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ABSTRACT 

The non-linear dynamical system subject to tuned excitation is consider, and studied . The system is represented by two 
degree of freedom differential equations of the system and absorber. The method of multiple scale is applied to solve the 
system up to 3

rd
 order approximation. Effect of different parameters is studied numerically all resonance cases are studied 

numerically to obtain the worst case . Stability of the system is investigated using both phase plane and frequency 

response curves. 
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INTRODUCTION  

Mechanical and structural systems are inherently are inherently non-linear due to many sources. Ultrasonic 
machining (USM) is of particular interest in the machining of conductive and non-conductive, brittle, complicated shape 
materials such as diamonds. Non-linearities necessarily introduce a whole range of phenomena that are not found in linear 
system [1], including jump phenomena, occurrence of multiple solutions, modulation, shift in natural frequencies, the 
generation of combination resonances, evidence of period multiplying bifurcations and chaotic motion [2-5]. In these 
systems the vibrations are needed to be controlled to minimize or eliminate the hazard of damage or destruction. There 
are two types for vibration control. They are active and passive control. One of the most effective tools of passive control is 
dynamic absorber or the neutralizer [6]. Nabergoj et al [7] Studied the stability of auto- parametric resonance in an 
externally excited system. Abdel Hafez and Eissa [8] studied the effects of non linear elastomeric torsion absorber to 
control the vibration of the crank shaft in internal combustion engines, when subject to external excitation torque. 
Mahmoud and Frghaly [9] investigated the steady-state analysis for a class of sliding mode controlled systems using 
describing function method. Eissa [10] has shown that to control the vibration of a system subjected to harmonic 
excitations, the fundamental or the first harmonic absorber is the most effective one.  

Eissa et al. [11-13] investigated saturation phenomena in non-linear oscillating systems subject to multi-
parametric and external excitation. Cao [14] studied primary resonate optimal control for homoclinic bifurcation in single 
degree of freedom non-linear oscillators. Jing and Wang [15] analyzed complex dynamics in Duffing system with two 
external forces. Eissa and sayed [16,17] presented tuned absorbers in both transversely and longitudinal directions of a 
simple pendulum which designed to control one frequency at primary resonance. El-Dib [18] investigated a theoretical 
analysis of parametric harmonic response of two resonate modes based on a cubic non-linear system. Eissa and Amer 
[19] investigated the vibration control of a cantilever beam under both external and parametric excitation using active 
control via cubic damping feedback. Amer [20] investigation the coupling of two non-linear oscillators of the main system 
and absorber representing ultrasonic cutting process subject to parametric excitation forces. Sayed and Hamed [21] 
studied the response of a two-degree-of –freedom system with quadratic coupling under parametric and harmonic 
excitations. Sayed and Kamel [22,23] investigated the effect of different controllers on the vibrating system and saturation 
control of a linear absorber to reduce vibrations due to rotor blade flapping motion. Amer and Abd El salam [24] 
investigated the effect of a non-linear absorber to reduce vibrations due to dynamical system subjected to multi external 
forces. Kamel et al [25] studied the vibration suppression in ultrasonic machining described by non-linear differential 
equations via passive controller.  

In this paper we studied the vibration control of a non-linear system under tuned excitation forces. the method of 
multiple scale is applied to obtained the approximate solution of the system. Vibration method is used to reduced the 
amplitude of vibration at the worst resonance case.The effect of different parameter are investigated.        

2. MATHEMATICAL MODELING 

A two – degree of freedom system composed of two weakly damped oscillators is considered. Here,  and  denote 

displacements of the main non- linear system and absorber, respectively. The following equations are obtained: 
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where 1m  and 2m  are the mass of the main system and absorber. 1c and 2c  are damping coefficients of the main 

system and absorber. 1k and 2k  are stiffness of the main system and absorber. F  is excitation amplitude of tuned 

force.   is frequency of the tuned force and    is excitation amplitued.Let 1u x and 2 1v x x   then, equations (1) 

and (2) can be written as: 
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We can solve Eqs. (3) and (4) analytically using the multiple scale perturbation technique as follows:  
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And the time derivatives become 
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n

n

D
T



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 and (n=0,1,2,3) , 0T  is the fast time scale and nT  is the slow time scale(n=1,2,3). 

Substituting Eqs. (5) – (8) into Eqs. (3) and (4) and equating the coefficient of the same power of  in the both sides, we 

obtain the following set of ordinary differential equations: 
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The general solution of Eqs. (9) and (10) is given by 
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where A, B are unknown functions in . Substituting Eqs. (17),  (18) into Eqs. (11),  (12) and eliminating the secular 

terms then,  solve the resulting equations, yields: 
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where  , 1,...,6jE j   are complex functions of 1T . Substituting Eqs.(17)-(20) into Eqs.(13) and (14), hence solving 

the resulting equations, we obtain the following: 
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where  , 1, ,16jH j    are complex functions of 1T . Substituting Eqs. (17)-(22) into Eqs. (15) and (16), hence 

solving the resulting equations, we obtain the following: 
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where  , 1,...,54jL j   are complex functions of 1T . 

Resonance cases: 

  From the above derived solutions, the reported resonance cases are:- 
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3. STABILTY ANALYSIS  

      We study the different resonance numerically to see the worst resonance, one of the worst cases has been chosen to 

study the system stability .The selected resonance case 1  .In this case we introduce the detuning parameter 

   according to 

    1   
       

                                                                                                                                                (25) 

Substituting Eq. (25) into Eqs. (11) and (12) and eliminating the secular and small divisor terms from 1u  and 1v ,we get 

the following : 
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To analyze the solution of equations (26) and (27) it is convenient to express A and B in the polar form: 
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      where a, b, 1 and 2  are unknown real-valued functions. Inserting Eq. (28) into Eqs. (26) and (27) and separating 

real and imaginary parts, we have 

    

2
32

1 2 1 1 2

1 1

31 1
cos sin sin

2 2 8 4

f
a a b b


    

 
                                                                          (29) 

    

2
' 32
1 2 1 1 2

1 1

31
sin cos cos

2 8 4

f
a b b


    

 
                                                                       (30) 

     2 1 1 1 1 3

1

1 1
1 cos sin sin

2 2 2 4

f
b b a a


      


                                                                         (31) 

     
2

' 32
2 1 1 1 1 1 3

1 1

3 1
1 sin cos cos

8 2 2 2 4

f
b b b a a

  
       

 
                                                    (32) 

where 1 2 1    , 2 1 1T    and 3 2 1T    . 

For steady state solutions, 
'0 0na b and    , (n=1,2,3)  into Eqs.(29)- (32) we obtained  
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32
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Solving the resulting algebraic equations yields two possibilities for the fixed points for each case. 

Case(1): the controller is deactivated, and 0, 0a b  , the frequency response equations can be obtained the form: 
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Case (2): the controller is activated, and , 0a b  and from Eqs. (33) – (36), the resulting two equations are: 

    

4 2
2 2 2 2 2 2 62 2

1 2 1 22 2

1 1 1

91 1
sin( )

4 4 64 16 4

ff
a a b b b

 
    

  
       

     

2
32

1 22

1

3
cos( ) 0

16

f
b


 


                                                                                                                         (38) 

       
2

2 22 2
22 2 2 2 2 32 1 2

1 1 2

1 1

31
1 1

4 4 4 2 8 16

f
a a b b b

  
    

 

  
         

  
 

       1
3 1 3 1

1

sin cos( ) 0
4 4

f f
a a

 
   


                                                                                     (39) 

3.1 Linear solution 

Now, to study the stability of the linear solution of the obtained fixed let us consider A and B in the forms: 

           1 1 2 1

1 1 1 1 2 2

1 1
,

2 2

i T i TA T p iq e B T P iq e 
   

          

                                                                      (40) 

where 1 1 2 2, ,p q p and q  are real values and considering 1 2     . 

Substituting from Eq. (40) into the linear parts of Eqs. (26), (27) and separating real and imaginary parts, the following 
system of equations are obtained: 

1- For the solution  0, 0a b  , we have 

' 1
1 1 1 0

2
p p q


                                                                                                             (41) 

' 1
1 1 1σ p 0

2 4

f
q q


                                                                                                               (42) 

The stability of the linear solution is obtained from the zero characteristic equation: 

    

1

1

ζ
λ σ

2
0

ζ
σ λ

2

 
  
 


 

   
 

                                                                                                         (43) 

where,
1

1,2

ζ
      λ iσ

2
                                                                                                                   (44) 

The linear solution is stable in this case if and only if 1ζ 0 , ad otherwise it is unstable. 

2- For the practical solution  0, 0a b  , we have 

             
' 1 2
1 1 1 2 0

2 2
p p q p

 
                                                                                                       (45) 

            
' 1 2
1 1 1 2

1

0
2 2 4

f
q p q q

 



                                                                                                         (46) 
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             ' 1 2
2 1 1 1 2 1 21 0

2 2 2 2
p p q p q

  
   

 
       

 
                                                            (47) 

             ' 1 2
2 1 1 1 1 2 2

1

1 0
2 2 2 2 4

f
q p q p q

  
   



 
        

 
                                                           (48) 

The stability of the linear solution in this case is obtained from the zero characteristic equation 

      

1 2

1 2

1 1 2
1

1 1 2
1

( ) 0
2 2

( ) 0
2 2

0

( (1 )) ( )
2 2 2 2

( ) ( (1 ))
2 2 2 2

 
 

 
 

    
   

   
   

 

  



    

    

                                                   (49)                     

After extract we obtain that: 

      
4 3 2

1 2 3 4 0r r r r                                                                                                             (50) 

where  and  are defined in Appendix.  

According to Routh-Huriwitz criterion, the above linear solution is stable if the following are satisfied: 

      
2

1 1 2 3 3 1 2 3 1 4 40, 0, ( ) 0, 0r r r r r r r r r r r                                                                         (51) 

3.2 Non-linear solution 

 To determine the stability of the fixed points, one lets 

       10 11 10 11 0 1, , 1,2,3m m ma a a b b b m                                                                           (52) 

Where   and  are solutions of Eqs. (33)- (36) and 11 11 m1a ,b ,φ  are perturbations which are assumed to be 

small comparing to 10 10a ,b  and m0φ .substituting Eq.(52) into Eqs.(29)-(32) using Eqs. (33)- (36) and keeping only the 

linear terms in  we obtain: 

1- For the solution  0, 0a b  , we have 

             
' 1
11 11 20 21

1

cos
2 4

f
a a


 



  
     
   

                                                                                              (53) 

            
'

21 11 20 21

10 10 1

sin
4

f
a

a a


  



   
    
   

                                                                                     (54)   

The stability of a given fixed point to a disturbance proportional to exp (λ t) is determined by the roots of: 

             

1
20

1

20

10 10 1

cos
2 4

0

sin
4

f

f

a a














  







                                                                                                            (55) 

Consequently, a non-trivial solution is stable if and only if the real parts of both eigen values of the coefficient matrix (55) 
are less than zero. 

2- For the practical solution  0, 0a b  , we have 
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2
' 21 2 2
11 11 10 10 10 11

1

9
cos sin

2 2 8
a a b b

  
 



  
     
   

 

                             

2
32 2

10 10 10 10 11 20 21

1 1

3
sin cos cos

2 8 4

f
b b

 
    

 

 
  

 
  
  

                                             (56) 

                      

2
' 22 2
21 11 10 10 10 11

10 10 1

9
sin cos

2 8
a b b

a a

 
  



   
     
   

 

                              

2
32 2

10 10 10 10 11

10 1

3
cos sin

2 8
b b

a

 
  



 
 
 

 20 21

1

sin
4

f
 



 
  
 

                                         (57)                                                                      

                       ' 2 1
11 10 1 10 11 11cos sin 1

2 2 2
b a b

 
   

   
      
   

                                                                                

                                
1

10 1 10 10 11 30 31

1

sin cos cos
2 2 4

f
a

 
     



 
 

 
   

 


 
                                        (58) 

                     
' 1
31 10 10 1 10 11

10 10

sin cos
2 2

a a
b b

 
   

 
   

 
          

                                 
2

2
10 1 11

10 1 10

9
1

8 2
b b

b b

 
 



 
   





  

                                      
1

10 10 1 10 10 11

10 10

cos sin
2 2

a a
b b

 
   

 
  
 

30 31

1

sin
4

f
 



 
  
 

                                       (59)                                                                                         

The stability of a particular fixed point with respect to perturbations proportional to exp (λ t) depends on the real parts of 
the roots of the matrix .thus, a fixed point given by Eqs. (56)-(59) is asymptotically stable if and only if the real parts of all 
roots of the matrix are negative. 

4. NUMERICAL RESULTS  

The non linear dynamical system without absorber is solved numerically using Maple, at non resonance case (basic case) 

as shown in Fig.1, we can see that the steady state amplitude is about 0.002 ( 0.0014 times of the excitation amplitude  ) 

and the system is stable. All resonance cases obtained the worst cases as shown in Fig.2, the resonance case 

 the steady state amplitude is increased to  15 times of the basic case shown in Fig.2 while the case 

 the steady state is increased to 30 times of the basic case. Shown in Fig.2 so, this case is considered to 

study the stability of the system if the control is active. Frequency response equation (37) is non linear algebraic equation 

of the amplitude  against the detuning parameter σ, when the absorber is deactivated , this equation is 

solved numerically as shown in Fig. 4, from this figure we see that the amplitude of the main system is monotonic 

increasing function on the excitation amplitude  as shown in Fig. 4a, but the amplitude of the main system is monotonic 

decreasing function on natural frequency  and damping coefficient  as shown in Fig. 4b and 4c. Frequency response 

equation (38) and (39) is solved numerically as shown in Fig.5 and Fig.6, we can obtained that the steady state amplitude 

of the main system  is monotonic decreasing function of the natural frequency  and damping coefficient  as shown in 

Figs. 5a, 5c, 6a and 6c, and the amplitude of the main system is monotonic increasing function of the excitation force 

amplitude  as shown in Fig. 5d and Fig.6e. From Figs. 5b, 5d, 6b and 6d, the steady state amplitude of the absorber is 

monotonic increasing in the natural frequency  and damping coefficient , which is opposite to the main system. The 

steady state amplitude of the absorber is monotonic increasing function of the excitation force amplitude  as shown in 

Fig. 6f.  
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Fig. 1 the system behavior without absorber at non resonance case  (basic case) 
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Fig. 2. Some of selected resonance cases of the system without absorber. 

 

  

 

   

 

 

 

 

 

                                                                                                                                                                                                                                                          

 

 

Fig. 3. System behavior with controller at the resonance case 1 Ω  
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Fig. 4. Frequency response curves  0  0a and b   

 

 

 

    

                                                                                                                                  

                                                                                                                                      

                                                                                                                                                                                                                                                                                      
                                                                                                                                                             

                                                                                                                          

                                                                                                                                                                          

                                                                                                                                                       

                              

 

 

 

 

 

 

 

 

 

 

Fig. 5. Response curves of equation (38)  0  0a and b   
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Fig. 6. Response curves of equation (39)  0  0a and b  . 

5.CONCLUSION 

The vibration of non- linear dynamical system subjected to tuned excitation force is studied, the worst resonance case is 

1( Ω )   .Hence the stabilty of the system and absorber are studied using the frequency response functions from 

the above study, the following results are conclloded: 

1- The steady state of the system without absorber is about 0.002 which consider as basic case. 

2- The worest resonanance case is 1 Ω    the steady state is increased to 30 times of the basic case. 

3- The amplitude of the main system is monotonic decreasing function on natural frequency 1  and damping 

coefficient 1 . 

4- The amplitude of the main system is monotonic increasing function on the excitation amplitude f . 

5- The effectiveness of the controller is Ea is about 6. 

Appendix: 

 Coefficients of equations (3) and (4):- 
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2 22 1 2 1 2

1 2 1 2

1 2 2 1 2 1

1
, , , , , ,

m c c k k F
f

m m m m m m
          

 
   

Coefficients of equation (50):- 

        
22 2

2 21 2
1 1 2 2 1 2 11 , 1 1

4 4 2
r r

  
         

 
           

 
 

        
22 2

2 21 2 2 1 2
3 1 1 2 11 1 1

4 4 2 4
r

      
        

 
         

 
 

     
2 22 2 2

22 2 21 2 1
4 1 2 11 1

16 4 2 2
r

    
        

   
           

   

 

             
2

2

2 1 1 2 11
4 4 2

   
      

 
   

 
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