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ABSTRACT 

This work is concerned with a viscoelastic equation with strongly damping and variable exponents. The existence of weak 
solutions is established to the initial and boundary value problem under suitable assumptions by using the Faedo-Galerkin 
method and embedding theory. 
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Introduction  

Let )2(  NR N  be a bounded Lipschitz domain and T0 . Consider the following nonlinear strongly 

damping viscoelastic wave problem: 
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Where  ,  are positive parameters, ],0( TQT  , 
TS  denotes the lateral boundary of the cylinder 

TQ . 

It will be assumed throughout the paper that the coefficient ),( txa  is measurable and the exponent )(xp  is continuous 

in   with logarithmic module of continuity: 
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And we also assume 

 (H1) 
  RRg :  is 1C  function and satisfies 
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 (H2) there exists 0  such that  

                                                    0),()(  ttgtg  .                                                                                              

There have been many results about the existence and blow-up properties of the solutions when p  is constant and 

1),( txa . We refer the readers to the bibliography given in [1,2.3.4.5,6]. 

In recent years, much attention has been paid to the study of mathematical models of electro-rheological fluids. These 
models include  hyperbolic and parabolic equations or systems which are nonlinear with respect to gradient of the thought 
solution and with variable exponents of nonlinearity. See [7,8,9,10] and references therein. Besides, another important 
application is the image processing where the anisotropy and nonlinearity of the diffusion operator and convection terms 
are used to underline the borders of the distorted image and to eliminate the noise[11,12]. 

To the best of our knowledge, there are only a few works about viscoelastic hyperbolic equations with variable 
exponents of nonlinearity. In [13], The authors studied the finite time blow-up a of solutions for viscoelastic hyperbolic 
equations and in [1], the authors discussed only the viscoelastic hyperbolic  problem with constant exponents. Motivated 
by the works of [1,13], we shall study the existence of the solutions to Problem (1) and state some properties to the 
solutions. 

The outline of this paper is the following: In Section 2, we shall introduce the function spaces of $\rm{Orlicz-Sobolev}$ 
type, give the definition of the weak solution to the problem and prove the existence of weak solutions for Problem $(1.1)$.   

Existence of weak solutions  

In this section, the existence of weak solutions will be studied. Firstly, we introduce some Banach spaces 
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Lemma 2.1. [14] For )()(  xpLu , the following relations hold: 
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Lemma 2.2. [15,16] For $ )(),(,1

0  pwu , if p  satisfies the condition (3), the $ ePoincarp )(  inequality 

)()( xpxp
uCu   

holds, where the positive constant C  depends on p and  . 

Remark 2.1.  Note that the following inequality 

dxuCdxu
xpxp )()(

 
  

does not in general hold. 

Lemma 2.3. [17] Let   be an open domain (that may be unbounded) in NR  with cone property. If Rxp :)(  is a 

Lipschitz continuous function satisfying k

N
pp  1   and Rxr :)(  is measurable and satisfies 
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then there is a continuous embedding )()( )()(,  xrxpk LW . 

The main result in this section is the following theorem. 

Theorem 2.1. Let )(, 1

010 Huu , (H1)-(H2) hold, the exponents )(),,( xptxa  satisfy Conditions （2）-(4) and 

2,0),(  ptxat
 such that 
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. Then Problem （ 1） $ has at least one weak solution 
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Proof: Let 


1}{ jjw  be an orthogonal basis of )(1

0 H  with jw  

.,0,,  xwxww jjjj   

},,{ 1 kk wwspanV   is the subspace generated by the first k  vectors of the basis 


1}{ jjw . By normalization we 

have 1
2
jw . For kV , let us define the operator 
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For any given integer k , we consider the approximate solution 
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which satisfies 
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0 H . Here we denote by 

),(   the inner product in )(2 L . 

Problem (1) generates the system of k  ordinary differential equations 
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By the standard theory of the ODE system, we infer that problem (6) admits a unique solution )(tc k

i  in ],0[ kt , where 

0kt . Then we can obtain an approximate solution )(tuk  for (1), in kV , over ),0[ kt . And the solution can be 

extended to ],0[ T , for any given 0T , by the  estimate below. Multiplying (6) ))(( tc k

i  and summing with respect to 

i  we conclude that 
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By simple calculation, we have 
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Combining (7)-(8) and (H1)-(H2), we get 
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Integrating (9) over ),0( t , and using assumptions (2)-(4), we have 
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where 1C  is a positive constant depending only on 
)(1)(0 1

0
1
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Hence, by Lemma 2.1, we also have 
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In view of (H1)-(H2), we also have 
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where 2C is a positive constant depending only on 
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Next, multiplying (1) by ))(( tc k

i and then summing with respect to i , we get the following holds: 
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Note that 
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From Lemma 2.2, we have 
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where  
CC, are embedding constants. From (14)-(19), we obtain that 
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Integrating (20) over ),0( t  and using (11), Lemma 2.3, we get 
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where 3C  is a positive constant depending only on 
)(1 1

0 H
u . 

Taking   small enough in (21), we obtain the estimate 
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From estimate (22), we get 
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By (12)-(13) and (23), we infer that there exist a subsequence iu  of ku  and a function u  such that 
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Next, we will deal with the nonlinear term. From the Aubin-Lions theorem, see Lions [18] (pp. 57-58), it follows from (26) 

and (27) that there exists a subsequence of iu , still represented by the same notation, such that 
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Multiplying (6) by ),0()( Tt   (which ),0( T  is the space of 
C  function with compact support in ),0( T  and 

integrating the obtained result over ),0( T , we obtain that 
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for arbitrary 0T . In view of (24)-(27) and Lemma 3.3.17 in [19], we obtain 
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Hence, we get 110 )0(,)0( uuuu  . Then, the existence of weak solutions is established. 
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