
ISSN 2347-1921                                                           

1806 | P a g e                                                           J u n e  1 6 ,  2 0 1 4  

Nevanlinna Theory for the Uniqueness of  Difference Polynomials and 
Meromorphic  Functions by sharing one Small Function 

Raj Shree Dhar 
J and K Institute of Mathematical Sciences  

Higher Education Department, J and K Government 
 J and K, INDIA 

 

ABSTRACT 

The  purpose  of this  paper  is to  extend the  usual  Nevanlinna theory to the  periodic  functions, difference 
operators and  difference polynomials of meromorphic functions concerning their  uniqueness after  sharing  one 
small  function and  satisfying certain conditions on the  number of zeros and  poles of the  functions. 
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INTRODUCTION  

A function  f(z) is called meromorphic  if it is analytic  in the  complex plane except  at  poles.  Throughout this  
paper,  we assume  the  reader  is familiar  with the standard notations and fundamental results  of Nevanlinna  
theory  of Meromorphic functions such as the Characteristic function T(r,  f ), proximity function m(r,  f ), counting  
function  N(r,  f ) and  so on.  (see e.g.[2], [4]).  In addition, S(r, f ) denotes  any quantity that satisfies the 

condition  that S(r, f )= o(T(r,  f )  )    as r→ ∞ outside  a possible exceptional  set of finite logarithimic  measure. For 
a meromorphic function  f(z), we use S(f ) to denote the family of all meromorphic  functions a(z) that satisfy 
T(r,a)=S(r,f ). Such functions are called small functions with respect to f(z).  Let c be a non-zero complex 

costant then for a meromorphic function  f(z) , we define its shift by f(z+c)  and its difference operator by 

    ∆c f (z) = f (z + c) − f (z) 

     ∇c f (z) = f (z) − f (z − c), 

            ∆m c f (z) = f (z + mc) - f(z) 

where m is a positive  integer, 

                
1( ) ( ( ))n n

c c cf z f z     

nϵ , n 2 

     

0

!
( . )

!.( )!

n

k

n
f z n k c

k n k

  


 . 

In particular, 

    ( ) ( )n n

c f z f z    

for  c=1. 

We define Shift Monomial as 
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 where  , , 1,2,...,i ic n i k    . 

Then   1 2 ...M kd n n n    , 

Is the degree of the Shift Monomial M[f]. 

Definition 1 

Let   M1[f], M2[f], …, Mn[f]  denote the distinct monomials in f, and  a1, a2, … , an  be small meromorphic functions 
including complex numbers then 
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will be called a Difference Polynomial in f of degree 
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Linear Difference Polynomial is defined as the Difference Polynomial of degree one i.e. 
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A difference operator is a special case of Linear Differential Polynomial in f in which sum of the co- efficients is zero. 

For a given non- constant meromorphic function f(z), we recall the definition of the order of f(z) as 
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Let  f(z) and  g(z) be two meromorphic functions and let a(z) be a small function with respect to f(z) and g(z). We say 
that   f(z) and  g(z) share a(z) IM, provided that f(z) – a(z) and g(z) – a(z) have the same zeros  (ignoring multiplicities), 
and we say that  f(z) and  g(z) share a(z) CM, provided that f(z) – a(z) and g(z) – a(z) have the same zeros ( counting  
multiplicities). 

Uniqueness Theory of Meromorphic functions is an important part of Nevanlinna Theory. Recently, number of papers 
have focused on the Nevanlinna Theory with respect to difference operators see e.g. [1 – 3], [5 – 10]. Then many 
authors started to investigate the uniqueness of meromorphic functions sharing values with their shifts or difference 
operators.  

The following results concerning the uniqueness of difference operators have already been proved: 

Theorem A [6]: 

Let f(z) be a non- constant entire function of finite order. If f(z) and f(z+c) share two finite values CM, then 

∆ 

    f(z)   f(z+c). 

Theorem B [1]: 

Let f(z) be a non- constant entire function of finite order and let a(z) (≠ 0) ϵ S (f) be a periodic entire function with 

period c . If three functions f(z), 
2( ), ( )c cf z f z    share a(z) CM, then 

2 ( ) ( )c cf z f z   . 

Theorem C [3]: 

Let f(z) be a non- constant transcendental meromorphic function of finite order, such that N(r,f) + N(r, 0, f) = S(r, f), and 
let   a(z) (≠ 0, ∞) ϵ S (f). For m a positive integer and c a non- zero complex constant, if f(z) and  f(z+mc) – f(z) = 

mc f   share a(z)  CM then     mc f f  . 

Theorem D [3]: 

Let f(z) be a non- constant meromorphic function of finite order, such that   N(r,f) + N(r, 0, f) = S(r, f), and let   a(z) (≠ 0, 
∞) ϵ S (f). For m a positive integer and c a non- zero complex constant, if f(z) and   
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Theorem E [8]: 

Let   f(z)  be a meromorphic function of hyper order less than one. Let  L[z, f]  be a linear differential polynomial in f 
and let a, b be two distinct small meromorphic functions. Let  f(z) and L[z, f] share a, b, ∞  CM and one of the following 
cases hold: 

i). L[z, a] – a = L[z, b] – b   0 

ii). L[z, a] – a  0   or   L[z, b] – b  0   and N(r, f) <   T(r, f),   ϵ (0, 1) 

iii).  [f]      

then  f(z) =   L[z, f] . 

Theorem F [10]: 

Let  f(z) be a non- constant meromorphic function of finite order. Let c be a complex constant and a be a non- zero 
small periodic function with period c . If f(z)

n
 , f( z+c )

n
  share a and ∞ CM, n ≥ 4, then f(z) = w f(z+ c)  

for a constant w and integer n such that  w
n
  = 1. 

QUESTION 

It is natural to ask about the pattern in uniqueness of a non- constant meromorphic function with a general difference 
polynomial ( not a small meromorphic function) in f as defined in (1), when they share small meromorphic function IM? 
It is pertinent to mention that General Difference polynomial includes linear difference polynomials as well as 
difference operators and shifts. In this connection, we have the following results: 
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MAIN RESULTS 

Theorem 1: 

Let  f(z) be a non- constant meromorphic function of finite order such that 

  
1

( , ) ( ,0, ) ( , ), (0, )
2

N r f N r f T r f    . 

Let   D[f]  be a non- constant General Difference Polynomial of degree d, defined as in definition 1 such that  

T(r, D) ≠ S(r, f).  If  D[f]  and   f
d 

 share a non- zero small function  a(z) ( ≠ ∞) IM then   D[f]  =    f
d 

 . 

Remark 1: 

If d = 1, then D[f] becomes linear difference polynomial and difference operators and shifts are particular cases of 
linear difference polynomials. 

If the condition on N(r, f) is dropped, then we have the following results: 

Theorem 2: 

Let  f(z) be a non- constant meromorphic function of finite order. Let   D[f]  be a non- constant General Difference 
Polynomial of degree d such that  T(r, D) ≠ S(r, f).  If  D[f]  and   f

d 
 share  two distinct  non- zero small functions a(z), 

b(z) ( ≠ ∞) IM and  

1
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Theorem 3: 

Let  f(z) be a non- constant entire  function of finite order. Let   D[f]  be a non- constant General Difference Polynomial 
of degree d such that  T(r, D) ≠ S(r, f).   If  D[f]  and   f

d 
 share  one  non- zero small functions a(z) ( ≠ ∞) IM and  

1
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2
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EXAMPLES 

Ex. 1: 

Let 

    2 2( ) 1 tan ( ) secf z z z   , 

then we take 

   
2 2[ ] ( ) 1 cot cos

2
D f f z z ec z


     . 

Here f(z) is non- constant meromorphic function of finite order and  D[f]  is of degree one. Also we observe that  N(r, 0, 
f) = S(r, f). It can be easily seen that  D[f],  f

d
  share  2   (one finite non- zero value IM) and  

D[f] ≠   f
d
  . 

Thus in Theorem 2, the number of shared values can not be further reduced which implies that two is best possible. 

Ex. 2: 

Let 

  

2( ) sin ,f z z
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then 

  2[ ] ( ) cos
2

D f f z z


   . 

Here f(z) is a non- constant entire function of finite order and   D[f]  is of degree one.   It can be  seen that  D[f],  f
d
  

share  1/2   (one finite non- zero value IM) and  

D[f] ≠   f
d
  . 

The reason being that  N(r, 0, f) ≠  T(r, f),  ϵ (0, 1/2). 

Hence the condition that   N(r, 0, f) =  T(r, f),  ϵ (0, 1/2)  is essential. 

Ex. 3: 

Let 

   
sin( ) zf z e . 

Then 

                
sin[ ] ( ) zD f f z e    . 

 

Here f(z) is a non- constant entire function of infinite order and D[f]  is of degree one. The condition that   

 N(r, 0, f) =  T(r, f),  ϵ (0, 1/2)  is satisfied. .   It can be  seen that  D[f],  f
d
  share  1, -1  and 

D[f] ≠   f
d
  . 

The reason being that the condition for f to be of finite order is essential. 

Ex. 4: 

Let 

            log2( ) zf z e , 

and 

    D[f] = f(z+1) – f(z). 

Here f(z) is a non- constant entire function of finite order and  D[f]  is of degree one. Also N(r, 0, f) = S(r, f) and f(z) and 
D[f] share a IM and we have D[f] =   f

d
  . 

For the proofs of the results we need the following lemma: 

LEMMA[12]: 

Let f(z) be a non- constant meromorphic function of finite order such that 

   [ , ] [ , ]nf P z f Q z f , 

where are difference polynomial [ , ], [ , ]P z f Q z f   are difference polynomials in f. If the degree of [ , ]Q z f  as a 

polynomial in f and its shifts is at most n, then 

           ( , [ , ]) S(r,f)m r P z f  , 

Where the exceptional set associated with S(r, f) is of at most finite logarithimic measure. 

PROOFS OF THE MAIN RESULTS 

Proof of Theorem 1: 

Suppose on the contrary, then 

D[f] ≠   f
d
  . 

Using Nevanlinna’s Second Fundamental Theorem, Lemma1 and the given condition, we get 
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which is a  contradiction, therefore 

         [ ] dD f f . 

Proof of Theorem 2: 

Suppose on the contrary, then 

D[f] ≠   f
d
  . 

Using Nevanlinna’s Second Fundamental Theorem, Lemma1 and the given condition, we get 
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which is a  contradiction, therefore 

        [ ] dD f f .    

Proof of Theorem 3: 

The proof is on the same lines as in Theorem 1 and Theorem 2. 
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