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Abstract 

New characterizations of doubly truncated exponential, Pareto and power function distributions are presented 
by using the s th conditional expectation in terms of their failure rate and reversed failure rate. These results 
may serve as generalization of several other results in the literature. This characterization generalizes a result of 
Nofal(2010). 
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1. Introduction 

Characterizations of distributions have always played an important role in statistical theory and are widely 
published in the literature. Several functions are defined related to the residual life. The failure rate function, 

defined by: 𝑕 𝑥 =  
𝑓 𝑥 

1 – 𝐹(𝑥)
 represents the failure rate of 𝑋 (or 𝐹) at age x and 𝜏 𝑥 =  

𝑓 𝑥 

 𝐹(𝑥)
 represents the 

inversed failure rate of X (or F) at age x where 𝐹(𝑥)  =  𝑃(𝑋 ≤  𝑥), and 𝑓(𝑥) is the density function when 
𝑋 is continuous, or 𝑓(𝑥)  =  𝑃(𝑋 =  𝑥) when X is discrete. Another interesting function is the mean residual 
life function, defined by𝐸(𝑋 − 𝑥 | 𝑋 ≥  𝑥), and it represents the expected additional life length for a unit which 
is alive at age x. This function is equivalent to the left censored mean function, also called vitality function (see 
Gupta (1975)), defined by𝐸(𝑋 | 𝑋 ≥  𝑥).Applications of hazard functions are quite well known in the statistical 
literature. Another interesting function is the mean inactivity time, defined by 𝐸(𝑥 − 𝑋 | 𝑋 ≤  𝑥) and it is 
equivalent to the left censored lifetimes .it become quite popular among the statisticians, see for example Gupta 
and Han (2001). Anderson et al. (1993) show that the reversed hazard function plays the same role in the 
analysis of left-censored data as the hazard function plays in the analysis of right-censored data. Interestingly, 
The properties of the mean inactivity time have been considered by many authors, see, eg., Kayid and Ahmad 
(2004), and Ahmad , Kayid and Pellery (2005). Several characterizations of probability models have been 
obtained in the last 30 years based on the univariate failure rate or mean residual life functions. The problems of 
characterization of distributions are today a substantial part of probability theory and mathematical statistics. 
The mean inactivity time and mean residual life are applicable in biostatistics and many other actuarial science, 
engineering, economics, biometry and applied probability areas. They also are useful in survival analysis studies 
when we take are faced with left or right censored data. 

2. Preliminaries 

In this section we shall introduce notation, definitions and basic facts used throughout.  

2.1. Definition 

Let X be a non-negative random variable with probability density function(or probability mass function) 𝑓(x),  

cdf 𝐹(𝑥), survival𝐹  𝑥 = 1 − 𝐹(𝑥). 

2.2. Definition 

We define the doubly truncated trimmed conditional r th moment of X, by E(Xr  x ≤ X ≤ y) , where   

𝐸( 𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦) =  𝑢𝑟𝑓 𝑢 𝑑𝑢
𝑦

𝑥

/ 𝐹 𝑦 − 𝐹(𝑥)  

3. Main Results 

In this section we introduce some new results about some distributions as exponential, Pareto and power 
function. 

3.1. Characterization of the doubly truncated exponential distribution.  

In this section we shall characterize the trimmed exponential distribution in terms of their failure rate and 
reversed failure rate. This is contained in the following. 

Theorem 3.1 

Let we have a nonnegative continuous random variable with cdf, 𝐹(𝑥), pdf, 𝑓(𝑥); then X has Exponential 
distribution with: 

𝑓(𝑥) = 𝜆𝑒−𝜆𝑥    ,       𝑥 > 0       ,      𝜆 > 0 

If and only if 

𝐸( 𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦) =
𝑟!

𝜆𝑟
+

𝑟! 𝑔 𝑥 𝑕 𝑦 𝜏 𝑥 − 𝑟!  𝑔 𝑦 − 𝑔 𝑥   𝜏 𝑥 𝜏 𝑦  − 𝑟! 𝑔 𝑦 𝑕 𝑥 𝜏 𝑦 

 𝜏 𝑥 𝑕 𝑦 − 𝑕 𝑥 𝜏 𝑦  
           (3.1) 

where  

𝑔 𝑡 = 𝑟!  
𝑡𝑟−𝑖

𝜆𝑖 𝑟 − 𝑖 !

𝑟−1

𝑖=0
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We prove Theorem 2.1 through a series of lemmas (2.2, 2.3 and 2.4 of Nofal, 2010) 

Proof of Theorem  

1. Necessity 

Observe that 

𝐸( 𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦) =
1

 𝐹 𝑦 − 𝐹 𝑥  
 𝑢𝑟𝑓 𝑢 𝑑𝑢

𝑦

𝑥

 

                                   =
1

 𝐹 𝑦 − 𝐹 𝑥  
𝐴1, 

where 

𝐴1 =  𝑢𝑟𝑓 𝑢 𝑑𝑢 =  𝑢𝑟𝜆𝑒−𝜆𝑢 𝑑𝑢
𝑦

𝑥

.
𝑦

𝑥

 

Now integrating by parts, gives 

                           𝐴1 = −𝑦𝑟𝑒−𝜆𝑦 + 𝑥𝑟𝑒−𝜆𝑥 + 𝑟  𝑢𝑟−1𝑒−𝜆𝑢 𝑑𝑢.
𝑦

𝑥

 

A second integrating by parts leads to 

     𝐴1 = −𝑦𝑟𝑒−𝜆𝑦 + 𝑥𝑟𝑒−𝜆𝑥 −
𝑟

𝜆
𝑦𝑟−1𝑒−𝜆𝑦 +

𝑟

𝜆
𝑥𝑟−1𝑒−𝜆𝑥 +

𝑟(𝑟 − 1)

𝜆
 𝑢𝑟−2𝑒−𝜆𝑢 𝑑𝑢

𝑦

𝑥

 

Using recursive integration by parts, one gets 

A1 = −e−λy  yr +
r

λ
yr−1 +

r r − 1 

λ2
yr−2 + ⋯ +

r!

λr
  

           +e−λx  xr +
r

λ
xr−1 +

r r−1 

λ2 xr−2 + ⋯ +
r!

λr                                                                                                   (3.2) 

One Equation (1.2), after doing the necessary manipulations can be rewritten as  

𝐴1 = −𝑟! 𝑒−𝜆𝑦   
𝑦𝑟−𝑖

𝜆𝑖 𝑟 − 𝑖 !

𝑟

𝑖=0

 + 𝑟! 𝑒−𝜆𝑥   
𝑥𝑟−𝑖

𝜆𝑖 𝑟 − 𝑖 !

𝑟

𝑖=0

  

 

      = −𝑟! 𝐹 (𝑦)   
𝑦𝑟−𝑖

𝜆 𝑖 𝑟−𝑖 !
𝑟
𝑖=0  + 𝑟! 𝐹 (𝑥)   

𝑥𝑟−𝑖

𝜆 𝑖 𝑟−𝑖 !
𝑟
𝑖=0   

     = −𝑟! 𝐹 (𝑦)   
𝑦𝑟−𝑖

𝜆 𝑖 𝑟−𝑖 !
+

1

𝜆𝑟
𝑟−1
𝑖=0  + 𝑟! 𝐹 (𝑥)   

𝑥𝑟−𝑖

𝜆 𝑖 𝑟−𝑖 !
+

1

𝜆𝑟
𝑟−1
𝑖=0   

     = −
𝑟!

𝜆𝑟
 𝐹  𝑦 − 𝐹 (𝑥) − 𝑟! 𝐹 (𝑦)   

𝑦𝑟−𝑖

𝜆 𝑖 𝑟−𝑖 !
𝑟−1
𝑖=0  + 𝑟! 𝐹 (𝑥)   

𝑥𝑟−𝑖

𝜆 𝑖 𝑟−𝑖 !
𝑟−1
𝑖=0   

     = −
𝑟!

𝜆𝑟
 𝐹  𝑦 − 𝐹 (𝑥) − 𝑟! 𝐹  𝑦 𝑔(𝑦) + 𝑟! 𝐹 (𝑥)𝑔(𝑥)                   

Summing up, it follows that 

𝐸( 𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦)
1

 𝐹 𝑦 − 𝐹 𝑥  
 −

𝑟!

𝜆𝑟
 𝐹  𝑦 − 𝐹 (𝑥) − 𝑟! 𝐹  𝑦 𝑔(𝑦) + 𝑟! 𝐹 (𝑥)𝑔(𝑥)  

                                   =
𝑟!

𝜆𝑟 +
−𝑟!𝐹  𝑦 𝑔(𝑦)+𝑟!𝐹 (𝑥)𝑔(𝑥)

 𝐹 𝑦 −𝐹 𝑥  
 

Using Lemma (2.3) in Nofal (2010), one gets 

𝐸( 𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦) =
𝑟!

𝜆𝑟
+

𝑟! 𝑔 𝑥 𝑕 𝑦 𝜏 𝑥 − 𝑟!  𝑔 𝑦 − 𝑔 𝑥   𝜏 𝑥 𝜏 𝑦  − 𝑟! 𝑔 𝑦 𝑕 𝑥 𝜏 𝑦 

 𝜏 𝑥 𝑕 𝑦 − 𝑕 𝑥 𝜏 𝑦  
                 (3.3) 

2. Sufficiency 

Equation 3.3 can be written as  
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 𝑢𝑟𝑓 𝑢 𝑑𝑢
𝑦

𝑥

= −
𝑟!

𝜆𝑟
 𝐹  𝑦 − 𝐹  𝑥  − 𝑟! 𝐹  𝑦 𝑔 𝑦 + 𝑟! 𝐹  𝑥 𝑔 𝑥 . 

By differentiating both sides with respect to , one finds  

𝑑

𝑑𝑦
 𝑢𝑟𝑓 𝑢 𝑑𝑢

𝑦

𝑥

=
𝑑

𝑑𝑦
 −𝐹  𝑦  

𝑟!

𝜆𝑟
+ 𝑟! 𝑔 𝑦  + 𝐹  𝑥  

𝑟!

𝜆𝑟
+ 𝑟! 𝑔 𝑥    

This implies that  

𝑦𝑟𝑓 𝑦 = 𝑓 𝑦  
𝑟!

𝜆𝑟
+ 𝑟! 𝑔 𝑦  − 𝑟! 𝐹  𝑦 𝑔  𝑦  

Where, 

    𝑔  𝑦 =  
𝑦𝑟−𝑖−1

𝜆𝑖 𝑟 − 𝑖 − 1 !
,

𝑟−1

𝑖=0

 

then 

𝑦𝑟𝑓 𝑦 = 𝑓 𝑦  
𝑟!

𝜆𝑟
+  

𝑟! 𝑦𝑟−𝑖

𝜆𝑖 𝑟 − 𝑖 !

𝑟−1

𝑖=0

 − 𝑟! 𝐹  𝑦 𝑔  𝑦                                                                                                  (3.4) 

We can rewrite Equation (3.4) as 

𝑟! 𝐹  𝑦 𝑔  𝑦 = 𝑓 𝑦  
𝑟!

𝜆𝑟
+  

𝑟! 𝑦𝑟−𝑖

𝜆𝑖 𝑟 − 𝑖 !
− 𝑦𝑟

𝑟−1

𝑖=0

 =
𝑟!

𝜆
𝑓 𝑦 𝑔  𝑦 ,  

This implies that  

1

𝜆
𝑓 𝑦 = 𝐹  𝑦  

We can write it as 

𝑓 𝑦 

𝐹  𝑦 
=

1

𝜆
 

By integrating both sides with respect to y, one finds that  

𝐹  𝑦 = 𝑒−𝜆𝑥  

This is the survival function of exponential distribution 

Lemma3.2 

In Theorem 3.1 if one puts r = 1, then one can get the result of (Nofal (2010)) as 

𝐸( 𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦) =
1

𝜆
+

𝑥𝑕 𝑦 𝜏(𝑥) −  𝑦 − 𝑥  𝜏 𝑥 𝜏 𝑦  − 𝑦𝑕(𝑥)𝜏(𝑦)

 𝜏 𝑥 𝑕 𝑦 − 𝑕 𝑥 𝜏(𝑦) 
, 

which g(t) = t . 

Lemma 3.3 

In Theorem 3.1 if one puts 𝑥 =  0, then one can get the result of (Zakria (2013)) as 

𝐸( 𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦) =
𝑟!

𝜆𝑟
− 𝑟! 𝜏 𝑦  

𝑡𝑟−𝑖

𝜆𝑖+1 𝑟 − 𝑖 !

𝑟−1

𝑖=0

. 

Lemma 3.4 

In Theorem 3.1 if one puts𝑥 ∞, then one can get the result of (Zakria (2013)) as 

𝐸( 𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦) =
𝑟!

𝜆𝑟
+

𝑟!

𝜆
𝑕 𝑦  

𝑡𝑟−𝑖

𝜆𝑖+1 𝑟 − 𝑖 !

𝑟−1

𝑖=0

. 
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3.2   Characterization of the doubly truncated Pareto distribution. 

In this section we shall characterize the trimmed Pareto distribution in terms of their failure rate and reversed 
failure rate .This is contained in the following. 

Theorem 3.5 

Let we have a nonnegative continuous random variable with cdf𝐹(𝑥), pdf𝑓(𝑥); then 𝑋has Pareto distribution with: 

𝑓 𝑥 =
𝜃

𝛼
 
𝑥

𝛼
 

−(𝜃+1)

, 𝑥 > 𝛼, 𝛼, 𝜃 > 0. 

If and only if, 

                            𝐸( 𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦) =
𝑏𝑥𝑟𝑕 𝑦 𝜏 𝑥 − 𝑏𝑦𝑟𝑕 𝑥 𝜏 𝑦 −  𝑏𝑦𝑟 − 𝑏𝑥𝑟  𝜏 𝑥 𝜏 𝑦  

 𝜏 𝑥 𝑕 𝑦 − 𝑕 𝑥 𝜏(𝑦) 
 

We prove Theorem 3.5 through a series of Lemmas (2.2, 2.3 and 2.4 of Nofal , 2010). 

Proof of Theorem 

1. Necessity 

Observe that 

𝐸( 𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦) =
1

 𝐹 𝑦 − 𝐹 𝑥  
 𝑢𝑟𝑓 𝑢 𝑑𝑢

𝑦

𝑥

 

                                   =
1

 𝐹 𝑦 − 𝐹 𝑥  
𝐴2,                                                                                                                       (3.5) 

where 

𝐴2 =  𝑢𝑟𝑓 𝑢 𝑑𝑢 =  𝑢𝑟  
𝜃

𝛼
 
𝑢

𝛼
 

−(𝜃+1)

 𝑑𝑢
𝑦

𝑥

𝑦

𝑥

. 

We rewrite A2 as 

                            𝐴2 =  𝛼𝜃𝜃𝑢−𝜃+𝑟−1𝑑𝑢.
𝑦

𝑥

                                                                                                   (3.6) 

Now integrating Equation (3.6) by parts, one gets 

                                     𝐴2 =  𝛼𝜃𝜃

−𝜃 + 𝑟
𝑢−𝜃+𝑟  

𝑦

𝑥
, 

                                           =
𝛼𝜃𝜃

−𝜃 + 𝑟
 𝑦−𝜃+𝑟 − 𝑥−𝜃+𝑟 , 

                      =
𝑥𝑟𝜃

𝜃−𝑟
 

𝑥

𝛼
 

−𝜃

−
𝑦𝑟𝜃

𝜃−𝑟
 

𝑦

𝛼
 

−𝜃

,                                                                                    (3.7) 

Equation (3.7) can be written as 

𝐴2 = 𝑏𝑥𝑟𝐹  𝑥 − 𝑏𝑦𝑟𝐹  𝑦 , 

where 

                                                                                       𝑏 =
𝜃

𝜃 − 𝑟
. 

One can rewrite Equation (3.7) as 

𝐸  𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦 =
𝑏𝑥𝑟𝐹  𝑥 − 𝑏𝑦𝑟𝐹  𝑦 

 𝐹 𝑦 − 𝐹𝑥 
, 

Using Lemmas (2.2, 2.3 and 2.4 of Nofal, 2010), one obtains 

𝐸( 𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦) =
𝑏𝑥𝑟𝑕 𝑦 𝜏 𝑥 − 𝑏𝑦𝑟𝑕 𝑥 𝜏 𝑦 −  𝑏𝑦𝑟 − 𝑏𝑥𝑟  𝜏 𝑥 𝜏 𝑦  

 𝜏 𝑥 𝑕 𝑦 − 𝑕 𝑥 𝜏(𝑦) 
.                         (3.8) 
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2. Sufficiency 

Equation (3.8) can be written as 

 𝑢𝑟𝑓 𝑢 𝑑𝑢
𝑦

𝑥

= 𝑏𝑥𝑟𝐹  𝑥 − 𝑏𝑦𝑟𝐹  𝑦 . 

By differentiating both sides with respect to y, one gets 

                                                       𝑦𝑟𝑓 𝑦 = 𝑏𝑦𝑟𝑓 𝑥 − 𝑏𝑟𝑦𝑟−1𝐹  𝑦 .                                                          (3.9) 

One can rewrite Equation (3.9) as 

−𝑓(𝑦)

𝐹  𝑦 
=

−𝑏𝑟

𝑦(1 − 𝑏)
, 

integrating both sides with respect to y, one gets 

𝑙𝑛𝐹  𝑦 = 𝑙𝑛𝑦−𝜃 , 

then 

𝐹  𝑦 =  
𝑦

𝛼
 

−𝜃

. 

This completes the proof. 

3.3  Characterization of the doubly truncated power function distribution. 

In this section we shall characterize the trimmed power function distribution in terms of their failure rate and 
reversed failure rate .This is contained in The following. 

Theorem 3.6 

Let we have a nonnegative continuous random variable with cdf F(x), pdf f(x); then X has 

Power function distribution with: 

f x = α(1 − x)α−1 , 0 < 𝑥 < 1, 𝛼 > 0 

If and only if, 

𝐸( 𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦) =
𝑟! 𝛼! 𝑊 𝑥 𝑕 𝑦 𝜏 𝑥 − 𝑟! 𝛼! 𝑊 𝑦 𝑕 𝑥 𝜏 𝑦 − 𝑟! 𝛼!  𝑊 𝑦 − 𝑊 𝑥   𝜏 𝑥 𝜏 𝑦  

 𝜏 𝑥 𝑕 𝑦 − 𝑕 𝑥 𝜏(𝑦) 
      (3.10) 

Proof of Theorem 

1. Necessity 

One can notice that 

𝐸( 𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦) =
1

 𝐹 𝑦 − 𝐹 𝑥  
 𝑢𝑟𝑓 𝑢 𝑑𝑢

𝑦

𝑥

 

                      =
1

 𝐹 𝑦 − 𝐹 𝑥  
𝐴3,                                                                         

where 

𝐴3 =  𝑢𝑟𝑓 𝑢 𝑑𝑢 =  𝑢𝑟 𝛼 1 − 𝑢 𝛼−1 𝑑𝑢
𝑦

𝑥

𝑦

𝑥

. 

Now integrating by parts, gives 

𝐴3 = 𝑥𝑟(1 − 𝑥)𝛼 − 𝑦𝑟 1 − 𝑦 𝛼 + 𝑟  𝑢𝑟−1
𝑦

𝑥

 1 − 𝑢 𝛼𝑑𝑢. 

A second integrating by parts, one gets 

𝐴3 = 𝑥𝑟(1 − 𝑥)𝛼 − 𝑦𝑟 1 − 𝑦 𝛼 +
𝑟𝑥𝑟−1 1 − 𝑥 𝛼+1

𝛼 + 1
−

𝑟𝑦𝑟−1 1 − 𝑦 𝛼+1

𝛼 + 1
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          +
𝑟(𝑟 − 1)

𝛼 + 1
 𝑢𝑟−2

𝑦

𝑥

 1 − 𝑢 𝛼𝑑𝑢. 

Using recursive integration by parts, one gets 

𝐴3 = 𝑥𝑟(1 − 𝑥)𝛼 − 𝑦𝑟 1 − 𝑦 𝛼 +
𝑟𝑥𝑟−1 1 − 𝑥 𝛼+1

𝛼 + 1
−

𝑟𝑦𝑟−1 1 − 𝑦 𝛼+1

𝛼 + 1
+

𝑟 𝑟 − 1 𝑥𝑟−2 1 − 𝑥 𝛼+2

 𝛼 + 1  𝛼 + 2 

−
𝑟 𝑟 − 1 𝑦𝑟−2 1 − 𝑦 𝛼+2

 𝛼 + 1  𝛼 + 2 
+ ⋯

+
𝑟 𝑟 − 1  𝑟 − 2 …  𝑟 −  𝑟 − 1  

 𝛼 + 1  𝛼 + 2 …  𝛼 +  𝑟 − 1  
  1 − 𝑢 𝛼+𝑟−1𝑑𝑢

𝑦

𝑥

.                                    (3.11) 

Equation (3.11) can be written as 

𝐴3 = 𝑥𝑟(1 − 𝑥)𝛼 +
𝑟𝑥𝑟−1 1 − 𝑥 𝛼+1

𝛼 + 1
+

𝑟 𝑟 − 1 𝑥𝑟−2 1 − 𝑥 𝛼+2

 𝛼 + 1  𝛼 + 2 
+ ⋯ +

𝑟! 𝛼!  1 − 𝑥 𝛼+𝑟

 𝛼 + 𝑟 !
− 𝑦𝑟 1 − 𝑦 𝛼

+
𝑟𝑦𝑟−1 1 − 𝑦 𝛼+1

𝛼 + 1
+

𝑟 𝑟 − 1 𝑦𝑟−2 1 − 𝑦 𝛼+2

 𝛼 + 1  𝛼 + 2 
+ ⋯ 

                                         +
𝑟! 𝛼!  1 − 𝑦 𝛼+𝑟

 𝛼 + 𝑟 !
,                                                                                                3.12  

one can rewrite Equation (3.12) as 

𝐴3 =  
𝑟! 𝛼! 𝑥𝑟−𝑖 1 − 𝑥 𝛼+𝑖

 𝑟 − 𝑖 !  𝛼 + 𝑖 !

𝑟

𝑖=0

−  
𝑟! 𝛼! 𝑦𝑟−𝑖 1 − 𝑦 𝛼+𝑖

 𝑟 − 𝑖 !  𝛼 + 𝑖 !
,                                           

𝑟

𝑖=0

 

or 

𝐴3 = 𝑟! 𝛼! 𝐹 (𝑥)  
𝑥𝑟−𝑖 1 − 𝑥 𝑖

 𝑟 − 𝑖 !  𝛼 + 𝑖 !

𝑟

𝑖=0

− 𝑟! 𝛼! 𝐹 (𝑦)  
𝑟! 𝛼! 𝑦𝑟−𝑖 1 − 𝑦 𝑖

 𝑟 − 𝑖 !  𝛼 + 𝑖 !
,                                        (3.13)

𝑟

𝑖=0

 

one can write Equation (3.13) as 

𝐴3 = 𝑟! 𝛼! 𝐹  𝑥 𝑊 𝑥 − 𝑟! 𝛼! 𝐹  𝑦 𝑊 𝑦 ,                                                                                                (3.14) 

where 

𝑊 𝑡 =  
𝑟! 𝛼! 𝑡𝑟−𝑖 1 − 𝑡 𝑖

 𝑟 − 𝑖 !  𝛼 + 𝑖 !
.

𝑟

𝑖=0

 

One can rewrite Equation (3.13) as 

𝐸( 𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦) =
𝑟! 𝛼! 𝐹  𝑥 𝑊 𝑥 − 𝑟! 𝛼! 𝐹  𝑦 𝑊 𝑦 

 𝐹 𝑦 − 𝐹 𝑥  
, 

using Lemmas (2.2, 2.3 and 2.4 of Nofal , 2010), one obtains 

𝐸  𝑋𝑟   𝑥 ≤ 𝑋 ≤ 𝑦 =
𝑟! 𝛼! 𝑊 𝑥 𝑕 𝑦 𝜏 𝑥 − 𝑟! 𝛼! 𝑊 𝑦 𝑕 𝑥 𝜏 𝑦 − 𝑟! 𝛼!  𝑊 𝑦 − 𝑊 𝑥   𝜏 𝑥 𝜏 𝑦  

 𝜏 𝑥 𝑕 𝑦 − 𝑕 𝑥 𝜏 𝑦  
. 

                                                                                                                                                                                                 (3.15) 

2. Sufficiency 

Equation (3.15) can be written as 

 𝑢𝑟𝑓 𝑢 𝑑𝑢
𝑦

𝑥

= 𝑟! 𝛼! 𝐹  𝑥 𝑊 𝑥 − 𝑟! 𝛼! 𝐹  𝑦 𝑊 𝑦 . 

By differentiating both sides with respect to y, one gets 

𝑦𝑟𝑓 𝑦 𝑑𝑢 = 𝑟! 𝛼! 𝑓 𝑦 𝑊 𝑦 − 𝑟! 𝛼! 𝐹  𝑦 𝑊′ 𝑦 ,                                                                                    (3.16) 

where 
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𝑊′ 𝑦 =  
 𝑟 − 𝑖 𝑦𝑟−𝑖−1 1 − 𝑦 𝑖 − 𝑖𝑦𝑟−𝑖 1 − 𝑦 𝑖

 𝑟 − 𝑖 !  𝛼 + 𝑖 !
,                                  

𝑟

𝑖=0

 

 =
𝑟𝑦𝑟−1

𝑟! 𝛼!
+

 𝑟 − 1 𝑦𝑟−2 1 − 𝑦 − 𝑦𝑟−1

 𝑟 − 1 !  𝛼 + 1 !
 

                                          +
 𝑟 − 2 𝑦𝑟−2 1 − 𝑦 2 − 2𝑦𝑟−2(1 − 𝑦)

 𝑟 − 1 !  𝛼 + 1 !
+ ⋯,                                                (3.17) 

we can rewrite (3.17) as, 

𝑊 ′ (𝑦) =  
𝑟𝑦𝑟−1

𝑟! 𝛼!
−

𝑦𝑟−1

 𝑟 − 1 !  𝛼 + 1 !
 +  

(𝑟 − 1)𝑦𝑟−2(1 − 𝑦)

 𝑟 − 1 !  𝛼 + 1 !
−

2𝑦𝑟−2(1 − 𝑦)

 𝑟 − 2 !  𝛼 + 2 !
  

                               +  
 𝑟 − 2 𝑦𝑟−3 1 − 𝑦 2

 𝑟 − 2 !  𝛼 + 2 !
−

3𝑦𝑟−3(1 − 𝑦)2

 𝑟 − 3 !  𝛼 + 3 !
 + ⋯, 

=
 𝛼 + 1 𝑟𝑦𝑟−1 − 𝑟𝑦𝑟−1

𝑟! (𝛼 + 1)!
+

 𝛼 + 2 (𝑟 − 1)𝑦𝑟−2(1 − 𝑦) − 2(𝑟 − 1)𝑦𝑟−2(1 − 𝑦)

(𝑟 − 1)! (𝛼 + 2)!
 

+
 𝛼 + 3 (𝑟 − 2)𝑦𝑟−3(1 − 𝑦)2 − 3(𝑟 − 2)𝑦𝑟−3(1 − 𝑦)2

(𝑟 − 2)! (𝛼 + 3)!
+ ⋯ 

This implies that 

𝑊 ′ 𝑦 =
𝛼𝑟𝑦𝑟−1

𝑟!  𝛼 + 1 !
+

𝛼(𝑟 − 1)𝑦𝑟−2(1 − 𝑦)

 𝑟 − 1 !  𝛼 + 2 !
+

𝛼(𝑟 − 2)𝑦𝑟−3(1 − 𝑦)2

 𝑟 − 2 !  𝛼 + 3 !
+ ⋯, 

             = 𝛼  
𝑦𝑟−1

 𝑟−1 ! 𝛼+1 !
+

𝑦𝑟−2 1−𝑦 

 𝑟−2 ! 𝛼+2 !
+

𝑦𝑟−3 1−𝑦 2

 𝑟−3 ! 𝛼+3 !
+ ⋯   

             = 𝛼   
𝑦𝑟−𝑖 1 − 𝑦 𝑖−1

 𝑟 − 𝑖 !  𝛼 + 𝑖 !

𝑟

𝑖=1

 . 

One can rewrite Equation (3.16) as 

𝑟! 𝛼! 𝐹  𝑦 𝛼   
𝑦𝑟−𝑖 1 − 𝑦 𝑖−1

 𝑟 − 𝑖 !  𝛼 + 𝑖 !

𝑟

𝑖=1

 = 𝑓 𝑦  𝑟! 𝛼! 𝑊 𝑦 − 𝑦𝑟  .                                                                                     (3.18) 

But 

                              𝑟! 𝛼! 𝑊 𝑦 − 𝑦𝑟  = 𝑟! 𝛼!  1 − 𝑦   
𝑦𝑟−𝑖 1 − 𝑦 𝑖−1

 𝑟 − 𝑖 !  𝛼 + 𝑖 !

𝑟

𝑖=1

 . 

Then Equation (3.18) can be written as 

𝑟! 𝛼! 𝐹  𝑦 𝛼   
𝑦𝑟−𝑖 1 − 𝑦 𝑖−1

 𝑟 − 𝑖 !  𝛼 + 𝑖 !

𝑟

𝑖=1

 = 𝑟! 𝛼!  1 − 𝑦 𝑓 𝑦   
𝑦𝑟−𝑖 1 − 𝑦 𝑖−1

 𝑟 − 𝑖 !  𝛼 + 𝑖 !

𝑟

𝑖=1

 . 

This implies that 

                     𝛼𝐹  𝑦 =  1 − 𝑦 𝑓 𝑦 .                                                                                                                    (3.19) 

One can rewrite Equation (3.19) as 

−𝑓(𝑦)

𝐹  𝑦 
= 𝛼  

−1

1 − 𝑦
 . 

Integrating both sides with respect to y, one gets 

𝐹  𝑦 =  1 − 𝑦 𝛼 . 

This completes the proof. 
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