Matrices of inversions for permutations: Recognition and Applications

E. A. Elrifai and Redha. A. Alghamdi* Department of Mathematical Sciences, Faculty of science,
Princess Norah Bint Abdulrahman University, Kingdom of Saudi Arabia. eaelrifai@pnu.edu.sa, *rdh.ashour24@hotmail.com

Abstract

This work provides a criterion for a binary strictly upper triangle matrices to be a matrix of inversions for a permutation. It admits an invariant matrices for permutations to being well recognizable. Then it provides a complete algorithmic classification of elements in the symmetric group S_{n}. Also it gives an algorithm for generating and writing a permutation in a unique canonical form, as a word of transpositions.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 9, No 1
editor@cirjam.org
www.cirjam.com, www.cirworld.com

1 Introduction:

Symmetric groups are important to many studies in mathematics such as group theory, representation theory, combinatorics and invariant theory [1]. Also they are powerful in classifying chemicals and spectral properties of molecules [2], [3], as well as quantum mechanics [4].

For a permutation $\pi:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$, let us denote by π_{i} for $\pi(i)$ and $\pi=\left(\pi_{1} \pi_{2} \ldots \pi_{n}\right)$ in S_{n}. An inversion of a permutation π is a pair (i, j) with $i<j$ and $\pi_{i}>\pi_{j}$, the inversion number of π is the total number of its inversions, i.e. $\operatorname{Inv}(\pi)=\left|\left\{(i, j): i<j, \pi_{i}>\pi_{j},\right\}\right|[5]$. The notion called matrix of inversions for a permutation $\pi=\left(\pi_{1} \pi_{2} \ldots \pi_{n}\right)$ in S_{n} is introduced in [6]. That any permutation π in S_{n} has a unique matrix $M_{\pi}=\left(m_{i j}\right)_{n \times n}$ of its inversions, where $m_{i j}=1$ if $i<j$ and $\pi_{i}>\pi_{j}$, otherwise $m_{i j}=0$. Then any matrix of inversions is a binary strictly upper triangular matrix. As an example, consider the permutation $\pi=(6713254)$ in S_{7} which has inversions $\{(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(4,5),(6,7)\}$, then

$$
M_{\pi}=\left[\begin{array}{lllllll}
0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

We can, directly, extract the matrix M_{π} of π by considering the permutation as π a function $\left(\begin{array}{cccccc}1 & 2 & . & . & . & n \\ \pi_{1} & \pi_{2} & . & . & . & \pi_{n}\end{array}\right)$, then look to each restriction $\left(\begin{array}{cc}i & j \\ \pi_{i} & \pi_{j}\end{array}\right)$ of π to $\{i, j\}$ for all $i<j$, and find $m_{i j}$. For the permutation $\pi=(6713254)$, the restrictions $\left(\begin{array}{ll}3 & 6 \\ 1 & 5\end{array}\right),\left(\begin{array}{ll}4 & 5 \\ 3 & 2\end{array}\right)$ give $m_{36}=0, m_{45}=1$, respectively.

A binary operation on $M_{n}(F)=\left\{M_{\pi}: \pi \in S_{n}, m_{i j} \in F=\{0,1\}\right\}$ is defined in [6], as $M_{\alpha}+M_{\beta}=M_{\alpha}+_{\bmod 2} \alpha^{-1}\left(M_{\beta}\right)$ for each α, β in S_{n}, and if $M_{\alpha}=\left(m_{i j}\right)$, then,

$$
\beta\left(M_{\alpha}\right)=\beta\left(m_{i j}\right)=\left\{\begin{array}{ll}
0 & i \geq j \\
m_{\beta(i) \beta(j)} & , \quad i<j, \beta(i)<\beta(j) \\
m_{\beta(j) \beta(i)} & , \quad i<j, \beta(i)>\beta(j)
\end{array}\right\}
$$

The set $M_{n}(F)$ with the above operation is a group which is isomorphic to S_{n}. Where $F=\{0,1\}$ is the field with the addition $+_{\bmod 2}$, while the associative operations + , on $F=\{0,1\}$ are defined as: $0+0=1+1=0$, $1+0=0+1=1, \quad 0 . \quad 0=1 . \quad 0=0 . \quad 1=0,1 . \quad 1=1$.

In section two we provide a criterion for a binary strictly upper triangle matrices to be a matrix of inversions for a permutation. It admits an invariant matrix for permutations to being well recognizable. Then it provides a complete algorithmic classification of elements in the symmetric group S_{n}. In section three we give an algorithm for generating and writing a unique canonical word for a permutation as a word of transpositions. We hope that this work will be useful for the representation of braid groups of Hecke algebra.

2 Recognition of matrices of inversions for permutations

Binary matrices are of interest in combinatorics, information theory, cryptology, and graph theory [7], [8]. For each natural number n, there are $2^{n^{2}}$ binary $n \times n$ matrices. But not every such matrix is a matrix of inversions for a permutation in
S_{n} for some natural number n. e.g. for $n=2$ we have sixteen binary matrices, where there are only two matrices of inversions, and for $n=3$ we have $2^{3^{2}}=512$ binary matrices, where there are only six matrices of inversions.

As above, every permutation $\pi \in S_{n}$ has a unique matrix of inversions $M_{\pi}=\left(m_{i j}\right)$ which is $n \times n$ binary strictly upper triangular matrix. In fact, each binary strictly upper triangular $n \times n$ matrix has $n(n-1) / 2$ entries in the upper triangle, then there are $2^{n(n-1) / 2}$ of such these matrices, but not every such matrix is a matrix of inversions of a permutation. For $n=3$ there are eight binary strictly upper triangular matrices, but we have only 6 matrices of inversions . The following example gives a binary strictly upper triangular matrix which does not a matrix of inversions of any permutation.

Example 1 Consider the binary strictly upper triangular 4×4 matrix

$$
A=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

it can not be a matrix of inversions of any permutation in S_{4}. To see that take $\pi=\left(\pi_{1} \pi_{2} \pi_{3} \pi_{4}\right)$ in S_{4}, the first row in A implies that $\pi_{1}<\pi_{2}, \pi_{1}>\pi_{3}, \pi_{1}>\pi_{4}$, while the second row gives $\pi_{2}<\pi_{3}, \pi_{2}>\pi_{4}$, then $\pi_{1}<\pi_{2}<\pi_{3}$ which contradicts $\pi_{1}>\pi_{3}$, hence A does not a matrix of inversions.

Now we are going to give a necessary and sufficient condition for a binary strictly upper triangle matrix to be a matrix of inversions of a permutation, then we can recognize matrix of inversions. We are going to establish the $(n+1) \times(n+1)$ matrices of inversions from $n \times n$ matrices of inversions. Given an $n \times n$ matrix of inversions A_{π}, we can enlarge it by $(n+1) \times 1$ column and $1 \times(n+1)$ row vectors.

Definition 2 For each n in N and for a permutation $\pi=\left(\pi_{1} \pi_{2} \ldots \pi_{n}\right)$ in S_{n}, define the lifting operator $T: S_{n} \rightarrow S_{n+1}, \quad T(\pi)=\left(1 \pi_{1}+1 \pi_{2}+1 \ldots \pi_{n}+1\right)$. Also for $r=1,2, \ldots, n+1$, define the (r, n) inserting permutation $I_{n}^{r}(\pi)$ of π in S_{n+1}, by $I_{n}^{r}: S_{n} \rightarrow S_{n+1}, I_{n}^{r}(\pi)=T(\pi) \circ C_{r}$, where

$$
C_{r}=\left\{\begin{array}{lll}
i d . & & r=1 \\
\left(\begin{array}{llll}
r & 1 & 2 & 3 \ldots r-1 r+1 \ldots n n+1) \\
(n+1 & 1 & 2 & 3 \ldots n)
\end{array}\right. & , \quad 2 \leq r \leq n \\
(& r=n+1
\end{array}\right\}
$$

In fact the lifting operator T is the inserting $(1, n)$, i.e. $T=I_{n}^{1}$. A geometric representation of the permutations $\pi, T(\pi), C_{r}$, and $I_{n}^{r}(\pi)$ is illustrated in Figure 1.

Figure 1: From left to right, a geometric representation of the permutations π in S_{n} and $T(\pi), C_{r}$ and $I_{n}^{r}(\pi)$

$$
\text { in } S_{n+1}
$$

Lemma 3 For a permutation π in S_{n}, the (r, n) inserting permutation $\theta=I_{n}^{r}(\pi)$ of π in S_{n+1} is

$$
\theta_{i}=\left\{\begin{array}{ll}
r & , \quad i=1 \\
\pi_{i-1} & , \quad \pi_{i}<r, 1<r \leq n+1 \\
\pi_{i-1}+1 & , \quad \pi_{i} \geq r, 1<r \leq n+1
\end{array}\right\}
$$

Proof. From the definition above $\theta=I_{n}^{r}(\pi)=T(\pi) \circ C_{r}$, then $\theta_{1}=\left(T(\pi) \circ C_{r}\right)_{1}=C_{r}\left(T(\pi)_{1}\right)=C_{r}(1)=r$. Now for $i \in\{2,3, \ldots, n\}$ and for π_{i} with $\pi_{i}<r$, then $\theta_{i}=\pi_{i-1}$, but for $\pi_{i}>r$, we have $\theta_{i}=\pi_{i-1}+1$. So that,

$$
I_{n}^{r}(\pi)=T(\pi) \circ C_{r}=\theta=\left\{\begin{array}{ll}
\theta_{i}=r & , \quad i=1 \\
\theta_{i}=\pi_{i-1} & , \quad \pi_{i}<r, i \in\{2,3, \ldots, n+1\} \\
\theta_{i}=\pi_{i-1}+1 & , \quad \pi_{i} \geq r, i \in\{2,3, \ldots, n+1\}
\end{array}\right\}
$$

Proposition 4 For a permutation π in S_{n} with matrix permutation inversion $M_{\pi}=\left(m_{i j}\right)$, the r-th embedding $I_{n}^{r}(\pi)=T(\pi) \circ C_{r}$ of π in S_{n+1} has matrix of inversions

$$
M_{I_{n}^{r}(\pi)}=M_{T(\pi) \circ C_{r}}=\left(n_{i j}\right)=\left\{\begin{array}{ll}
m_{i-1 j-1} & , \quad 2 \leq i, j \leq n+1 \\
n_{j 1}=0 & , \quad 1 \leq j \leq n+1 \\
n_{1 j}=0 & , \quad \pi_{j} \geq r \\
n_{1 j}=1 & , \quad \pi_{j}<r
\end{array}\right\}
$$

Proof. Let π be a permutation in S_{n} with matrix of inversions $M_{\pi}=\left(m_{i j}\right)$, then the $(1, n)$ inserting permutation $I_{n}^{1}(\pi)$ of π in S_{n+1} is $I_{n}^{1}(\pi)=\left(1 \pi_{1}+1 \pi_{2}+1 \ldots \pi_{n}+1\right)$, see second graph in Figure1. Then $\left(I_{n}^{1}(\pi)\right)_{1}=1<($ $\left.I_{n}^{1}(\pi)\right)_{i}$ for all $i>1$, so that the entries in the first row of its matrix of inversions $M_{I_{n}^{1}(\pi)}$ will be zeros. Then

$$
M_{I_{n}^{1}(\pi)}=\left[\begin{array}{cccc}
0 & 0 & . & 0 \\
0 & & & \\
. & & M_{\pi} & \\
0 & & &
\end{array}\right]
$$

Now, for $\pi_{i-1}<r$, then $\theta_{j}=\pi_{i-1}, i \in\{2,3, \ldots, n+1\}$ and for the pair $(1, i)$ where $1<i$, we have $\theta_{1}=r>\theta_{i}$, so we have inversion, hence $n_{1 i}=1$. Also, for $\pi_{i-1} \geq r$, then $\theta_{i}=\pi_{i-1}+1, i \in\{2,3, \ldots, n+1\}$ and for the pair $(1, i)$ where $1<j$, we have $\theta_{1}=r<r+1 \leq \pi_{i-1}+1=\theta_{i}$, so we have no inversion, hence $n_{1 i}=0$. Therefore the first row of $M_{I_{n}^{1}(\pi)}$ has r ones, where $\pi_{i-1}<r$, otherwise zeros
Example 5 Consider the permutation $\pi=(6713254)$ in S_{7}, then for $r=5$, we have $\pi_{i}<5, i=3,4,5,7$ and $\pi_{i} \geq 5, i=1,2,6$. Let $I_{8}^{5}(\pi)=\theta=\left(\theta_{1} \theta_{2} \ldots \theta_{8}\right)$, then $\theta_{1}=r=5, \quad \theta_{i}=\pi_{i-1}$ for $i=4,5,6,8$ and $\theta_{i}=\pi_{i-1}+1$ for $i=2,3,7$. Then the first row in the matrix $M_{I_{8}^{5}(\pi)}$ has exactly $r-1=4$ ones, and $\theta=(57813264)$ in S_{8}. Figure 2 illustrates a geometric representation of permutations $\pi=(6713254)$ and $I_{8}^{5}(\pi)=\theta=(57813264)$. The associated matrices of inversions M_{π} and $M_{I_{8}^{5}(\pi)}$ are,

Figure 2: A geometric representation of the permutations $\pi=(6713254)$ in

$$
S_{7}, T(\pi)=I_{8}^{1}(\pi)=(17824365) \text { and } I_{8}^{5}(\pi)=(57813264) \text { in } S_{8}
$$

Definition $6 A$ submatrix of a matrix M is the matrix obtained from $M=\left(m_{i j}\right)$ by deleting rows and columns but without permuting the remaining rows and columns. The submatrix obtained from a $n \times n$ matrix M by deleting the first $n-k$ rows and columns, $k=1,2, \ldots, n-1$ is called the $k-t h$ lower right submatrix, $L R(M)_{k}$, of the matrix M.

Theorem 7 A binary strictly upper triangle $n \times n$ matrix M is a matrix of inversions of a permutation π in S_{n} for some positive integer n if and only if for every $1 \leq k \leq n-1$ there exists $1 \leq r \leq k$ such that $L R(M)_{k}=$ $M_{I_{n}^{r}(\theta)}$ for some θ in S_{k-1}.

Proof. For the necessity, let π be a permutation in S_{n} and $M_{\pi}=\left(m_{i j}\right)$ be its matrix of inversions. Then take k such that $1 \leq k \leq n-1$, so by deleting the strands $\left(i \pi_{i}\right.$), from $i=1$, then $i=2$, up to $i=k$ from the permutation π, then we have a new permutation $\theta=\left(\theta_{1} \theta_{2} \ldots \theta_{n-k}\right)$ in S_{n-k}, where its matrix of inversions will be $L R\left(M_{\pi}\right)_{k}$, as in proposition above. For the converse, let M be a binary strictly upper triangle $n \times n$ matrix such that $L R(M)_{k}=$ $M_{I_{n}^{r}(\theta)}$ for some θ in S_{k-1} for every $1 \leq k \leq n-1$ and for some r with $1 \leq r \leq k$. If so we apply the process lemma above and use induction, which ends the proof.

Example 8 For $\pi=(68237541) \in S_{8}$, starting from $m_{11}=0$ where M_{π} is a strictly upper triangle matrix, then compare the value $\pi_{1}=6$ with the next values of $\pi_{i}, i=2,3, \ldots, 8$, then $m_{1 i}=0$ for $\pi_{1}<\pi_{i}$ and $m_{1 i}=1$ for $\pi_{1}>\pi_{i}$. The first row of the matrix M_{π} will be $(0,0,1,1,0,1,1,1)$. For the second row $m_{21}=m_{22}=0$, then compare the value $\pi_{2}=8$ with the next values of $\pi_{i}, i=3,4, \ldots, 8$, then $m_{2 i}=1$ for all $i \geq 3$. Then the second row of the matrix M_{π} will be $(0,0,1,1,1,1,1,1)$. Following this process, we have M_{π} as,

$$
M_{\pi}=\left[\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Then

$$
L R\left(M_{\pi}\right)_{4}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right],
$$

with associated permutations $\theta=(4321)$ and $I_{5}^{1}(\theta)=(25431)$, and with matrix of inversions

$$
M_{I_{5}^{1}(\theta)}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

3 Generating and writing a unique canonical word for a permutation

The most common way for writing a permutation in a unique form is by decomposing it into combinations of cycles [1]. Here we give an algorithm for generating and writing a permutation in a standard canonical form as a composition of transpositions.
Algorithm 9 Generating and writing down a permutation from its matrix of inversions in a unique canonical form:

1. For a permutation π in S_{n}, find its matrix of inversions M_{π}.
2. Each row will be producing a word as a product of transpositions.
3. The row that all its entries are zeros will contribute by the identity word, id..
4. If the number of ones in the entries of the $i^{\text {th }}$ row is k, then the corresponding word will be $w_{i}=\tau_{i} \tau_{i+1} \ldots \tau_{i+k-1}$.
5. Then writes $\pi=w_{n} w_{n-1} \ldots w_{1}$.

Consider the permutation $\pi=(531642)$, then its matrix of inversions is

$$
M_{\pi}=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Then $w_{1}=\tau_{1} \tau_{2} \tau_{3} \tau_{4}, w_{2}=\tau_{2} \tau_{3}, w_{3}=i d ., w_{4}=\tau_{4} \tau_{5}, w_{5}=\tau_{5}, w_{6}=i d$. , and the associated canonical word is
$\pi=w_{6} w_{5} \ldots w_{1}=i d . . \tau_{5} . \tau_{4} \tau_{5} . i d . . \tau_{2} \tau_{3} . \tau_{1} \tau_{2} \tau_{3} \tau_{4}=\tau_{5} . \tau_{4} \tau_{5} . \tau_{2} \tau_{3} . \tau_{1} \tau_{2} \tau_{3} \tau_{4}$. Notice that the arrangement of the words w_{i} is according to the tower of the associated lower right corner submatrices of the matrix M_{π}, where the associated $k-t h$ lower right submatrices, $L R(M)_{k}, \quad k=0,1, \ldots, 5$, are

$L R\left(M_{\pi}\right)_{5}$	$L R\left(M_{\pi}\right)_{4}$	$L R\left(M_{\pi}\right)_{3}$	$L R\left(M_{\pi}\right)_{2}$	$L R\left(M_{\pi}\right)_{1}$	$L R\left(M_{\pi}\right)_{0}$
[0]	$\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$	$\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$	$\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$	$\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$	$\left[\begin{array}{llllll}0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

References

[1] 1R. McWeeny, "An introduction to group theory and its applications" Dover Publications, USA, 2002.
[2] I W. Ludwig and C. Falter, "Symmetries in Physics" Springer, Berlin, 1988.
[3] Alan Vincent, "Molecular Symmetry and Group Theory" Wiley, 1988.
[4] Weyl and Von Neumann: Symmetry, "Group Theory and Quantum Mechanics" Symmetries in Physics, New Reflections: Oxford Workshop, Oxford, 2001.
[5] B. H. Margolius, Permutations with inversions, J. Integer Seq., Article 01.2.4, 4 (2001).
[6] E. A. Elrifai, M. Anis, "Positive permutation braids and permutation inversions with some applications" Journal of knot theory and its ramifications, Vol. 21, No. 10, 2012.
[7] R. Baeza-Yates and B. Ribeiro-Neto "Modern Information Retrieval". Addison Wesley, 1999.
[8] Arjen Stolk Discrete tomography for integer-valued functions". Ph.D. thesis, Leiden University, Holand, Printed by Ridderprint, Ridderkerkat, 2011.

