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ABSTRACT 

Hahn introduced the difference operator , ( ) = ( ( ) ( )) / ( ( 1) )qD f t f qt f t t q       in 1949, where 0 < <1q  and 

0>  are fixed real numbers. This operator extends the classical difference operator  ))/()((=)( tftftf   

as well as Jackson q  difference operator ( ) = ( ( ) ( )) / ( ( 1))qD f t f qt f t t q  . In this paper, our target is to give a 

rigorous study of the theory of linear Hahn difference equations of the form  

 0.=)()(...)()()()( 1

,1,0 txtatxDtatxDta n

n

q

n

q  

  

We introduce its fundamental set of solutions when the coefficients are constant and the Wronskian associated with ,qD  . 

Hence, we obtain the corresponding Liouville’s formula. Also, we derive solutions of the first and second order l inear Hahn 
difference equations with non-constant coefficients. Finally, we present the analogues of the variation of parameter 
technique and the annihilator method for the non-homogeneous case.  

Keywords: Hahn difference operator; Jackson q  difference operator. 
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Introduction and Preliminaries 

Hahn introduced his difference operator which is defined by  
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tfqtf
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1)(
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=)(,  

where 1<<0 q  and 0>  are fixed real numbers , = / (1 )q   [12, 13]. This operator unifies and generalizes two 

well-known difference operators. The first is Jackson q  difference operator defined by  

 0,
1)(

)()(
=)( 
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qt

tfqtf
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where q  is fixed. Here f is supposed to be defined on a q  geometric set A R  for which Aqt  whenever 

At , see [2, 3, 5, 6, 9, 10, 15, 17, 18]. The second operator is the forward difference operator  
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where 0>  is fixed, see [7, 8, 16, 19]. Hahn’s operator was applied to construct families of orthogonal polynomials as 

well as to investigate some approximation problems, see [21, 22, 23]. Another direction of interest is to establish a calculus 
based on this operator. This was recently studied by M. H. Annaby, A. E. Hamza and K. A. Aldwoah in [4]. They proved a 
fundamental theorem of Hahn’s calculus. An essential function which plays an important role in this calculus is 

qtth =)( . This function is normally taken to be defined on an interval I  which contains the number  . One can see 

that the k th order iteration of )(th  is given by  

 .,][=)( Itktqth q

kk   

The sequence )(thk
 is uniformly convergent to   on I . Here qk][  is defined by  
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q
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Throughout this paper I is any interval of R containing   and X  is a Banach space. 

Definition 1.1. Assume that XIf :  is a function and let Iba , . The ,q  integral of f  from a  to b  is 

defined by  

 tdtftdtftdtf q
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q
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q
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where  
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provided that the series converges at ax =  and bx = .  

Definition 1.2 [4]. For certain Cz , the ,q -exponential functions )(tez and )(tEz are defined by  
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 and  
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To guarantee the convergence of the infinite product in (1.1)  with ,t C  we assume additionally that  
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see [1, 20]. For a fixed ,z C  (1.2)  converges for all ,t C  defining an entire function of order zero. For the proofs of the 

equalities in (1.1)  and (1.2) , see [11, Section 1.3] and [20]. Here the q shifted factorial nqb );( for a complex number 

b and 0Nn is defined to be  
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 Definition 1.3. For ,z C  the ,q -trigonometric functions );(cos , zq   and ),(sin , zq   are defied on C  by  
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and the functions );(, zCos q   and ),(, zSin q  in C by  
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The following lemma gives us the ,q  derivative of sum, product and quotients of ,q  differentiable functions.  

Lemma 1.4. Let RIgf :,  be ,q -differentiable at It . Then:  

   ( )i  )()(=))(( ,,, tgDtfDtgfD qqq   ,  

   ( )ii )())(()())((=))(( ,,, tgDthftgtfDtfgD qqq   ,  

   ( )iii  For any constant Xc , ))((=))(( ,, tfcDtcfD qq  ,  

   ( )iv    )))(()())/(()()())(((=)(/ ,,, thgtgtgDtftgtfDtgfD qqq    provided that ( ) ( ( )) 0g t g h t  .  

We notice that (ii) and (iv) are true even if XIf : . Also, (i) is true if XIgf :, .  

The following theorem is important and we will use it later on.  

Theorem 1. 5 [4]. Assume :f I R  is continuous at  . Then the following statements are true.  

    ( )i  N kq

k ksqf )}][)(({   converges uniformly to )(f  on I ,  
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   ( )ii    )][(
0= q
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 is uniformly convergent on I  and consequently f  is ,q -integrable  over I

.,  ( )iii Define  

                ..)(:=)( , IxtdtfxF q

x

 


 

Then F  is continuous at  . Furthermore; )(, xFDq   exists for every Ix  and  

                ).(=)(, xfxFDq   

Conversely,  

               .,)()(=)( ,, IbaallforafbftdtfD qq

b

a
   

Based on the results in [14], A. E. Hamza and S. M. Ahmed deduced new results concerning the calculus associated with 
Hahn difference operator like Mean Value Theorems, Gronwall’s and Bernoulli’s Inequalities. Also, they established 
existence and uniqueness theorems of solutions of Hahn difference equations. They gave the required conditions for the 
existence and uniqueness of solutions of the Cauchy problem 
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 (1.3) 

These conditions can be stated in the following theorem. 

Theorem 1. 6. Assume the functions ,0,:)( njIta j C  and XItb :)(  satisfy the following conditions:  

      ( )i  njta j 1,...,=),(  and )(tb  are continuous at   with Itta  0)(0 , 

     ( )ii  )()/( 0 tata j  is bounded on }{1,...,, njI  . 

Then, for any elements Xyr  , Equation (3)  has a unique solution on a subinterval IJ   containing  .  

The following lemma will be needed in our study.  

Lemma 1. 7. Let ),( KX  be a vector space, and let T be a linear operator on X . For any K  if there exist 

110 ,...,, myyy  in X  such that  

 1),(1=

=

1

00

  miyyTy
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iii 



 

then 10 ,..., myy  are linearly independent [5].  

Let us briefly summarize the organization of this paper. In Section 2, we investigate a necessary and sufficient condition for 
the existence of a fundamental set for the homogeneous equation  

 0.=)()(...)()()()( 1

,1,0 txtatxDtatxDta n

n

q

n

q  

  (1.4) 

In Section 3, we introduce ,q -Wronskian and prove its properties. We show that it is an effective tool to determine 

whether set of solutions is a fundamental set or not. See Corollary 3.5 . Hence, we obtain Liouville’s formula for Hahn 

difference equations. In Sections 4 and 5, we derive solutions of the first and second order linear Hahn difference equations 

with non-constant coefficients. In Section 6, we are concerned with constructing a fundamental set of solutions for (1.4)  

when the coefficients (0 )ja j n   are constant. In Section 7, we present the analogues of the variation of parameter 

technique and the annihilator method to solve the nonhomogeneous linear Hahn difference equation  
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 ).(=)()(...)()()()( 1

,1,0 tbtxtatxDtatxDta n
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q

n

q  

  (1.5) 

Finally, in Section 8 we propose to a future work . 

2. Homogeneous Linear Hahn difference equation  

In this Section, the coefficients njta j ),0(  are assumed to satisfy the conditions of Theorem 1.6 . The following two 

lemmas can be checked easily. 

Lemma 2.1. If )(1 tx  and )(2 tx  are two solutions of Equation (1.4) , then )()( 2211 txctxc   is also a solution where 

1c  and 2c  are constants.  

The second lemma is an immediate consequence of Theorem 1.6. 

Lemma 2.2. If )(tx  is a solution of Equation (1.4) in J such that , ( ) = 0, 0 1i
qD x i n     , then ( ) = 0 .x t t J   

Definition 2.3. A set of n solutions of Equation (1.4)  is said to be a fundamental set of Equation (1.4)  valid in J  if it is 

linearly independent in J .  

The following results are analogous to the case of linear differential equations. Their proofs are similar and will be omitted.  

Theorem 2.4. Let njibij  ,,1  be any real or complex numbers and, for each j , )(tj  is the unique solution of 

Equation (1.4)  which satisfies the initial conditions  

 .1,...,=,,=)(1

, njibD ijj

i
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Then, 
n

jj t 1=)}({  is a fundamental set of Equation (4)  if and only if 0)(det ijb .  

Theorem 2.5. Let )(t  be any solution of Equation (1.4)  and ),1 njj   form a fundamental set for Equation 

(1.4)  valid in J . Then, there are unique constants jc  such that  

 .)(...)(=)( 11 Jttctct nn    (2.1) 

3 A Hahn-Wronskian 

Definition 3.1. We define the ,q -Wronskian of the functions nxx ,...,1 , with domain I , by  
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provided that nxx ,...,1  are ,q -differentiable functions.  

Throughout this paper, we write ,qW  instead of ),...,( 1, nq xxW   unless there is ambiguity. 

Lemma 3. 2. Let )(),...,(),( 21 txtxtx n  be functions defined on I . Then, for any  tIt , ,  
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Proof: We prove by induction on n . The lemma is trivial when 1=n . Then suppose that it is true for kn = . Our 
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objective is to show that it holds for 1= kn . Now, we expand ),...,( 11, kq xxW   in terms of the first row to obtain  
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Simple calculations show that  
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Thus, we have  

 

)()()(

))(())(())((

))(())(())((

))(())(())((

=))(,...,(

1

1

,2

1

,1

1

,

1

1

,2

1

,1

1

,

1,2,1,

121

11,,

txDtxDtxD

thxDthxDthxD

thxDthxDthxD

thxthxthx

txxWD

k

k

q

k

q

k

q

k

k

q

k

q

k

q

kqqq

k

kqq

































 

as required.  

In the rest of this section, J  is a subinterval of I  containing  .  

Theorem 3.3. If nxx ,...,1  are solutions of Equation (1.4)  in J , then their ,q Wronskian satisfies the first order 

Hahn difference equation  

 },{\)()(=)( ,,,  JttWtRtWD qqq   (3.2) 
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Proof: First, we show by induction that the following relation  
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 holds. Indeed, clearly (3.3)  is true at 1=n . Assume that (3.3)  is true for n=m. From Lemma 3.2,  
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It follows that  
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 Using relations (3.5) and (3.6) and substituting in (3.4) , we obtain relation (3.3) at 1= mn Since 
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which is the desired result.  

The following theorem gives us Liouville’s formula for Hahn difference equations.  

Theorem 3.4. Assume that JttRtth  1,)())(( . Then, the ,q  Wronskian of any set of solution 
n

ii t 1=)}({ , 

valid in J , is given by  
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Proof:  Relation (3.2) implies that  
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Hence,  
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Taking m , we get  
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An interesting result which can be deduced directly from Theorems 2.4  and 3.4  is the following.  

Corollary 3.5. Let 
n

ii 1=}{  be a set of solutions of Equation (1.4)  in J . Then, )(, tWq   has two possibilities:   

     ( )i  0)(, tWq   in J  if and only if 
n

ii 1=}{  is a fundamental set of Equation (1.4)  valid in J .  

    ( )ii  0=)(, tWq   in J  if and only if 
n

ii 1=}{  is not a fundamental set of Equation (1.4)  valid in J .  

Example 3.6. We calculate the ,q -Wronskian of the Hahn difference equation  
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)).((=)( thttR   So,  ttRtth 1)())(( . Consequently,  

 ),))(1((1=)))()()()(1((1 22

0=

1

0=

  





qtqththqtq k

k

kkk

k

 

which implies  

 1.=
10

01
=

)(1,cos)(1,sin

)(1,sin)(1,cos
=)(

,,

,,

, 









qq

qq

qW

 

Therefore,  

 .

)))(1((1

1
=)(

22

0=

,







qtq

tW
k

k

q  

4. First order linear Hahn difference equations 

In [4], M. H. Annaby, A. E. Hamza and K. A. Aldwoah solved the first order linear Hahn difference equations with constant 
coefficients. This result was stated as follows.  

Lemma 4.1. For fixed Cz , the ,q -exponential functions )(tez  and )(tE z  are the unique solutions of the initial 

value problems  
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 ,
|)(1|

1
|<|1,=)(),(=)(,

qz
txtzxtxDq


  

and  

 ,1,=)(),(=)(, C txqtzxtxDq   

respectively.  

In the following theorem, we generalize lemma (4.1) when we replace the complex fixed number z  by a complex function 

)(tp  which is continuous at  . We define the exponential functions )(tep  and )(tEp  by  

 

)))(1())(((1

1
=)(

0=




qtqthp

te
kk

k

p
 (4.1) 

 and  

 )))(1())(((1=)(
0=




qtqthptE kk

k

p
 (4.2) 

whenever the first product is convergent to a nonzero number for every It . It is worth noting that the two products are 

convergent since ))(1(|))((|
0=




qtqthp kk

k
 is convergent, see [4].  

Theorem 4. 2. The ,q -exponential functions )(tep
 and )(tE p

 are the unique solutions of the initial value problems  

 1,=)(),()(=)(,  xtxtptxDq
 (4.3) 

 and  

 1,=)(),()(=)(,  xqtxtptxDq   (4.4) 

 respectively.  

Proof: First, )(tep
 is a solution of Equation (3) . Indeed, we have for t   

 

).()(=

)

)))(1())(((1

))(1)((
(

)(

1
=

)

)))(1())(((1

1

)))(1())(((1

1
(

)(

1
=

)

)))(1())(((1

1

))))(1(())(((1

1
(

)(

1
=)(

0=

0=

1=

0=

1
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,

tetp

qtqthp

qttp
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qtqthp

qtqthp
tth

qtqthp

qthqthp
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teD
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By the Existence and Uniqueness Theorem of solutions, this solution is unique. 

Finally, )(tE p
 is a solution of Equation (4) , since  

 )).(()(=
))(()(

)()(
=

)
)(

1
(=)(=)( ,,,

thxtp
thete

tetp

te
DtEDtxD

pp

p

p

qpqq




 

 

The uniqueness of the solution can be deduced again by the Existence and Uniqueness Theorem of solutions.  

We can see that )(tEp
 is continuous at  . Indeed, the uniform convergence of ))(1())((

0=
 qtqthp kkn

k
 

implies the uniform convergence of )))(1())(((1=
0=

 qtqthpT kkn

kn . Since nT  is continuous at   for 

every n , then )(tEp
 is continuous at  . 

In the following theorem, we give a closed formula for solutions the non-homogeneous first order linear Hahn difference 
equations of the form  

 .=)(),()()(=)(, XxxtftxtptxDq     (4.5) 

Theorem 4.3. Assume that XIf :  is continuous at  . Then the solution of Equation (5) has the form  

 ).)()()((=)( ,  


 qp

t

p dqEfxtetx    (4.6) 

Proof: The function )(tx  given in (4.6)  solves equation (4.5) . Indeed, we have  

 

, ,( ) ( ) ( ) ( ) ( )( ( ) ( ) )

( ) ( ) ( ( ))

= ( ) ( ) ( ).

t

q p p p q

p p

D x t p t e t x p t e t f E q d

f t E qt e h t

p t x t f t

  


   







  

 




 

In the following theorem, we prove some useful properties about the exponential function )(tep
. Throughout the remainder 

of this paper we put   1)(=)(=)( qtttht .  

Theorem 4.4. Assume that CIsr :,  are continuous at  . The following properties are true.  

    ( )i  )(
)/(1

=
)(

1
t

rr
e

ter


, 

   ( )ii  )(=)()( t
rssr

etete sr 
,  

   ( )iii  )(
))/(1(

=)()/( t
ssr

etete sr 
.  

Proof: ( )i   The function )(
)/(1

t
rr

e


 is a solution of the initial value problem  

 1.=)(),(
1

=)(, 


 xtx
r

r
txDq




 

Also, 
)(

1

ter

 is another solution. Indeed, we conclude that  



ISSN 2347-1921  
 

453 | P a g e                                 N o v  2 5 ,  2 0 1 3  

 ).
)(

1
(

1
=

))(()(

)(
=)

)(

1
(,

ter

r

thete

tre

te
D

r

rr

r

r

q











 

Clearly, 1=
)(

1

re
. By the Uniqueness Theorem of solutions, statement )(i  is true.  

( )ii  The function )()( tete sr  is a solution of the initial value problem  

 1.=)(),())((=)(,  xtxtrssrtxDq   

This is because  

 ).()())((=

)()())(()(=))()((,

tetetrssr

tsetethetreteteD

sr

srsrsrq









 

Also, 1=)()(  sr ee . Again by the Uniqueness Theorem of solutions, we obtain the desired result.  

  ( )iii This follows directly by using items (i) and (ii). In fact, we have  

 
).(

))/(1(
=

)(
/1

)(=)()/(

t
ssr

e

t
ss

etretsetre










 

5. Second order linear Hahn difference equations  

In general, there is no method to solve second order linear Hahn difference equations with arbitrary non-constant 
coefficients. Therefore, we will try to solve special cases of second order linear Hahn difference equations. In [4], M. H. 
Annaby, A. E. Hamza and K. A. Aldwoah deduced the following lemma.  

Lemma 5.1. The functions ,.)(Cos,.),(sin,.),(cos ,,, zzz qqq   and ,.)(Sin , zq   solve the initial value problems  

 

,0,=)(1,=)()),((=)(

,
|)(1|

1
|<|,=)(0,=)(),(=)(

,
|)(1|

1
|<|0,=)(1,=)(),(=)(

,

222

,

,

22

,

,

22

,

R







txDxthxztxD

qz
tzxDxtxztxD

qz
txDxtxztxD

qq

qq

qq













 

and  

 ,,=)(0,=)()),((=)( ,

222

, R tzxDxthxztxD qq    

respectively. 

In the following result we prove a useful formula of a solution of second order linear Hahn difference equations. 

In the following theorem, [ , ]a b  is a closed interval containing   and :[ , ]p a b C  is continuous at  .  

Theorem 5. 2. Any solution  of the equation  

 ],[0,=)()()(2

, battxtptxDq   

satisfies the following relation    
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 .)()()(

)()()()()(=)(

,

,21





















q

b

t

q

t

a

d
qq

pb
ab

at

d
qq

pa
ab

tb
atctbct





















 

Proof: It follows by direct computations.  

Now, we turn to a very special case which we call it Euler-Cauchy Hahn difference equation. It takes the form  

 }.{\0,=)()()()( ,

2

,   IttbxtxatDtxDqtt qq   (5.1) 

The characteristic equation of (1)  is given by  

 0.=1)(2 ba    (5.2) 

Theorem 5.3. If the characteristic equation (5.2)  has two distinct roots 1  and 2 , then a fundamental set of solutions of 

(5.1) is given by )(/
1

te t  and )(/
2

te t .  

Proof: Let )(=)( / tetx t , where   is a root of Equation (5.2) . It follows that  

 ).(
)(

)(
=)()(=)(

2
2

,, tx
tht

txDandtx
t

txD qq





 

Consequently, we have  

 0.=

)()1)((=)()()()( 2

,

2

, txbatbxtxatDtxDqtt qq   

 

Now, assume that 1  and 2  are distinct roots of the characteristic equation (5.2) . So, we have  

 .=1= 2121 banda    

Moreover, the Wronskian of the two solutions )(/
1

te t  and )(/
2

te t  is given by  

 )()()(
1

=

)()(

)()(

/
2

/
1

12

/
2

2
/

1

1

/
2

/
1

tete
t

te
t

te
t

tete

tt

tt

tt










  

which does not vanish since 21   . Hence, the exponential functions )(/
1

te t  and )(/
2

te t  form a fundamental set of 

solutions of (5.1) .  

Now we are concerning with the Euler-Cauchy Hahn difference equation in the double root case. Consider the second order 
Hahn difference operator  

 ).()()()()(=)( ,

2

, txtrtxDtptxDtLx qq    (5.3) 

We need the following two Lemmas in establishing the general solution in the double root case. Their proofs are direct, so 
they will be omitted.  

Lemma 5.4. Let )(1 tx  and )(2 tx  be twice ,q -differentiable. Then, we have  
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   ( )i  

)()(

))(())((

=))(,(

2,1,

21

21,

txDtxD

thxthx

txxW

qq

q



 , 

   ( )ii  

)()(

))(())((

=))(,(

2

2

,1

2

,

21

21,,

txDtxD

thxthx

txxWD

qq

qq



 , 

   ( )iii ))(,())()()((

)()(

))(())((

=))(,( 21,

21

21

21,, txxWtrttp

tLxtLx

thxthx

txxWD qqq   , where 

ttht )(=)( .  

Lemma 5. 5. Assume that )(1 tx and )(2 tx are two solutions of  

 0.=)(tLx  

Then, their ,q -Wronskian W satisfies  

 .),()(=)( ,, ItWt
rp

etW qq 



   

The following theorem gives us the general solution of the Euler-Cauchy Hahn difference equation in the double root case.  

Theorem 5.6. Assume that I does not contain 0 and )(1/ th is bounded on I . Then, the general solution of the 

Euler-Cauchy Hahn difference equation  

 IttxtxtDtxDqtt qq  0,=)()()2(1)()( 2

,

2

,    (5.4) 

 is given by  

 .

)(1

)()(=)( ,

)(

1

21 




 




 q

ht

tt

d

e

tectectx






  

Proof: The characteristic equation of (5.4) is  

 0.=2 22    

Consequently, the characteristic roots are  == 21 . Hence one linearly independent solution of Equation (5.4) is  

 ).(=)( /1 tetx t  

Now, we will look for the second linearly independent solution. We can rewrite Equation (5.4) in the form  

 0,=)()()()()( ,

2

, txtrtxDtptxD qq    

with  

 .
)(

=)(,
)(

21
=)(

2

tth
tr

th
tp


 

Consequently,  
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 .
)(

1)(
=

22

tht
rp





  

Let u  be a solution of Equation (5.4)  such that 1=)(0,=)( ,  uDu q
. Then, the Wronskian of the two solutions 

)(=)( /1 tetx t  and )(tu  is given by  

 ).(=)(=))(,(

)(

21)(2, tetetueW

tht

rp

t

q 


   

By the quotient rule, we find that u  satisfies the following Hahn difference equation  

 .
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)(

=))((
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)(
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t
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D
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tht

t

q

















 

Indeed, simple calculations show that  
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Integrating both sides from   to t  and using ( ) = 0u   we deduce that  

 

2 2( 1)

( )

,
2

( )

( ) = ( )

( )(1 ( ))

t h

q

t

e

u t e t d

e

 

 

 











  






  

is a solution of Equation (5.4) . On the other hand, simple calculations show that  

 ).(=
)(

)(

)(

12

)(

21)(2

te
te

te

th

t

tht










 

Therefore, the general solution of Equation (5.4)  is given by  

 .

)(1

)()(=)( ,

)(1/

21 




 




 q

ht

tt

d
e

tectectx






  

6. Construction of a fundamental set of solutions  

In this section, we are concerned with constructing a fundamental set of solutions for (1.4) . Since such a construction is not 

in general possible for 1>n , we found that it is more convenient to deal with (1.4)  when the coefficients are constants 

except for = 1n which was given in Section 3. Now, Equation (1.4)  can be written as  
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 0,=)(...)()(=)( 1

,1,0 txatxDatxDatLx n

n

q

n

q  

  ( 6. 1) 

 where nja j ,0  are constants. The characteristic polynomial of Equation (6.1)  is given by  

 ....=)( 1

10 n

nn aaap    

Let kii ,1  denote the distinct roots of 0=)(p of multiplicity im , so that nmi

k

i
=

1= . The following theorem is 

the key for constructing a fundamental set of solutions of Equation (6.1) . Its proof is an analogue to the q difference 

operator case [5] . So it will be omitted. 

Theorem 6.1. The initial value problem  

 11,...,=0,=)(),()(=)(

1=)(),(=)(

,1,,,,

0,0,0,,

  iiriririirq

iiiiq

mrtttD

ttD









 

has the solution  
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)))((1)(1)...((1

0=,
);(

)))(1((
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i

k

k

i

rk
r

i

k

k

i

k
i

ir

mr
qqr

thtrkkk

r
qq

qt
te

t











 ( 6. 2) 

          if 0i .  

    (2) 

 1),,(0,1,2,...=,
);(

))((
=)(, 


i

r

r

ir mr
qq

tht
t  ( 6. 3) 

 if 0=i .  

It is worth to mention that the Hahn difference operator L  can be written as follows: 

 ).()(=)( ,

1=

txIDtLx i
m

iq

k

i

   ( 6. 4) 

 Here, I is the identity operator. For each i , the function 
ir ,  satisfies the following equation  

 1.0,...,=0,=)()( ,,  iir
i

m

iq mrtID   

This leads us to state the following theorem.  

Theorem 6. 2. The set }1,10,...,=,{ , kimr iir   which is given by (6.2)  and (6.3)  when 0i  and 

0=i  respectively forms a fundamental set of solutions of Equation (6.1) .  

Example 6.3. The Hahn difference equation  

 0=)(2)(5)(4)( ,

2

,

3

, txtxDtxDtxD qqq    

has the functions )(),( 12 tete  and ,
);(

))((
1=

k

k

k qq

thtk 



 as a fundamental set of solutions.  
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7. Non-Homogeneous Hahn difference equations  

In this Section, we are interesting in finding the general solution of the nonhomogeneous Hahn difference Equation (1.5)  

where the coefficients )(ta j
 and )(tb  are assumed to satisfy the conditions of Existence and Uniqueness Theorem 1.6. 

As in the theory of differential equations, one can see that: If )(1 t  and )(2 t  are two solutions of (1.5) , then 

)()( 21 tt    is a solution of the corresponding homogeneous Equation (1.4) . Based on the above-mentioned note and 

Theorem 2.5, we get the following: If )(),...,(),( 21 ttt n  form a fundamental set for (1.4)  and )(0 t  is a solution 

of Equation (1.5) , then for any solution of Equation (1.5) , there are unique constants ncc ,...,1  such that  

 ).()(...)(=)( 011 ttctct nn    (7.1) 

Therefore, if we can find any particular solution )(0 t  of Equation (1.5) , then (7.1)  gives a general formula for all 

solutions of Equation (1.5) .  

7.1  Method of Variation of parameters 

We aim to obtain a particular solution )(0 t  by the method of variation of parameters. This method depends on replacing 

the constants rc in relation (2.1)  by the functions )(tcr . Hence, we try to find a solution of the form  

 ).()(...)()(=)( 110 ttcttct nn    (7.2) 

 Now, our objective is to determine the functions )(tcr . We have  

 nitDtctD j

i

qj

n

j

i

q   ),1()(=)( 1

,

1=

0

1

,    (7.3) 

 provided that  

 1.0,1=))(()( 1

,,

1=

 nithDtcD j

i

qjq

n

j

  (7.4) 

 Putting ni =  in (7.3)  and operating on it by ,qD , we obtain  

 )))(()()()((=)( 1

,,,

1=

0, thDtcDtDtctD j

n

qjqj

n

qj

n

j

n

q  
  (7.5) 

 Since )(0 t  satisfies Equation (1.5) , it follows that  

 ).(=)()(...)()()()( 00

1

,10,0 tbttatDtatDta n

n

q

n

q    
 (7.6) 

 Substitute by (7.3)  and (7.5)  in (7.6)  and in view of Equation (1.4) , we obtain  
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qjq
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Thus, we get the following system  
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 Consequently,  
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where nr 1  and ))(( thWr  is the determinant obtained from ))((, thWq   by replacing the r th column by 

)(0,...,0,1 . It follows that  
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))((
=)( ,
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Example 7.1. Consider the equation  

 ),(=)()( 22

, tbtxztxDq   (7.8) 

where {0}\Cz . It is known that ,.)(cos , zq   and ,.)(sin , zq   are the solutions of the corresponding homogeneous 

equation of (8) . We can easily show that  

).))(,(Sin)(),(cos))(,(Cos)(),(sin(
1

=)( ,,,,,,0  





 qq

t

qqq

t

q dhzbtzdhzbtz
z

t    

It follows that every solution of Equation (7.8)  has the form  

).))(,(Sin)(),(cos))(,(Cos)(),(sin(
1

),(sin),(cos=)(

,,,,,,

,2,1
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qqq

t
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dhzbtzdhzbtz
z

tzctzct

 



  

7.2  Annihilator method 

Sometimes, we use another method which is called annihilator method instead of the variation of parameter technique. We 
believe that, unlike the variation of parameters method, the annihilator method is usually easier to apply but it can not be 
applied in all cases.  

Definition 2. We say that CIf :  can be annihilated provided that we can find an operator of the form  

 suchthatIDDDL n

qn

n

qn 0

1

,1, ...=)(    

  

 

 IttfDL 0,=)()(  

where nii 0,  are constants, not all zero.   

Example 3. Since  

             
0,=)()5( 5, teIDq 

 

         
IDq 5,   is an annihilator for )(5 te .  
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The following table indicates a list of some functions and their annihilators.  

 

We solve the following equation by using the annihilator method. 

Example 7. 4. Consider the equation  

 ).(=)(6)(5)( 4,

2

, tetxtxDtxD qq    (7.9) 

Equation (7.9)  can be rewritten in the form  

 ).(=)()2)(3( 4,, tetxIDID qq    

Multiplying both sides by the annihilator IDq 4,  , we get that if )(tx  is a solution of (7.9) , then )(tx  satisfies  

 0.=)()2)(3)(4( ,,, txIDIDID qqq    

Hence,  

 ).()()(=)( 233241 tectectectx   

One can see that )((1/2)=)( 40 tet . is a solution of Equation (7.9) . Therefore, the general solution of Equation (7.9)  

has the following form  

 ).(
2

1
)()(=)( 42332 tetectectx   

8. Conclusion and Perspectives  

The aim of this paper is to establish the theory of linear Hahn difference equations and solve its corresponding first order with 
non-constant coefficient as well as Euler-Cauchy as a special case of the second order equations. However, there is a lot of 
work ahead of us. The most interesting work is to study the stability and the oscillation of linear and non-linear Hahn 
difference equations.  
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