&)

Blow-up of weak solutions for nonlinear hyperbolic equations with
variable exponents

Yunzhu Gao
Department of Mathematics and Statistics, Beihua University,
Jilin City, PR China
yzgao_2008@163.com

ABSTRACT

This work is concerned with a viscoelastic equation with strongly damping and variable exponents. The existence of weak
solutions is established to the initial and boundary value problem under suitable assumptions by using the Faedo-Galerkin
method and embedding theory.
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Introduction
Let O RN (N > 2) be a bounded Lipschitz domain and () - T « o - Consider the following nonlinear strongly
damping viscoelastic wave problem:
t -2
U, — AU — AU, — AU, + IO g(t—7)Au(z)dz = a(xtlu" "y, (x ) e Q,

u(x,t) =0, (x,t) € S;,

u(x,0) = uy(x), u,(x,0) =u, x e Q. )
Where ¢, ﬁ are positive parameters, QT =Qx ((),T], ST denotes the lateral boundary of the cylinder QT .

It will be assumed throughout the paper that the coefficient a(x, t) is measurable and the exponent p(X) is continuous

in Q with logarithmic module of continuity:

O<a” = itr)lfQ a(x,t)<a(x,t)<a’ = sup a(x,t) <o,
x,t)eQr

(x,1)eQ; 2
1<p” =inf p(x)<p(x)<p” =sup p(x) <e, @)

Xe xeQ)
Vz,§eQz-¢|<1|p(z) - p(&) < @z - <)), @)

where

y 1
limsupaw(r)In==C <+
(x,t)eQr T 0

And we also assume

(H1) g:R, — R, is ¢! function and satisfies

9(0) >0, 1—j: g(s)ds=1>0
(H2) there exists n> 0 such that

9')<ng(), t=0
There have been many results about the existence and blow-up properties of the solutions when p is constant and

a(x, t) —1. We refer the readers to the bibliography given in [1,2.3.4.5,6].

In recent years, much attention has been paid to the study of mathematical models of electro-rheological fluids. These
models include hyperbolic and parabolic equations or systems which are nonlinear with respect to gradient of the thought
solution and with variable exponents of nonlinearity. See [7,8,9,10] and references therein. Besides, another important
application is the image processing where the anisotropy and nonlinearity of the diffusion operator and convection terms
are used to underline the borders of the distorted image and to eliminate the noise[11,12].

To the best of our knowledge, there are only a few works about viscoelastic hyperbolic equations with variable
exponents of nonlinearity. In [13], The authors studied the finite time blow-up a of solutions for viscoelastic hyperbolic
equations and in [1], the authors discussed only the viscoelastic hyperbolic problem with constant exponents. Motivated
by the works of [1,13], we shall study the existence of the solutions to Problem (1) and state some properties to the
solutions.

The outline of this paper is the following: In Section 2, we shall introduce the function spaces of $\rm{Orlicz-Sobolev}$
type, give the definition of the weak solution to the problem and prove the existence of weak solutions for Problem $(1.1)$.

Existence of weak solutions
In this section, the existence of weak solutions will be studied. Firstly, we introduce some Banach spaces

LP®(Q) ={u(x):u is measurablein Q, A (u)= jQ|u| " < oo}
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Lemma 2.1. [14] For y g LP®) (©) . the following relations hold:

o ||u||p(_) <1=L>D e A, W) <U=1>1),

@ [l 0y <22l < Agy @ <[ul7 i lul,y > 1= [ulh, < Ay @) <[l ;
@ |ul o 0= A 20 Jul oy RS Ay D0,
Lemma 2.2. [15,16] For $U € Wé’p(')’ (Q) . if p satisfies the condition (3), the $ p(-) — Poincare’ inequality

[ully < €IVl

p(x)
holds, where the positive constant C depends on p and Q-

Remark 2.1. Note that the following inequality
p(x) p(x)
J. lu deCI [Vu|™ " dx
Q Q

does not in general hold.

Lemma 2.3. [17] Let [9) be an open domain (that may be unbounded) in RN with cone property. If p(X) ‘Q->Risa

= 4N
Lipschitz continuous function satisfying I<p <p < ? and r(x) () —> R is measurable and satisfies
, Np(x) ®
X)<r(x) < X)=———, ae XeQ,
POY<T00< P00 == o

then there is a continuous embedding \W P (Q3) — L") (Q))-

The main result in this section is the following theorem.
Theorem 2.1. Let Uy, U, € Hé(Q), (H1)-(H2) hold, the exponents a(x,t), p(X) satisfy Conditions (2) -(4) and

2(n-D

b

b il

a,(x,t)=0, p~ > 2 such that e n-2 'M=2 Then Problem (1) $ has at least one weak solution

u:Qx(0,00) — R inthe class

ueL”(0,00; H (Q)),u" € L (0,00; Hg (), u” € L (0,0; Hy ().

Proof: Let {W;}; be an orthogonal basis of H 4 (€2) with W,
—Aw; =4,w;, xeQ, w; =0, xe Q.
Vk = span{wl, e Wk} is the subspace generated by the first K vectors of the basis {Wj }T=l' By normalization we
have HWJ' H2 =1.For ® €V, let us define the operator
t -2
(Lu, @) = IQ [u,® + VUV + VU, VD + aVuVd — jog (t—7)Vu(@)Vodz —a(x, lu| " ud]dx.

For any given integer K , we consider the approximate solution
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k
u, = Zcik (t)Wi ,
i=1

which satisfies
(Lu,,w;)=0,1=12,---K,
(%)

Uy 0)= Uo s Uy (0)= U
k k
here Ug, =Zi:1(uo,wi W, Uy, =Zi:l(ul,wi W, and Uy, —>U,, Uy, —>U, in HE(Q). Here we denote by
() the inner productin L*(Q2).
Problem (1) generates the system of K ordinary differential equations

(e (1) =26 () = 4, (e ()" ~ Za(El M) + 4 [ 9t~ 7)es ()d

k

—a(x )0 el ), w) P92 (S0 ek (b, wy), (6)
¢ (0) = (U, W, ), (¢} (0)) = (U, W; ), i =12, k.

By the standard theory of the ODE system, we infer that problem (6) admits a unique solution Cik (t) in [0,t, ], where

t, >0. Then we can obtain an approximate solution U, (t) for (1), in V, , over [0,t,). And the solution can be

extended to [0,T], for any given T >0, by the estimate below. Multiplying (6) (Cik (t))" and summing with respect to
i we conclude that

d S o, 5 ) 1 :
Gl §+E||Vuk z—I;g(t—r)IQ(Vuk(r)Vuk(t))dxdr—jga(x,t)m|uk|p()dx) .
— 1 sy, |
+af [Vui () dx+jﬂat(x,t)m|uk| dx =0.
By simple calculation, we have
~ [ a(t-2)[ Vu, (0)Vu; (1))dxd
1d 1 1d » 2 ®
=2 5 (@2 Vu)O) = 2 (9" Vu ) =5 [ 9O)ds|Vu, [, + S 9OV uil.
here
(0o)O) = ot -2V ®) - V() dr
Combining (7)-(8) and (H1)-(H2), we get
i(— ull? +1||Vu'||2 +1(1—f (s)ds)[Vu ||2+1( o Vu )(t)—j a(x t)i|u 1P dx)
gt 21kl T Ve T LS clle 75192 Vi o p(x) o

1. 1 , 1 x
:E(g o Vu, )(t) —Eg(t)||Vuk||§ —aIQ|Vuk(r)|2dx—IQat (x,t)m|uk|p( 'dx <0.

Integrating (9) over (0, t) , and using assumptions (2)-(4), we have

lu'
2 k

1o e 1 1 1 .
. vy . +E(1—j;g(s)ds)||Vuk||§ +2(9° VU0 —La(x,t)m|uk|p( Ydx < C1,
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where C1 is a positive constant depending only on ||u0

EHOK ”ul Ha (@) "

Hence, by Lemma 2.1, we also have

Ly Ly u2 1,0 2 1 a e @ e
5 ue|, + §||Vuk||2 + 5(1— IO g(s)ds)|Vu, |, + E(g oVu )(t) - max{F||uk||p(x),F”uk”p(x)}s Cl.
(10)
In view of (H1)-(H2), we also have
ul? +[vup]? +[vu ]z + (g o vu ) <c2, (12)
where C2is a positive constant depending only on ||u0||Hé(Q) , ||u1||Hé(Q) N p-, p+. It follows from (11) that
Uy is uniformly bounded in L* (0, oo; Hé(Q)), (12)
Uy is uniformly bounded in L* (0, o0; H 7 (Q))- (13)
Next, multiplying (1) by (C (t))” and then summing with respect to i , we get the following holds:
2 2 d 1 2
u,|,dx+|Vu, | + a—(=|Vu,
il s ot + @ S o) .
" t " p(x)-2 "
:—IQVuk(t)Vukdx + jo gt —r)jg Vu, (r)Vu/ (t)dxd r + La(x,t)|uk| u u’dx.
Note that
" " 2 l 2
= J, vu O Vuioq < e vu; o) + U@, >0 (15)
t " " 2 1 t 2
jo g(t—7) jQ Vu, (r)Vu] (tydxd 7| < g[Vuy ()], +— j (j g(t —7)Vu, (r)d7)2dx
4g o0 (16)

w2 1ot t 2 w2 . @=1g(0) gt 2
<g|vuy (e, + B jo g(s)ds jo gt —7) jg Vu, (2)] dxdz < ]Vuy ()] + % jo [Vu, @);dz.

- i i) 2 4 K
Uga(x,t)|uk|p(x) 2uku;'dx‘£a*g||uﬁ||§ +%H|uk|p(x) 2ukH2 <a“euy; +2—gjg(|uk|p(x) u)?dx. (17)

From Lemma 2.2, we have

> <C?[vuy];. (18)

Uk

IQ (|uk | p(x)-2 u, )%dx = IQ (|uk |2(P(x)—1)dx < max{J'Q (|Uk |2(p‘—1) dx, J‘Q (|Uk |2(p+_1)dx}

19
1 , L1 , 19)

< max{C*Z(pf’l’ Vu]l2n, C 2P |vu, |20},

where C,C “are embedding constants. From (14)-(19), we obtain that

n|2 + "2 d 1 )12
IQ|uk|2dx+(1—25—a £?)|Vuy]; +aa(5||Vuk||2)

s : , @

1 1-Ng(0 AP 2 A 2
§4—8||Vuk(t)||i+% [ IV, ©de + maqC 0 I [vu, x5, 20 I [vu, [ o}
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Integrating (20) over (0,t) and using (11), Lemma 2.3, we get
t
N

where C3 is a positive constant depending only on ||u1|

Uk

2 o 12 o a2 o1
dr+(-2s-a'eC )jo||wk 2dr+E||Vuk i S4—g(C2+(1—I)g(O)T)+C3, 1)

H3(Q)

Taking & small enough in (21), we obtain the estimate
t
k!

where C4is a positive constant depending only on ||u0|| M) ||ul|| @)’ 1,9(0),T.

"
uk

zdr+%||Vu{<||§ <C4, 22)

From estimate (22), we get

U, is uniformly bounded in L*(0,T; H¢ (). (23)

By (12)-(13) and (23), we infer that there exist a subsequence U; of U, and a function U such that

U, > U weaklystarin L*(0,T;H,(€)). (24)
U, = U weaklyin L” (0,T;W*"®(Q)), (25)
Ui = u’ weakly starin L (0,T; H; (). (26)

U = U” weakly in L2(0,T; H:(Q)). (27)

Next, we will deal with the nonlinear term. From the Aubin-Lions theorem, see Lions [18] (pp. 57-58), it follows from (26)

and (27) that there exists a subsequence of U;, still represented by the same notation, such that
u/ —u’ stronglyin L*(0, T; L? (),

which implies U; —U" almost everywhere in {2 x (0, T) . Hence, by (24)-(27)

|D(X)—2 |D(X)—2

u

u.

; —>u U weaklyin Qx (0,T). (28)

Multiplying (6) by @(t) € £(0,T) (which £(0,T) is the space of C” function with compact support in (0,T) and

integrating the obtained result over (0, T), we obtain that

(Lu,,w,g(t))=0, i=12---k. (29)

o0 .

Note that {Wi}i:1 is a basis of H é (Q) . Convergence (24)-(28) is sufficient to pass to the limit in (29) in order to get
t p(x)-2 2 o -t
U, — AU — AU, — AU, +J.O gt — 7)Au(zr)dz =a(x, | u,uel?(0,T;H Q)
for arbitrary T > 0. In view of (24)-(27) and Lemma 3.3.17 in [19], we obtain
u, (0) = u(0) weaklyin H,(€2), u; (0) —u’(0) weaklyin H, ().
Hence, we get U(O) —> U, Ul(O) — U, . Then, the existence of weak solutions is established.
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