

Matrices of inversions for permutations: Recognition and Applications

E. A. Elrifai and Redha. A. Alghamdi*
Department of Mathematical Sciences,
Faculty of science,
Princess Norah Bint Abdulrahman University,
Kingdom of Saudi Arabia.
eaelrifai@pnu.edu.sa, *rdh.ashour24@hotmail.com

Abstract

This work provides a criterion for a binary strictly upper triangle matrices to be a matrix of inversions for a permutation. It admits an invariant matrices for permutations to being well recognizable. Then it provides a complete algorithmic classification of elements in the symmetric group S_n . Also it gives an algorithm for generating and writing a permutation in a unique canonical form, as a word of transpositions.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 9, No 1

editor@cirjam.org

www.cirjam.com, www.cirworld.com

1 Introduction:

Symmetric groups are important to many studies in mathematics such as group theory, representation theory, combinatorics and invariant theory [1]. Also they are powerful in classifying chemicals and spectral properties of molecules [2], [3], as well as quantum mechanics [4].

For a permutation $\pi:\{1,2,...,n\} \to \{1,2,...,n\}$, let us denote by π_i for $\pi(i)$ and $\pi=(\pi_1\pi_2...\pi_n)$ in S_n . An inversion of a permutation π is a pair (i,j) with i< j and $\pi_i>\pi_j$, the inversion number of π is the total number of its inversions, i.e. $Inv(\pi)=\left|\{(i,j):i< j,\pi_i>\pi_j,\right\}\right|$ [5]. The notion called matrix of inversions for a permutation $\pi=\left(\pi_1\pi_2...\pi_n\right)$ in S_n is introduced in [6]. That any permutation π in S_n has a unique matrix $M_\pi=(m_{ij})_{n\times n}$ of its inversions, where $m_{ij}=1$ if i< j and $\pi_i>\pi_j$, otherwise $m_{ij}=0$. Then any matrix of inversions is a binary strictly upper triangular matrix. As an example, consider the permutation $\pi=(6713254)$ in S_7 which has inversions $\{(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(4,5),(6,7)\}$, then

We can, directly, extract the matrix M_π of π by considering the permutation as π a function $\begin{pmatrix} 1 & 2 & . & . & n \\ \pi_1 & \pi_2 & . & . & . & \pi_n \end{pmatrix}$, then look to each restriction $\begin{pmatrix} i & j \\ \pi_i & \pi_j \end{pmatrix}$ of π to $\{i,j\}$ for all i < j, and find m_{ij} . For the permutation $\pi = (6713254)$, the restrictions $\begin{pmatrix} 3 & 6 \\ 1 & 5 \end{pmatrix}$, $\begin{pmatrix} 4 & 5 \\ 3 & 2 \end{pmatrix}$ give $m_{36} = 0$, $m_{45} = 1$, respectively.

A binary operation on $M_n(F) = \left\{ M_\pi : \pi \in S_n, m_{ij} \in F = \{0,1\} \right\}$ is defined in [6], as $M_\alpha + M_\beta = M_\alpha + \sum_{mod 2} \alpha^{-1}(M_\beta)$ for each α, β in S_n , and if $M_\alpha = (m_{ij})$, then,

$$eta(M_lpha) = eta(m_{ij}) = \left\{ egin{array}{lll} 0 & , & i \geq j \ m_{eta(i)eta(j)} & , & i < j, \; eta(i) < eta(j) \ m_{eta(j)eta(i)} & , & i < j, \; eta(i) > eta(j) \end{array}
ight.
ight.$$

The set $M_n(F)$ with the above operation is a group which is isomorphic to S_n . Where $F = \{0,1\}$ is the field with the addition $+_{mod 2}$, while the associative operations + , on $F = \{0,1\}$ are defined as: 0+0=1+1=0, 1+0=0+1=1, 0. 0=1. 0=0. 1=0, 1. 1=1.

In section two we provide a criterion for a binary strictly upper triangle matrices to be a matrix of inversions for a permutation. It admits an invariant matrix for permutations to being well recognizable. Then it provides a complete algorithmic classification of elements in the symmetric group S_n . In section three we give an algorithm for generating and writing a unique canonical word for a permutation as a word of transpositions. We hope that this work will be useful for the representation of braid groups of Hecke algebra.

2 Recognition of matrices of inversions for permutations

Binary matrices are of interest in combinatorics, information theory, cryptology, and graph theory [7], [8]. For each natural number n, there are 2^{n^2} binary $n \times n$ matrices. But not every such matrix is a matrix of inversions for a permutation in

 S_n for some natural number n . e.g. for n=2 we have sixteen binary matrices, where there are only two matrices of inversions, and for n=3 we have $2^{3^2}=512$ binary matrices, where there are only six matrices of inversions.

As above, every permutation $\pi \in S_n$ has a unique matrix of inversions $M_\pi = (m_{ij})$ which is $n \times n$ binary strictly upper triangular matrix. In fact, each binary strictly upper triangular $n \times n$ matrix has n(n-1)/2 entries in the upper triangle, then there are $2^{n(n-1)/2}$ of such these matrices, but not every such matrix is a matrix of inversions of a permutation. For n=3 there are eight binary strictly upper triangular matrices, but we have only 6 matrices of inversions . The following example gives a binary strictly upper triangular matrix which does not a matrix of inversions of any permutation .

Example 1 Consider the binary strictly upper triangular 4×4 matrix

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

it can not be a matrix of inversions of any permutation in S_4 . To see that take $\pi=(\pi_1\pi_2\pi_3\pi_4)$ in S_4 , the first row in A implies that $\pi_1<\pi_2,\pi_1>\pi_3,\pi_1>\pi_4$, while the second row gives $\pi_2<\pi_3,\pi_2>\pi_4$, then $\pi_1<\pi_2<\pi_3$ which contradicts $\pi_1>\pi_3$, hence A does not a matrix of inversions.

Now we are going to give a necessary and sufficient condition for a binary strictly upper triangle matrix to be a matrix of inversions of a permutation, then we can recognize matrix of inversions. We are going to establish the $(n+1)\times(n+1)$ matrices of inversions from $n\times n$ matrices of inversions. Given an $n\times n$ matrix of inversions A_π , we can enlarge it by $(n+1)\times 1$ column and $1\times(n+1)$ row vectors.

$$C_r = \left\{ \begin{array}{ll} id. & , & r = 1 \\ (r \ 1 \ 2 \ 3...r - 1 \ r + 1...n \ n + 1) & , & 2 \le r \le n \\ (n + 1 \ 1 \ 2 \ 3...n \) & , & r = n + 1 \end{array} \right\}$$

In fact the lifting operator T is the inserting (1,n), i.e. $T=I_n^1$. A geometric representation of the permutations $\pi, T(\pi), C_r$, and $I_n^r(\pi)$ is illustrated in Figure 1.

Figure 1: From left to right, a geometric representation of the permutations π in S_n and $T(\pi)$, C_r and $I_n^r(\pi)$ in S_{n+1}

Lemma 3 For a permutation π in S_n , the (r,n) inserting permutation $\theta = I_n^r(\pi)$ of π in S_{n+1} is

$$\theta_i = \left\{ \begin{array}{ll} r & , & i = 1 \\ \pi_{i-1} & , & \pi_i < r, 1 < r \le n+1 \\ \pi_{i-1} + 1 & , & \pi_i \ge r, 1 < r \le n+1 \end{array} \right\}$$

Proof. From the definition above $\theta = I_n^r(\pi) = T(\pi) \circ C_r$, then $\theta_1 = (T(\pi) \circ C_r)_1 = C_r(T(\pi)_1) = C_r(1) = r$. Now for $i \in \{2,3,...,n\}$ and for π_i with $\pi_i < r$, then $\theta_i = \pi_{i-1}$, but for $\pi_i > r$, we have $\theta_i = \pi_{i-1} + 1$. So that,

$$I_n^r(\pi) = T(\pi) \circ C_r = \theta = \left\{ \begin{array}{ll} \theta_i = r &, & i = 1 \\ \theta_i = \pi_{i-1} &, & \pi_i < r, i \in \{2, 3, ..., n+1\} \\ \theta_i = \pi_{i-1} + 1 &, & \pi_i \ge r, i \in \{2, 3, ..., n+1\} \end{array} \right\}$$

Proposition 4 For a permutation π in S_n with matrix permutation inversion $M_\pi=(m_{ij})$, the r-th embedding $I_n^r(\pi)=T(\pi)\circ C_r$ of π in S_{n+1} has matrix of inversions

$$M_{I_n^r(\pi)} = M_{T(\pi) \circ C_r} = (n_{ij}) = \left\{ \begin{array}{ll} m_{i-1j-1} & , & 2 \le i, j \le n+1 \\ n_{j1} = 0 & , & 1 \le j \le n+1 \\ n_{1j} = 0 & , & \pi_j \ge r \\ n_{1j} = 1 & , & \pi_j < r \end{array} \right\}$$

Proof. Let π be a permutation in S_n with matrix of inversions $M_\pi=(m_{ij})$, then the (1,n) inserting permutation $I_n^1(\pi)$ of π in S_{n+1} is $I_n^1(\pi)=\left(1\,\pi_1+1\,\pi_2+1...\pi_n+1\right)$, see second graph in Figure 1. Then $(I_n^1(\pi))_1=1$ < $(I_n^1(\pi))_i$ for all i>1, so that the entries in the first row of its matrix of inversions $M_{I_n^1(\pi)}$ will be zeros. Then

$$M_{I_n^1(\pi)} = \begin{bmatrix} 0 & 0 & . & 0 \\ 0 & & & \\ . & & M_{\pi} & \\ 0 & & & \end{bmatrix}$$

Now, for $\pi_{i-1} < r$, then $\theta_j = \pi_{i-1}, i \in \{2,3,...,n+1\}$ and for the pair (1,i) where 1 < i, we have $\theta_1 = r > \theta_i$, so we have inversion, hence $n_{1i} = 1$. Also, for $\pi_{i-1} \ge r$, then $\theta_i = \pi_{i-1} + 1, i \in \{2,3,...,n+1\}$ and for the pair (1,i) where 1 < j, we have $\theta_1 = r < r+1 \le \pi_{i-1} + 1 = \theta_i$, so we have no inversion, hence $n_{1i} = 0$. Therefore the first row of $M_{I^1_n(\pi)}$ has r ones, where $\pi_{i-1} < r$, otherwise zeros

Example 5 Consider the permutation $\pi=(6713254)$ in S_7 , then for r=5, we have $\pi_i<5, i=3,4,5,7$ and $\pi_i\geq 5, i=1,2,6$. Let $I_8^5(\pi)=\theta=(\theta_1\theta_2...\theta_8)$, then $\theta_1=r=5$, $\theta_i=\pi_{i-1}$ for i=4,5,6,8 and $\theta_i=\pi_{i-1}+1$ for i=2,3,7. Then the first row in the matrix $M_{I_8^5(\pi)}$ has exactly r-1=4 ones, and $\theta=(57813264)$ in S_8 . Figure 2 illustrates a geometric representation of permutations $\pi=(6713254)$ and $I_8^5(\pi)=\theta=(57813264)$. The associated matrices of inversions M_π and $M_{I_8^5(\pi)}$ are,

Figure 2: A geometric representation of the permutations $\pi=(6713254)$ in $S_7, T(\pi)=I_8^1(\pi)=(17824365)$ and $I_8^5(\pi)=(57813264)$ in S_8

Definition 6 A submatrix of a matrix M is the matrix obtained from $M=(m_{ij})$ by deleting rows and columns but without permuting the remaining rows and columns. The submatrix obtained from a $n \times n$ matrix M by deleting the first n-k rows and columns, k=1,2,...,n-1 is called the k-th lower right submatrix, $LR(M)_k$, of the matrix M.

Theorem 7 A binary strictly upper triangle $n \times n$ matrix M is a matrix of inversions of a permutation π in S_n for some positive integer n if and only if for every $1 \le k \le n-1$ there exists $1 \le r \le k$ such that $LR(M)_k = M_{I_n^r(\theta)}$ for some θ in S_{k-1} .

Proof. For the necessity, let π be a permutation in S_n and $M_\pi=(m_{ij})$ be its matrix of inversions. Then take k such that $1 \le k \le n-1$, so by deleting the strands $(i\ \pi_i)$, from i=1, then i=2, up to i=k from the permutation π , then we have a new permutation $\theta=(\theta_1\theta_2...\theta_{n-k})$ in S_{n-k} , where its matrix of inversions will be $LR(M_\pi)_k$, as in proposition above. For the converse, let M be a binary strictly upper triangle $n\times n$ matrix such that $LR(M)_k=M_{I_n^r(\theta)}$ for some θ in S_{k-1} for every $1\le k\le n-1$ and for some r with $1\le r\le k$. If so we apply the process lemma above and use induction, which ends the proof.

Example 8 For $\pi=(68237541)\in S_8$, starting from $m_{11}=0$ where M_π is a strictly upper triangle matrix, then compare the value $\pi_1=6$ with the next values of $\pi_i, i=2,3,...,8$, then $m_{1i}=0$ for $\pi_1<\pi_i$ and $m_{1i}=1$ for $\pi_1>\pi_i$. The first row of the matrix M_π will be (0,0,1,1,0,1,1,1). For the second row $m_{21}=m_{22}=0$, then compare the value $\pi_2=8$ with the next values of $\pi_i, i=3,4,...,8$, then $m_{2i}=1$ for all $i\geq 3$. Then the second row of the matrix M_π will be (0,0,1,1,1,1,1,1). Following this process, we have M_π as,

$$\boldsymbol{M}_{\pi} = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Then

$$LR(M_{\pi})_{4} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

with associated permutations $\theta = (4321)$ and $I_5^1(\theta) = (25431)$, and with matrix of inversions

$$M_{I_5^1(\theta)} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

3 Generating and writing a unique canonical word for a permutation

The most common way for writing a permutation in a unique form is by decomposing it into combinations of cycles [1]. Here we give an algorithm for generating and writing a permutation in a standard canonical form as a composition of transpositions.

Algorithm 9 Generating and writing down a permutation from its matrix of inversions in a unique canonical form:

- 1. For a permutation π in S_n , find its matrix of inversions M_{π} .
- 2. Each row will be producing a word as a product of transpositions.
- 3. The row that all its entries are zeros will contribute by the identity word, id...
- 4. If the number of ones in the entries of the i^{th} row is k, then the corresponding word will be $w_i = \tau_i \tau_{i+1} ... \tau_{i+k-1}$.
- 5. Then writes $\pi = w_n w_{n-1} ... w_1$.

Consider the permutation $\pi = (531642)$, then its matrix of inversions is

Then $w_1 = \tau_1 \tau_2 \tau_3 \tau_4$, $w_2 = \tau_2 \tau_3$, $w_3 = id$., $w_4 = \tau_4 \tau_5$, $w_5 = \tau_5$, $w_6 = id$., and the associated canonical word is

 $\pi = w_6 w_5 ... w_1 = id..\tau_5.\tau_4 \tau_5.id..\tau_2 \tau_3.\tau_1 \tau_2 \tau_3 \tau_4 = \tau_5.\tau_4 \tau_5.\tau_2 \tau_3.\tau_1 \tau_2 \tau_3 \tau_4.$ Notice that the arrangement of the words w_i is according to the tower of the associated lower right corner submatrices of the matrix M_π , where the associated k-th lower right submatrices, $LR(M)_k$, k=0,1,...,5, are

$LR(M_\pi)_5$	$LR(M_{\pi})_4$	$LR(M_{\pi})_3$	$LR(M_{\pi})_2$	$LR(M_{\pi})_1$	$LR(M_{\pi})_{0}$
[0]	$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$

References

- [1] 1R. McWeeny, "An introduction to group theory and its applications" Dover Publications, USA, 2002.
- [2] IW. Ludwig and C. Falter, "Symmetries in Physics" Springer, Berlin, 1988.
- [3] Alan Vincent, "Molecular Symmetry and Group Theory" Wiley, 1988.
 [4] Weyl and Von Neumann: Symmetry, "Group Theory and Quantum Mechanics" Symmetries in Physics, New Reflections: Oxford Workshop, Oxford, 2001.
- [5] B. H. Margolius, Permutations with inversions, J. Integer Seq., Article 01.2.4, 4 (2001).
- [6] E. A. Elrifai, M. Anis, "Positive permutation braids and permutation inversions with some applications" Journal of knot theory and its ramifications, Vol. 21, No. 10, 2012.
- R. Baeza-Yates and B. Ribeiro-Neto "Modern Information Retrieval". Addison Wesley, 1999.
- [8] Arjen Stolk Discrete tomography for integer-valued functions". Ph.D. thesis, Leiden University, Holand, Printed by Ridderprint, Ridderkerkat, 2011.

