposition 2. Let G be a group and M be an R-module. Then    R RGZ M G Z MG . 

Proof. Firstly we show that if K is essential submodule of M , then KG  is essential in MG . Suppose 

0 gg G
m g MG


   such that   0gg G

KG m g RG


  but, 

       :g g g gg G g G g G g G
m g RG m g r g r g RG

   
     

  
   

1 21 2

:

: .

g g h h gg G h h g g G

g g g gg G g G g G

l g l m r and r g RG

l g l m R m R G

  

  

  

 

  

  

 

 So   0gg G
KG m R G


   and 0gg G

K m R


 which is a contradiction. Now if  
1

0
n

i i R

i

a g Z M G


  , 

then   ess

ir a R  for every i . Thus   ess

ir a G RG  for every i and  
1

n
ess

i

i

r a G RG


 . But 

1 2

1 2

1 2

1 2

1 1

: 0

: 0,

: 0

n n

RG i i g i i g

i g G i g G

g g g h h

g G g G h h g

g h h

g G h h g

r a g r g RG a g r g

r g RG k g k a r

r g a r

   

  

 

      
        

      

  
    

  

  
 

  

   

  

 
 

and so  
11

n n

i RG i i

ii

r a G r a g


 
  

 
 . Hence    R RGZ M G Z MG .   

The next example shows that the    R RGZ M G Z MG  in the general case. 

Example 2. Let R be the field 2Z  and   5, , b,cG e a Z   . Then RG  is local Kasch ring 0rZ   and the proper 

ideals of RG  are: 

   1 0, , , , , , ,I e a RG e a e b e c a b a c b c e a b c           

   

   

2

3

0, , ,

0,

I e c RG e c a b e a b c

I e a b c RG e a b c

       

       
  

We see that each of them is essential in R  and    1 .RGZ RG I J RG   Also we see that   3.soc RG I   

Corollary 6. Let M be an R-module. If MG is s-retractable RG-module, then RM  is s-retractable. 

Proof. Suppose that MG is s-retractable RG-module and K is a nonzero singular submodule of M . By above 

Proposition KG is a singular RG-submodule of MG  and  hom , 0RG MG KG  . Then by [9, Corollary 2.5] 

 hom , 0.R M K  Hence M is s-retractable.  

Definition 3. A ring R  is called (finitely) s-mod-retractable if all (finitely gener-ated) right R-modules are s-retractable. 
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Example 3.  

1. Semisimple rings are s-mod-retractable. 

2. Let R be a right (left) SI ring (every singular right (left) R-module is injective). Then, for any right R-module M , 

every singular submodule of M  is a summand of M . Hence R  is s-mod-retractable ring. 

3. Let R be a right (left) V-ring (every right (left) R-module has a zero radical). Then, every right R-module is rad-

retractable. Hence R is rad-mod-retractable ring. 

Theorem 1. (Finite) s-mod-retractability is Morita invariant. 

Proof. Let R and S   be Morita equivalent rings. Assume that :f Mod R Mod S   and 

:g Mod S Mod R   are two category equivalences. Let M be an s-retractable R-module. Then, M is an s- 

retractable object in .Mod R  Let 0 N  be a singular submodule of  f M . Then,   hom , 0R M g N   since 

 g N is isomorphic to a singular submodule of M . Thus, we have        0 hom , hom , .S Sf M fg N f M N   

This follows that M  is an s-retractable object in .Mod S   

Let R be a ring, n  a positive integer and the ring  nM R  of all n n  matrices with  entries in R . 

Corollary 7. If R  is (finitely) s-mod-retractable, then  nM R  is (finitely) s-mod-retractable. 

Proof. By above Theorem.  

Proposition 3. The class of (finite) s-mod-retractable rings is closed under taking homomorphic images. 

Proof. Suppose R is a (finite) s-mod-retractable ring. It is well-known that    /hom , hom ,R R IM N M N  for 

each ideal I of R  and , /M N Mod R I  . Now the proof is clear.   

Proposition 4. R is a right s-mod-retractable ring if and if only for every non-zero module M and every 

 m Z M such that 
essmR M there exists a non-zero homomorphism .M mR   

Proof. The direct implication is clear. For the converse, assume that M is a nonzero module and N is a nonzero 

submodule. Let  n Z N  be a nonzero. Then the identity map :nRid nR nR on nR may be extended to a 

homomorphism   : .M E nR   Note that    essnR M E nR  . Hence, by the hypothesis there is a non-

zero homomorphism    .M nR N     

Recall that, a ring is called right max provided every non-zero right module contains a maximal submodule. 

Proposition 5. If R is a right s-mod-retractable ring, then R  is right max. 

Proof. If M is semisimple, then M has a maximal submodule. Now assume that 0 M is not semisimple and 

contains no maximal submodule, fix 0 m M   soc M and an arbitrary maximal essential submodule N of mR . 

Then, /M N contains no maximal submodule and so there exist no non-zero homomorphism /M N into a simple 

/mR N , i.e. /M N  is not s-retractable.  

Recall that a torsion theory  ,T F   is a pair of classes of modules closed under isomorphic images such that 

0T F  , T is closed under taking factors, F is closed under submodules and for every module M there exists a 

submodule  M  for which  M T   and  M/ M F  . Moreover, a torsion theory is hereditary if T is closed 

under submodules. 

We extend the hereditary torsion theory to s-hereditary, where a torsion theory  ,T F    is called s-hereditary if T is 

closed under singular submodules. 

For a class of right R-modules C , we consider the following annihilator classes:                     
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  hom , 0RC M Mod R M C   

 
and 

 

  hom C, 0RC M Mod R M   
 

We notice that the annihilator classes of the form C  for some C Mod R   coincide with the torsion classes of 

modules, and C 
 coincide with the torsionfree classes of modules. 

Theorem 2. A ring R is s-mod-retractable if and if only every torsion theory on Mod R is s-hereditary. 

Proof. Suppose that R is s-mod-retractable and  ,T F  is a torsion theory. For M T  and  N Z M  , 

let  N be the torsion part of N .Then,  /M N T  , while  /N N F  . Then, 

    hom / , / 0R M N N N   . Since  /N N  is a submodule of  /M N  and  /M N is s-

retractable, it follows that  / 0.N N   Hence, N T . Conversely, suppose that M is an R-module and 

 0 N Z M  . If  hom , 0R M N  , then N   M 
. This implies that the torsion theory   ,M M  

  

is not s-hereditary.  

Proposition 6. Let RM be s-retractable with  RS End M . If f S  with  Kerf Z M  , then f is a 

monomorphism if and if only f is right regular in S . 

Proof. This follows from the s-retractable condition on RM  and the fact that    hom , .Rr ann f M Kerf    

Proposition 7. The ring i

i I

R


 is right s-mod-retractable if and if only each iR  is a right s-mod-retractable ring for 

each i I , where I is an arbitrary finite set. 

Proof. Assume that i

i I

R


  is right s-mod-retractable. Since iR  is a homomorphic  image of i

i I

R


 ,    so the result 

follows from Proposition 3. Now Let each ie  denote the unit element of iR for all i I . A module M  over i

i I

R


  

may be written as set direct product i

i I

M


 , where 
iiR iM Me  and external operation defined as  

      .i i i ii I i I i I
r m r m

  
  Thus, s-retractability of M is given by s-retractability of each iM .i I  But, since 

each iR is s-mod-retractable, this condition is satisfied. 

Corollary 8. The class of s-mod-retractable rings is closed under taking finite direct products. 

Proof. By above Proposition.  

If R is a ring,  R X denotes the polynomial ring with X a set of commuting indeterminate over R . If  X x , 

then we use  R x in place of   .R x     

Proposition 8. If  R x  is s-mod-retractable ring, then R is s-mod-retractable ring. 

Proof. Since    /R R x R x x , the result is clear from Proposition 3. 

Semi-coretractable Modules 

Definition 4. A right R-module M is called semi-coretractable if  hom / , 0R M K M   for every maximal and 

essential submodule K of .M   

Example 4. The Z-module Q is semi-coretractable but not coretractable. 

Corollary 9. Let M is finitely generated R-module. If M is uniform R-module and semi-coretractable, then M is 
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coretractable. 

Proof. Let L be a nonzero submodule of M . Then, there exist a maximal submodule K of M such that L K  

( M is finitely generated). Thus, there exist a nonzero homomorphism  f End M such that   0.f K   Hence 

  0f L   and M  is coretractable.  

Corollary 10. If M is semi-coretractable and M has an essential maximal submodule, then 

    0.soc M Z M    

Proof. Let K be maximal essential submodule of M .Then,  hom / , 0R M K M  .  Since /M K is simple 

singular so     0.soc M Z M    

Proposition 9. For a ring R , the following statements are equivalent: 

(1) R  is a right Kasch ring; 

(2) RR  is a coretractable module; 

(3) RR  is a semi-coretractable module. 

Proof. (1)  (2) Let K  be a right ideal. There exist a maximal right ideal M  such that MK  . Then, there exist 

a nonzero homomorphism RMR /: . Thus, there a nonzero map RKR  /:  where   is natural 

epimorphism MRKR //  . Hence, R  is coretractable. 

(2)  (3) Clear. 

(3)  (1) If L  is a nonessential maximal right ideal, then 0L aR   for some 0 a R   and .L aR R   

Thus, L eR  where 
2e e  and    1 0.l L R e    Now, if L is an essential maximal right ideal, then by  

(3)  hom / , 0.R L R   Hence, there exist an nonzero homomorphism 

: /f R L R  and if  1 0f L a    so  .a l L  Therefore, R is right Kasch.  

The following Proposition shows that if the ring R is right Kasch, then all free right R -module are semi-coretractable 
without any extra conditions. 

Proposition 10. For a ring R the following statements are equivalent: 

(1) R  is right Kasch  

(2) All free right R-modules are semi-coretractable. 

Proof. (1)  (2) . Let F  be a nonzero free right R-module and K  be a maximal essential submodule of F . 

Then, KF / is singular simple right R-module and   0,/hom RKFR . Hence,   0,/hom FKFR . 

(2)  (1). Above Proposition.  

Proposition 11. Let R  be a ring. If all cyclic right R-modules are semi-coretractable, then R  is a left perfect ring. 

Proof. Suppose that every cyclic right R-module is semi-coretractable, so JR /  is semi-coretractable as a right R-

module. Thus, JR /  is semi-coretractable as a right R/J-module and JR /  is right Kasch ring (Proposition 9). But 

  0/ JRJ  so JR /  is semisimple ring. Now if M  be a nonzero cyclic right R-module then by the fact 

  MMrad  , M  has a maximal submodule. If M  has no essential submodule, then M  is semisimple. If M  has an 

essential submodule L , then L  contained in a maximal submodule of M  and   0Msoc . Hence, R  is right semi-

artinian and J  is left T-nilpotent [12, Corollary VIII 2.7]. Therefore, R  is left perfect ring. 
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