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ABSTRACT

Hahn introduced the difference operator D, , f (t) = (f (qt + @) — f (1)) / (t(q—1) + ) in 1949, where 0< <1 and

@ >0 are fixed real numbers. This operator extends the classical difference operator A f (t) = (f (t+ ) - f (1))@

as well as Jackson — difference operator D, f (t) = (f (qt) — f (t)) / (t(q —1)) . In this paper, our target is to give a
rigorous study of the theory of linear Hahn difference equations of the form

a, (1) Dy, x(t) +a,(t) Dy o x(t) +...+a, (t)x(t) = 0.

We introduce its fundamental set of solutions when the coefficients are constant and the Wronskian associated with D, .

Hence, we obtain the corresponding Liouville’s formula. Also, we derive solutions of the first and second order linear Hahn
difference equations with non-constant coefficients. Finally, we present the analogues of the variation of parameter
technique and the annihilator method for the non-homogeneous case.

Keywords: Hahn difference operator; Jackson ( — difference operator.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 4, No 2
editor@cirworld.com
www.cirworld.com, member.cirworld.com

441 |Page Nov 25, 2013


http://member.cirworld.com/
http://www.cirworld.com/
http://www.cirworld.com/

Introduction and Preliminaries

Hahn introduced his difference operator which is defined by

o = @O0
e tq-D+eo

where 0 < g< 1 and @ >0 are fixed real numbers, 8=/ (1—q) [12, 13]. This operator unifies and generalizes two
well-known difference operators. The first is Jackson ( — difference operator defined by

0,100 g

where ( is fixed. Here f is supposed to be defined on a — geometric set Ac R for which (t € A whenever

te A, see[2 3,5,6,9, 10, 15, 17, 18]. The second operator is the forward difference operator
ft+w)— f(t)

A T(t)=

where @ > 0 is fixed, see [7, 8, 16, 19]. Hahn’s operator was applied to construct families of orthogonal polynomials as
well as to investigate some approximation problems, see [21, 22, 23]. Another direction of interest is to establish a calculus
based on this operator. This was recently studied by M. H. Annaby, A. E. Hamza and K. A. Aldwoah in [4]. They proved a
fundamental theorem of Hahn’s calculus. An essential function which plays an important role in this calculus is

h(t) = gt + @ . This function is normally taken to be defined on aninterval | which contains the number €. One can see
that the K —th order iteration of h(t) is given by

h*(t) = qkt+a)[k]q,t el.

The sequence h*(t) is uniformly convergentto & on | . Here [k], is defined by

k

1-q
K], = .
ML=

Throughout this paper | is any interval of R containing  and X is a Banach space.

Definition 1.1. Assume that f : 1 — X isafunctionandlet a,bel.The q,@w— integralof f from & to b is
defined by

[f®dg,t= [ 1Ot [ f 1)t

where
/1Ot = XA-@) - @)D a F (R 00), xel,

provided that the series convergesat X =4a and X = b.

Definition 1.2 [4]. For certain Z € C, the g, @ -exponential functions €, (t) and EZ (t) are defined by

(=3 A== _ L ,
= (CHe) [Ta- 20" (t(1-a) - o))

(1.1)

and
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Lekeny
2 (2 2(t(l-9)-0)* &
e, =3 9 U= - (T ag 1) - ) 02
= CHON k=0
To guarantee the convergence of the infinite product in (1.1) with t € C, we assume additionally that
-0l — 1
|z(1-0)|

see [1, 20]. Forafixed zeC, (1.2) convergesforall teC, defining an entire function of order zero. For the proofs of the
equalitiesin (1.1) and (1.2), see [11, Section 1.3] and [20]. Here the (] — shifted factorial (b; q)n for a complex number
b and neN,is defined to be

[[(@-bg’™),if neN,
i=1

(b;q), =
1, if n=0.

Definition 1.3. For z e C, the (, @ -trigonometric functions COSq,a,(Z;') and sinq,m(Z,-) are defied on C by

i (t) + e—iz (t)

e
C0Sq.(Z:1) = = >

Sing.(Z;t) = w

and the functions Cos,, ,(z;-) and Sin (z,)inC by

Cos, ,(z;t) = E.)+E, ()

Eiz (t) - E—iz (t)

Sin_ (z;t) =
aolZi) =

The following lemma gives us the (, @ derivative of sum, product and quotients of (, @ differentiable functions.

Lemmal4.Let f,g:1 >R be (, -differentiable at t € | . Then:
(i) D,,(f+9)t)=D,,f(t)+D,,9().
(i) D, (fg)(t) = D, , (f (1) g(®) + f (h(t)) D, ,9(t).
(iii) For any constant Ce X , D, (cf)(t) =D, , ( (1)),
() D,,(fig)t) = (D, (f )~ f ©)D,,a®)(G®)F(N(L))) provided that g(t)g(h(t)) 0.

We notice that (ii) and (iv) are true evenif f : 1 — X . Also, ()istrueif f,g:1 —> X.

The following theorem is important and we will use it later on.

Theorem 1.5 [4]. Assume f :1 — R iscontinuous at & . Then the following statements are true.

() {f((sq")+ K], )}en converges uniformlyto f(6) on 1,
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(i) Zfzoqk‘f(sq"+a)[k]q)‘ is uniformly convergenton | and consequently f is Q, @ -integrable over |
(iii) Define
F(X):= j@ f()d, bt xel.
Then F is continuous at 6. Furthermore; D, ,F(X) exists forevery X €| and
D, ,F(X) = f(x).
Conversely,
b
[D,,f(t)d, t=f(b)-f(a) forall abel.

Based on the results in [14], A. E. Hamza and S. M. Ahmed deduced new results concerning the calculus associated with
Hahn difference operator like Mean Value Theorems, Gronwall's and Bernoulli's Inequalities. Also, they established
existence and uniqueness theorems of solutions of Hahn difference equations. They gave the required conditions for the
existence and uniqueness of solutions of the Cauchy problem

a, (t)Dg , x(t) +a,(t) Dy, X(t) +...+a, (t)x(t) = b(t),

q,0 @

i-1 — ¥
Dy X(@) =y, i=1..,n (1.3)
These conditions can be stated in the following theorem.

Theorem 1. 6. Assume the functions a;(t):1 —C,0< j<n, and b(t):1 — X satisfy the following conditions:
(i) a;(t), j=1,..,n and b(t) are continuous at & with a,(t)=0 Vtel,
(i) a;(t)/a,(t) isboundedon I, je{l,...,n}.

Then, for any elements Y, € X , Equation (3) has a unique solution on a subinterval J < | containing 6.
The following lemma will be needed in our study.

Lemmal. 7. Let (X,K) be a vector space, and let T be a linear operatoron X . Forany A €K if there exist

Yor Yyseees Yy in X such that

Ty, =AY,
Ty, =4y, +Vy,, (1<i<m-1),

then Yg,..., ¥, are linearly independent [5].

Let us briefly summarize the organization of this paper. In Section 2, we investigate a necessary and sufficient condition for
the existence of a fundamental set for the homogeneous equation

a, (1) Dy, x(t) +a,(t) Dy x(t) +...+a, (t)x(t) = 0. (1.4)

q,0

In Section 3, we introduce (, @ -Wronskian and prove its properties. We show that it is an effective tool to determine

whether set of solutions is a fundamental set or not. See Corollary 3.5. Hence, we obtain Liouville’s formula for Hahn
difference equations. In Sections 4 and 5, we derive solutions of the first and second order linear Hahn difference equations
with non-constant coefficients. In Section 6, we are concerned with constructing a fundamental set of solutions for (1.4)

when the coefficients a; (0< j<n) are constant. In Section 7, we present the analogues of the variation of parameter

technique and the annihilator method to solve the nonhomogeneous linear Hahn difference equation
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3y (t) Dy, X(t) +8, (1) Dy, X(t) +...+a, () X(t) = b(t). (L5)
Finally, in Section 8 we propose to a future work .

2. Homogeneous Linear Hahn difference equation
In this Section, the coefficients @; (t),0< j <n are assumed to satisfy the conditions of Theorem 1.6 . The following two

lemmas can be checked easily.
Lemma2.1.If X (t) and X,(t) are two solutions of Equation (1.4), then C,;X,(t)+C,X,(t) is also a solution where

C, and C, are constants.

The second lemma is an immediate consequence of Theorem 1.6.

Lemma 2.2. If X(t) is a solution of Equation (1.4)in J such that D;]wX(H) =0,0<i<n-1,thenx(t)=0 VteJ.
Definition 2.3. A set of n solutions of Equation (1.4) is said to be a fundamental set of Equation (1.4) validin J ifitis

linearly independentin J .

The following results are analogous to the case of linear differential equations. Their proofs are similar and will be omitted.

Theorem 2.4. Let by;,1<i, j <N be any real or complex numbers and, for each J, w;(t) is the unique solution of

IJ 1
Equation (1.4) which satisfies the initial conditions

wl//] (0)=by,i,j=1,..,n.
Then, {y/; (t)} -, is afundamental set of Equation (4) if and only if det(by;) = 0.

Theorem 2.5. Let /(t) be any solution of Equation (1.4) and w;,1< j<n) form a fundamental set for Equation
(1.4) validin J . Then, there are unique constants C; such that

yt)=cy,(t)+...+cy, () V tel. (2.1)
3 A Hahn-Wronskian

Definition 3.1. We define the (], @ -Wronskian of the functions X, ,..., X, , with domain by

Xl(t) X (t)

D 1 t qw . t
W0 (X500 %, )(0) = q,wX o R
Dn—1xl(t) D(;‘:olxn (t)

provided that Xi,..., X, are (], @ -differentiable functions.

Throughout this paper, we write qu instead of Wq w(Xl,..., Xn) unless there is ambiguity.

Lemma 3. 2. Let X, (t), X, (t),..., X, (t) be functions defined on | . Then, forany tel,t =86,

x(ht) .. x(h(t)
Dq,wxl(h(t)) o Dy n(h(t))
D,..Wa, o(t) = - (3.1)
D 2x (h()) .. DI 2x (h(t))
Di.x(@®) .. D;wxn(t)

Proof: We prove by induction on N. The lemma is trivial when N =1. Then suppose that it is true for N = k. our
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objective is to show that it holds for N =K +1. Now, we expand Wq’w(Xl,..., Xk+1) in terms of the first row to obtain

k+1

Wq,a)(xl""’ Xk+l) = Z(_l)jﬂxj (t)Wq(iu) (t)!

where
W, ., (D oXzs Dy o Xei1), J =1
Wq(,i)) = q,a)(Dq,le’ Dq o™ j-11 Dq a)Xj+1’ q,ka+1)'2 < J < k
Wq,a)(Dq,a)Xl" q, (uXk) J - k +1
Consequently,
k+1

Dy Wy, (% X )(®) = D (1) D, ,x, (W2 ()

+ 2 (1) (h(©) Dy Wy 2 1),

Simple calculations show that

k+1

Z(—l)“qu,wxj OW, () =0,

and

X, (h(t) (M) . X (h®)
Dq’wxl(h(t)) Dq’wxz(h(t)) coo DyoXia(n())

k+1

_1)i+ (1 = y ’
2D OOPWMSO s (n) Dy (h0) ..o D00

D"”x (1) D"*lx P (t) A E)a;”xkﬂ(t)
Thus, we have
X (h(t)) (M) ... X.(h(t)
Do (1) By ke(h(D). - By, X (n00)
qu qw(xl’ Xk+1)(t)_ k-1 k-1 h k-1 :
D, X(h(t)) D, X(h(t)) co DypXea (D))
D“lx (1) Dk“x ;) o DiiXea ()

as required.

In the rest of this section, J is a subinterval of | containing &.

Theorem 3.3.If Xy,..., X, are solutions of Equation (1.4) in J, then their , @ —Wronskian satisfies the first order
Hahn difference equation

D, W, 1) =-RtW, () V tel\{F}, (3.2)
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)

where R(t) = 37 (t—h() a , 0)/a (1)

Proof: First, we show by induction that the following relation

qu qw(Xl’

qu qw(xl’ ot

where

=(1) _
W qa) =

One can see that

where
Dy, % (t)
Dé,wxi(t)
D], kx (t)
Sjk = m-k+2
Dy % (t)
Dm+1X (t)

ISSN 2347-1921

X (t) X, ()
Dq,wxl(t) q w n(t)
X,) = D (-1 (t—h(t))* Dy, " (1) D“’“X (1) (33)
k=1 Dn k+1X (t) Dn k+lx (t)
D:,a)xl(t) Dcr]]a)Xn (t)
holds. Indeed, clearly (3.3) istrue at N =1. Assume that (3.3) is true for n=m. From Lemma 3.2,
X (h(t)) X (L))
Dy X (h(t)) Dq,wxm+1(h(t))
m+1) = :
Dy % (h(t) Dy X M(h(t))
Dm+1xl(t) Dm+1 m+1(t)
m-+1
= 20" (RO G (1),
an) qa)(D XZ""’Dq,me+1)! J :1
an) q(o(an)Xl an) j—l’quX]+1’ ’an) m+l) 2< J<m
Dy W, 0 (D oXpsees Dy X0 )y J =M +1.
Wi (t) = Z( 1) (t—h(t))S,.,
Dq a)XJ 1(t) Dq (qu+1 (t) Dq,wxm+1 (t)
q 2] J—l(t) Dza) j+1(t) qu,a)xm+1(t)
DI XL (t) DXt Dy X (t
o k+21 l( ) mq I:.z J+l( ) e m+l( ) ’2 < J < m,
D —l(t) D j+l(t) Dq,a) m+1(t)
D(;ﬂ;l j l(t) D(;n;l j+l(t) D(;n:)l m+1(t)
Nov 25, 2013
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Dq L% (1)
D.. [,,X t)

me"x (t)
S, =| I

Dm k+2X (t)

q,0

D m+1X (t)

and
Dq,a)xl(t)
qu,a)xl(t)

D, kx ()
Dm k+2X (t)

D m+lX (t)

It follows that

Dy, oW, (Xseves X0 ) ()

where

m+1

LK) = (D)%, (DS,

448|Page

qa) m+l(t)
q,co m+1(t)

Dm k (t)

q,0 m+1

Dcr;,]warz m+1 (t)

D m+l m+1 (t)

qa) m(t)
D? x (t)

qwm

D™ kx (t)

q,0 "*m

Dm k+2X (t)

Dm+lx (t)

q,0 *m

m+1

ISSN 2347-1921

!j=1a

,j=m+1.

L Z(_l)Hl(Xj ()= (t=h(t))D, . x; (1))

xi(—l)k*l(t—h(t»k*ls,-k

m

m+1

Z 1) (t-h(1))" lZ( 1)7x; (0S5

=~

k=1
m

= Z( 1) (t-h(1)) "L (k)

m

+Z ~1)*(t=h(t))*M (k),

X, (1)

Dq,a)Xl(t)

D, kx (t)
Dm k+2X (t)

D m+lx (t)

m+l

Xm+l (t)
Dq,aJXm+1 (t)

D mwk m+1 (t)
Dcka+2 m+1 (t)

D m+l m+l (t)

o 21D, %05,

Nov 25,

(3.4)

(3.5)

2013



and

m+1

M (k) = Z(—:l-)j+1 Dq ® J(t)SJk

Dq,wxl(t) s q [2] m+1(t)
quwxl(t) q,a) m+1(t)
if k=m.
D"‘”x () ... Dg.x mﬂ(t)
(3.6)

Using relations (3.5) and (3.6) and substituting in (3.4) , we obtain relation (3.3) at N=mM+1 Since
Dy X; (1) = Z (@& (t)/a, (1) Dy, Xj(t),itfollowsthat

X, (t) X, (t)

D, %) ... DX, (t)
' & o 1 —agft) Dl ... B 8l
qw qa;(t) T kzz;(_l) (t_h(t)) ( (t) )D;[;+1X1(t) Dn k+lX (t)
D“‘lx () D;jxn (t)
Dy % () ... Dyix,(t)

Zri: 2(k 1)(t h(t))k l( ak((;)) ( )

_Z(t h(t))k ak+1(t)qu(t)

2,(t)
- —R(t)Wq o(D),

which is the desired result.

The following theorem gives us Liouville’s formula for Hahn difference equations.

Theorem 3.4. Assume that (h(t) —t)R(t) #1,t € J . Then, the ¢, ®— Wronskian of any set of solution {w; (t)},,

validin J , is given by

W, (9)

W0 () = —
H(1+ q*(t(1-g) ~@)R(h" (1))

,teld. (3.7)

Proof: Relation (3.2) implies that

W, (h(t) = (1+(t—h@)ROMW, . (t) ,teI\{6}.
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Hence,
YT /()
e 1+ (t—h()R(t)
=— Wo (N7(0) ,meN.
H(1+ q“(t(1-q) - @)R(h* (1))
Taking M —> o0, we get
W, , () =— Wa,, (0) tel.

H(1+ g (t(1-q) ~ @)R(h" (1))

An interesting result which can be deduced directly from Theorems 2.4 and 3.4 is the following.
Corollary 3.5. Let {y; }i; be a set of solutions of Equation (1.4) in J . Then, W, ,(t) has two possibilities:
(i) W, (t)#0 in J ifandonlyif {y;}; is afundamental set of Equation (1.4) validin J .

, @0
(i) W,,(t)=0 in J ifandonlyif {y;}, is notafundamental set of Equation (1.4) validin J .

Example 3.6. We calculate the (], @ -Wronskian of the Hahn difference equation

DZ x(t)+x(t) = 0. (3.8)

1
The functions X, (t) = c0Sq..(1,t) and X,(t) = sing.(1,t) where [t—6|< : are solutions of Equation (3.8)

subject to the initial conditions X,(6)=1,D, ,%(0)=0 and X,(0)=0,D,,X,(6) =1 respectively. Here,
R(t) = (t—h(t)). so, (h(t)—t)R(t) #1Vt = O. Consequently,

o0

[+ ot - o) © -h* @) = T+ 0™ t@-a) - o)),

k=0

which implies

(1,60 ing. (1,6
) =[O S
: SiNg(1,6) €0sq0(1,6)
1 0
= =1.
0 1
Therefore,
1
Wq’w(t)Z — )

[0 t-a)-w))

4. First order linear Hahn difference equations

In [4], M. H. Annaby, A. E. Hamza and K. A. Aldwoah solved the first order linear Hahn difference equations with constant
coefficients. This result was stated as follows.

Lemma 4.1. For fixed Z € C, the g, @ -exponential functions €, ('[) and Efz (t) are the unigque solutions of the initial
value problems
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1

D, X = zx(t), x(0) =1, [t-0|< m

and
D, ,X(t) =-zx(qt + w), x(0) =1, teC,
respectively.

In the following theorem, we generalize lemma (4.1) when we replace the complex fixed number Z by a complex function
p(t) which is continuous at . We define the exponential functions €, (t) and E (t) by

1
e, () =— (4.1)

H(l— p(h" (1)a" (t(1-0) - »))

and
E,(®) = [+ ph*®)a“ (t(1-q) - )) (4.2)
k=0
whenever the first product is convergent to a nonzero number for every t € | . It is worth noting that the two products are
convergent since Zf:o | p(h* () | g (t(1=q) — @) is convergent, see [4].
Theorem 4. 2. The {, @ -exponential functions €, (t) and E_,(t) are the unique solutions of the initial value problems
Dy X(t) = p()x(t), x(6) =1, (4.3)
and
D,..X(t) ==p(t)x(qt + ), x(0) =1, (4.4)

respectively.

Proof: First, €, (t) is a solution of Equation (3) . Indeed, we have for t# &

Dq,wep(t) :h(t:)l-—t(‘” f
[1a- ph* @)a"“(h)(L-a)-))
— : 1 )
[T~ pih* @) (t(1-) - o)
_ 4 _0( 1
O Ta-pet o)t c2-0)-0)
) k=1 1 )
[10- pih" @) (t(1-a) - o)
1 -p0U-9-e)
h(t) -t

[Ta- p(r @) (-0) o))
= p(te, (1).
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By the Existence and Uniqueness Theorem of solutions, this solution is unique.

Finally, E_,(t) is asolution of Equation (4) , since

Dq’wx(t) = Dq,a,E_p(t) = Dq,a)(i)

e, (®)
_ —pe,t) _
® ety ~ PO

The uniqueness of the solution can be deduced again by the Existence and Uniqueness Theorem of solutions.
n
We can see that Ep(t) is continuous at @ . Indeed, the uniform convergence of Zkzop(hk(t))qk(t(l—q)—a))

implies the uniform convergence of T, :H:=0(1+ p(h*())g*(t(1-q) - ®)) . since T, is continuous at & for

every N, then E (t) is continuousat 6.

In the following theorem, we give a closed formula for solutions the non-homogeneous first order linear Hahn difference
equations of the form

D, .,X() = pOx() + f (), x(0)=x, e X. (4.5)
Theorem 4.3. Assume that T 11 — X is continuous at €. Then the solution of Equation (5) has the form
t
X(t) =e,®)(x, + | f ()E_,(az+@)d, 7). (4.6)

Proof: The function X(t) givenin (4.6) solves equation (4.5) . Indeed, we have

D, X(t) = P(t)e, ()%, + p(t)e, ([ f (7)E_, (a7 + @)d,0)
+ f()E_, (gt + w)e, (h(t))
= p)x(®)+ f (1)

In the following theorem, we prove some useful properties about the exponential function €, (t) . Throughout the remainder

of this paper we put £(t) = h(t)-t=t(q—-1)+®.
Theorem 4.4. Assume that I',S: | — C are continuous at & . The following properties are true.
() ®).
e (t) —r/(1+4r)
(i) e (e, =e,, g, 5.
(iii) e (t)e,(t)= e(r—s) I(1+55) ®).

Proof: (i) The function e_r/(1+§r) (t) is a solution of the initial value problem
—r
D, Xx(t) = ——x(t), x(0) =1.
X = X(0.X0)

Also, is another solution. Indeed, we conclude that

r
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1 re, (t

Dq,w (_) = _#

e, (1) e, (g, (h(t)
—-r 1

= (—=)-
1+<&r e (b)
1 _ _ o
Clearly, —— =1. By the Uniqueness Theorem of solutions, statement (I) is true.

r
(ii) The function €, (t)e,(t) is a solution of the initial value problem
D, o X(t) = (r +s+&rs)(t)x(t), x(0) =1.
This is because

D, ., (e (t)e (1)) =re (t)e,(h(t))+e, (t)se(t)
= (r+s+<2rs)(t)e, (t)e, (t).

Also, €,(0)e,(6) = 1. Again by the Uniqueness Theorem of solutions, we obtain the desired result.

(i) This follows directly by using items (i) and (ii). In fact, we have

er(t)/es(t) =er(t)x e—S/1+§S (t)

= Er—s)(1+5) V)

5. Second order linear Hahn difference equations

In general, there is no method to solve second order linear Hahn difference equations with arbitrary non-constant
coefficients. Therefore, we will try to solve special cases of second order linear Hahn difference equations. In [4], M. H.
Annaby, A. E. Hamza and K. A. Aldwoah deduced the following lemma.

Lemma 5.1. The functions c0Sq .., (Z,.), SiNg. (Z,.), Cosq’w(z,.) and Sin q,w(z,.) solve the initial value problems
1
DZ Xx(t) =-2°x(t), x(0)=1,D, x(0)=0, [t-O]< ————,
- v |2(1-q)|
1
D2 x(t) =-z°x(t), x(@)=0,D, x(0) =z, |t-0]< ———,
N ! |2(1-q)|

D; x(t) = —z*x(h?(t)), x(9) =1, D, ,x(0) =0, teR,

and
D? x(t) = -z°x(h*(t)), x(¥) =0, D, x(6) =-z, teR,

respectively.

In the following result we prove a useful formula of a solution of second order linear Hahn difference equations.
In the following theorem, [a,b] is a closed interval containing € and p:[a,b] - C is continuous at .
Theorem 5. 2. Any solution Y of the equation

D? )+ p)x(t) =0, te[a,b]

satisfies the following relation
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r—a))l//(r—a)
a q

v = b1+ t-a) +— [(—a)p( )d
b—a-a

q,(ur

T—w T—w

) (

)d, 7.
q q @

t—a b
+— ] (0-2)p(

Proof: It follows by direct computations.

Now, we turn to a very special case which we call it Euler-Cauchy Hahn difference equation. It takes the form

t(qt +w)D; X (t) +atD, ,x(t) +bx(t) = 0, t € 1 \{6}. (5.1)

q,0

The characteristic equation of (1) is given by
X +(@-1)i+b=0. (5.2)

Theorem 5.3. If the characteristic equation (5.2) has two distinctroots 4, and A, , then a fundamental set of solutions of

(5.1)isgivenby €, (t) and eﬂz,t(t).
Proof: Let X(t) =e,,(t), where A isaroot of Equation (5.2) . It follows that

_A 2 _ (-2
D, . x(t) = T x(t) and Dg Xx(t)= W X(t).
Consequently, we have
t(qt + ) Dg X (t) +atD, ,X(t) +bx(t) = (4 +(a—1)A+b)x(t)
=0.

Now, assume that 4, and A, are distinct roots of the characteristic equation (5.2) . So, we have

A+A4 =1-a and A4, =h.

Moreover, the Wronskian of the two solutions eﬂl,t (t) and e/JLZ,t (t) is given by

e it (t) e/lzlt (t) 1
= - (2,2 - ﬂ'l)eﬂl/t (t)eﬂzlt (t)
A t

A
T eﬂilt (t) Tz e/lzn (t)

which does not vanish since /11 * ﬂg Hence, the exponential functions eﬂl,t (t) and eiz,t (t) form a fundamental set of

solutions of (5.1).

Now we are concerning with the Euler-Cauchy Hahn difference equation in the double root case. Consider the second order
Hahn difference operator

Lx(t) = Dg ,X(t)+ p(t) D, ,X(t) + r(t)x(t). (5.3)

q,0

We need the following two Lemmas in establishing the general solution in the double root case. Their proofs are direct, so
they will be omitted.

Lemma5.4. Let X (f) and X,(t) be twice Q, -differentiable. Then, we have
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x(h®) %, (h(1)
(M) W, (%, %)) = :
Dy, X% () D, X(t)

x(h(t))  x,(h(t))
(i) Dy W, (%, %,)(t) = )
DZ, X (t) DZ,x,(t)

x (h(t)) x,(h(}))
(i) Dy W, (X, %,)(t) = +(=p() +SOrOW, , (X, X;)(t), where
Lx(t)  Lx(t)
Et)=h(t)-t.
Lemma 5. 5. Assume that X, (t)and X, (t) are two solutions of
Lx(t) =0.
Then, their (, @ -Wronskian W satisfies

W, @ =e W, 0), tel.

The following theorem gives us the general solution of the Euler-Cauchy Hahn difference equation in the double root case.

Theorem 5.6. Assume that | does not contain 0 and 1/h(t)is bounded on | . Then, the general solution of the
Euler-Cauchy Hahn difference equation

t(qt + w)D; X (t) + (1—2a)tD, ,X(t) +a’x(t) = 0, t el (5.4)
is given by
€ 3
X(V) =ce, O +ce, O] —12—d, 7
1 &z 2 @ 9 194 qo”*
t v 17
T
Proof: The characteristic equation of (5.4) is
X —2ai+a’® =0.
Consequently, the characteristic roots are ﬂl = ﬂ,z = o . Hence one linearly independent solution of Equation (5.4) is
X (1) =€, (1)
Now, we will look for the second linearly independent solution. We can rewrite Equation (5.4) in the form
2 —
D; (1) + p(t) D, . x(t) + r()x(t) =0,
with
1-2a a’

Vo

p(t) =

Consequently,
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P G
P = h

Let U be a solution of Equation (5.4) such that u(¢) =0, D, ,u(d) =1. Then, the Wronskian of the two solutions
X, (t) =€, (t) and u(t) is given by
q, (u(ea’u)(t) € —p+&r (t) € a2 (a-1)? 1)2 ( )
t T oh@)

By the quotient rule, we find that U satisfies the following Hahn difference equation

2 uap O

D, ()= ——
o O TE)

Indeed, simple calculations show that
i Wq,w(e%,U)(t)
D, (—)@) =
q"”(ea e e, (te , (h(t)

t t h@)

az = 1)2( )
- t h(t)

e (O(1+ 2 60)

Integrating both sides from & to t and using u(d) =0 we deduce that

€2 a2 ®)
u(t) =e, (t) j; Al 1) d,.
RRCACTCER0)

is a solution of Equation (5.4) . On the other hand, simple calculations show that

e 2 e ®

a

T h@) —e ( )
e; ® h(lt)
t

Therefore, the general solution of Equation (5.4) is given by

x(t) = c,e (t)+c2e (t)j ﬂdqymr.
1+~ (f(r)

6. Construction of a fundamental set of solutions

In this section, we are concerned with constructing a fundamental set of solutions for (1.4) . Since such a construction is not

in general possible for N >1, we found that it is more convenient to deal with (1.4) when the coefficients are constants
except for n =1 which was given in Section 3. Now, Equation (1.4) can be written as
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Lx(t) = a,D ,x(t) +a,Dg (1) +...+a,x(t) =0, (6.1)

q,0

where a; ,0< j <N are constants. The characteristic polynomial of Equation (6.1) is given by
— n n-1
p(l) =g, A" +a " +...+a,.

. k
Let 4,1<i<K denote the distinct roots of p(1) = O of multiplicity M, , so that Zi:lmi =N. The following theorem is

the key for constructing a fundamental set of solutions of Equation (6.1) . Its proof is an analogue to the (] — difference
operator case [5]. So it will be omitted.

Theorem 6.1. The initial value problem

Dy oWoi(t) = Ay (1), w,;(0) =1
Dy ¥ri(t) = Ay () +y, (1), v, (0)=0,r =1...m -1

has the solution

@
® oy k
e, (=3 Gl=0=0)" _,
: k=0 (a5 9)«
i (t) = (6.2)
© ld _ L 4 k
irz k(k—=1)...(k —r +1)(4 (t —h(t))) r=12,.m -1,
21 k=r r!(q; q)k
it 4 #0.
@
v, (t) = (t=h())" ,r=(0,1,2,....,m 1), (6.3)
(g;a),
it 4 =0.
It is worth to mention that the Hahn difference operator L can be written as follows:
k
Lx(t) = [ J(D,., — 41" x(t)- (6.4)
i=1

Here, | is the identity operator. For each ﬂi » the function /_ ; satisfies the following equation

(Do —AN) "y, ;) =0, r=0,.,m-L1.
This leads us to state the following theorem.
Theorem 6. 2. The set {y/, ;,r =0,...,m; =1,1<i <Kk} whichis given by (6.2) and (6.3) when 4 #0 and
/ll =0 respectively forms a fundamental set of solutions of Equation (6.1).

Example 6.3. The Hahn difference equation

Dq?wx(t) — 4D§,wx(t) +5D, ,x(t)—2x(t) =0

« k(t—h()*

has the functions ez(t),el(t) and Zkzl—’ as a fundamental set of solutions.

(a;9),

457 |Page Nov 25, 2013



7. Non-Homogeneous Hahn difference equations

In this Section, we are interesting in finding the general solution of the nonhomogeneous Hahn difference Equation (1.5)

where the coefficients a, (t) and b(t) are assumed to satisfy the conditions of Existence and Uniqueness Theorem 1.6.

As in the theory of differential equations, one can see that: If Wl(t) and l//z(t) are two solutions of (1.5), then
v (t) -, ('[) is a solution of the corresponding homogeneous Equation (1.4) . Based on the above-mentioned note and
Theorem 2.5, we get the following: If ¥, (t), ¥, (t),...,i,, (t) form a fundamental setfor (1.4) and ¥/, (t) is a solution

of Equation (1.5), then for any solution of Equation (1.5) , there are unique constants C,...,C, such that

w(t) =y (1) +...+ G, (1) + o (1) (7.1)

Therefore, if we can find any particular solution ¥/, (t) of Equation (1.5), then (7.1) gives a general formula for all

solutions of Equation (1.5) .
7.1 Method of Variation of parameters

We aim to obtain a particular solution ¥/, (t) by the method of variation of parameters. This method depends on replacing

the constants C, in relation (2.1) by the functions C, (t) . Hence, we try to find a solution of the form
wo(t) = ¢,y () +...+ ¢, (O, (V). (7.2)
Now, our objective is to determine the functions C, (t) . We have
Dy ¥o(t) = Zc (D .y, (t),1<i<n (7.3)
provided that

0,6 (0D} (h() =0,1<i<n-1 &
j=1

Putting 1 =N in (7.3) and operating on it by quw,we obtain

Dy ¥o(t) = Z(C ()Dg..¥; (1) + Dy .¢; (1) Dy v, (h())) (7.5)

Since ¥, (t) satisfies Equation (1.5), it follows that

8, () D], o (1) + & (D o (1) +...+ &, (Do (1) = b(t). 7.6)

Substitute by (7.3) and (7.5) in (7.6) and in view of Equation (1.4), we obtain

b(t)
a,(t)

Z;,Dq o€ (0Dg v (h(D)) =
J:
Thus, we get the following system

Dq,mcl(t)wl(h(t))+---+ D, .G (D, (h(1)) =0

L&Dy, (WD) + ...+ D, ¢, (VDI 2y, (N(t) = 0 o

Dq,wcla) D o3 (D) + ..+ Dy €, (VD] oy, (D) = : ((tt)) |
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Consequently,

_ W, (h(®)  Db()

W, (h(D)  a(t)
where 1<r<n and W, (h(t)) is the determinant obtained from W, ,(h(t)) by replacing the I th column by
(0,...,0,1) . it follows that

Dq,wcr (t)

n

c (t)='ft W, (h(z)) , b(z) d, r,r=1
' 'W,, (") a,(x) *" T

Example 7.1. Consider the equation
2 2 —
D, ,X(t) +z°x(t) = b(t), (7.8)

where Z € C\{O}. It is known that cosq’w(Z,.) and sinq’a, (Z,.) are the solutions of the corresponding homogeneous

equation of (8) . We can easily show that

wo(t) = %(sinq,w(z,t) [Ib(z)Cos,,,(2,h(2))d , — cosq.. (2.0)[ (2SN, (2. h())d,, 7).
It follows that every solution of Equation (7.8) has the form
w(t) = c0Sq0(Z,t)+C,singw(z,1)
+%(sinq,a,(Z,t)J.;b(r)COquw(z,h(r))dqymr—cosq'w(z,t)I;b(f)Sinq'w(z,h(r))dqywr).

7.2 Annihilator method

Sometimes, we use another method which is called annihilator method instead of the variation of parameter technique. We
believe that, unlike the variation of parameters method, the annihilator method is usually easier to apply but it can not be
applied in all cases.

Definition 2. We say that f : 1 — C can be annihilated provided that we can find an operator of the form

L(D) = «,D; , +, Dy, +...+a,l suchthat

L(D)f(t)=0,tel
where ¢, 0<i<n are constants, not all zero.

Example 3. Since

(D, ~5)es(t) =0,

D, ., —5l isanannihilator for €; (1.
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)

The following table indicates a list of some functions and their annihilators.

function annihilator
1 Dii
t Dz
ep(t) Dy —p(t)]
cosgw(2,t) Df,_; + 221
sing ., (2,t) | DZ,+2%1

We solve the following equation by using the annihilator method.

Example 7. 4. Consider the equation

D? x(t) —5D, ,x(t) +6x(t) = e,(t).

Equation (7.9) can be rewritten in the form

(D, —31)(D,, —21)X(t) = &, (1).

ISSN 2347-1921

(7.9)

Multiplying both sides by the annihilator D, , —41 , we get thatif X(t) is a solution of (7.9),then X(t) satisfies

(Dy,, —41)(D

q.

Hence,

X(t) = cie, (1) +C.85(t) +Cs8, (1)

-31)(D,,, —21)x(t) =0.

One can see that ¥/, (t) = (1/2)e,(t) . is a solution of Equation (7.9) . Therefore, the general solution of Equation (7.9)

has the following form

X(t) = c,e,(t) +coe, (t) + % e, (t).

8. Conclusion and Perspectives

The aim of this paper is to establish the theory of linear Hahn difference equations and solve its corresponding first order with
non-constant coefficient as well as Euler-Cauchy as a special case of the second order equations. However, there is a lot of
work ahead of us. The most interesting work is to study the stability and the oscillation of linear and non-linear Hahn

difference equations.
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