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ABSTRACT

In this paper, we present a new approach to solve nonlocal initial-boundary value problems for heat, wave and Laplace
equations subject to initial and nonlocal boundary conditions of integral type. We first transform the given nonlocal initial-
boundary value problems of integral type and then apply the method of separation of variables.
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1- Introduction

The problem of determining a solution to a partial differential equation when both initial data and nonlocal boundary
conditions are specified is called a non- local initial-boundary value problem. Various problems arising in heat conduction
[1, 2, 3], chemical engineering [4], thermo-elasticity [5] and plasma physics [6] can be modeled by nonlocal initial-
boundary value problems with integral boundary conditions. This class of boundary value problems has been investigated
in [1, 2, 3, 4, 7, 8] for parabolic and in [9, 10] for hyperbolic partial differential equations. In [11, 12, 13, 14, 15], these
problems were investigated and appropriate existence and uniqueness theorems were proved. As a continuation of the
research paper [16], we will present a similarly approach for solving nonlocal initial-boundary value problems for heat,
wave and Laplace equation by the method of eigen function expansions. We first transform the given nonlocal initial-
boundary value problems for the heat, wave and Laplace equations subject to initial and nonlocal homogeneous boundary
conditions of integral type into local initial-boundary value problems. Then we apply the method of separation of variables.

2- Nonlocal boundary value problem for the homogeneous heat equation
We begin this section by considering the linear heat equation.
u —ku,., =0, k>0, a<z<bh t=>0, (2.1)

subject to the initial condition
u(0.z) = alx) (2.2)

and the nonlocal homogeneous boundary conditions of integral type

b b
/ o1 (z)u(t, z)dr = 0 and / oo(x)u(t, z)dr =0, (2.3)
a a

where ¢;,i =1,2and «a are specified as continuous functions on the interval [a, b].
We begin our approach by converting Egs. (2.1)-(2.3) to a local initial-boundary

value problem by introducing a new function v(t, x) such that

3
v(t, ) :/ plz)ul(t, z)dz, (2.4)
a

Where ¢ = ¢; + ¢,. Hence we have

/

1 , ;
@) vell, ), (. x) =

Ll
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(t.x)

, : v.(t. ) & | ,
u(l,r) = ————, Uz(l,T) = — Urr(l, )+

o(z) o(x) p(z)

and

" !

L . . ol 3 P
o (£, 2) = — | v, (t.x)+2 — ) Vet T) + | —— ) Uy (E. T).
w(x) () plr)

Thus we have transformed Eq. (2.1) into the following linear partial differential equation

’

Ver — K ( ,1 ) o{x)v, — 2k ( 1 ) o(x) gy — Ky, =0, (2.5)

@(x) o),

subject to the initial and local homogeneous Dirichlet boundary conditions

v(0, z) = h(x), where h(zx) = / olz)a(z)dz,

Ja
and

v(t,a) =0 and v(t,b) = 0.
Thus we deduce

Lemma 1. The general nonlocal initial-boundary value problem for the linear heat equation (2.1)-(2.3) can always be
reduced to a local initial-boundary value problem of the form
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" ’
ik <%) Plr)va 25 (;(l.r)) O(x)vze —kvzze = 0, a<z<b, t>0,
v(0,z) = h(x), (2.6)
v(t,a) =0 and v(t,b) = 0.

A solution of this problem will lead to a solution of the original Problem (2.1)-(2.3), where

u(t,r) = ve(t, ). (2.7)

wlT)
2.1- Separation of variables

The idea of the method of separation of variables is to assume a solution in the form

v(t,z) = X(t)Y (z).

bo
o0

Differentiate (2.8) and substitute into (2.5) to obtain

X'(t) Y"(z) L N 0¥ () S s
— = —— 42 p(z)———— + ‘ w(x). 2.9
kX (t) Y'(x) (,cgj.;-_)) (z) Y'(x) (;[.r)) AT) ol

This means that each side is really a constant. We denote the so-called separation constant by —y2. Now we have two
ordinary differential equations

X'(t) + kA2X (¢) =0, (2.10)

subject to the initial condition X(0) = h(x) and

[, PR - S R ey A R
¥y (.‘rH—'_)( ) o(x)Y () + [( - ) ;(.‘r;+)\']) (x)=0, (2.11)
wlx) wlx)

subject to the local homogeneous Dirichlet boundary conditions Y (a) = Y(b) = 0. We note that the method of separation
of variables replaces Pr. (2.6) by a pair of ordinary differential equations (2.10)-(2.11). In order to solve Eq. (2.11), we
introduce a new dependent variable Z(x) such that Z(x) = Y'(x). Therefore, Eq. (2.11) becomes a second-order
differential equation

'

Z"(x) 42( ﬂ(,lr}) p(z)Z'(x) + ( **'11']) olz) + A%| Z(z) =0. (2.12)
) T\

Once the function Z(x)s determined, we can readily return to the original dependent variable Y (x)

We will not be able to give the solution without the explicit knowledge of ¢ (x). Therefore this nonlocal initial-boundary
value problem will not be fully solved until the following section, in which we discuss various special cases of ¢(x).

3- Nonlocal boundary value problem for the homogeneous wave equation

For the nonlocal wave problem

Uy —ku,, = 0, a<z<b t=>0,
u(0, ) = ai(z), u(0,z) = az(z), and (3.1)
j: o1{z)u(t,z)de = 0 and j: wa(x)ult, x)dx =0,

we deduce

Lemma 2. The general nonlocal initial-boundary value problem for the linear wave equation (3.1) can always be reduced
to a local initial-boundary value problem of the form
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’ " !
i (—35—]) o(x)ve — 2k (Jm) () v2z — kvzee = O,
9 v(a,z) = hi(x), vi(a,x) = ha(x), and (3.2)
I v(t,a) =0 and v(t,b) = 0,

where
hi(z) = f: olx)a;(x)dz, i =1,2.
3.1-Separation of variables

The same method of separation of variables that we discussed for the nonlocal initial-boundary value problem for the heat
equation can also be applied to the wave equation.

Substituting the separable solution u(t, x) = X(t)Y(x) into the initial-boundary value problem (3.2), gives the same equation
for Y(x) as before, while the equation for X(t) instead has the form

X"(t) + kXX (t) = 0. i

4 - Nonlocal boundary value problem for the Laplace equation

Consider the Laplace equation

Urr +Uyy =0, 0< <@, 0<y < b, (4.1)
subject to the initial condition
u(0.y) = a1 (y), (4.2)
final condition
ula,y) = as(y) (4.3)

and the nonlocal homogeneous boundary conditions of integral type

b b
/ o1(y)u({z, y)dy = 0 and / wa(y)ulz,y)dy =0, (4.4)
8] 0

Introducing a new function v(x; y) such that

xr
v(z,y) =/ ply)ulz, y)dy, (4.5)
Proceeding as before, thus we have transformed Eq. (4.1)-Eq. (4.4) into the following local initial-boundary value problem
of linear partial differential equation

Lemma 3. The general nonlocal initial-boundary value problem for the linear elliptic equation (4.1)- (4.4) can always be
reduced to a local initial-boundary value problem of the form

1
&

" /!
Urzy + (ﬁ) e(y)vy + 2 (r_,,) o(W)vyy + vy = 0,

(z,0) =0 and v(z,b) = 0, and (4.6)

If
=
()

=

v(0,y) = hi(y), v(a,y)
where

hi(y) = [ e(x)a;(y)dy, i=1,2.

A solution of this problem will lead to a solution of the original Problem (4.1)-(4.4), where

1
u(z,y) = ) vy(z, y). (4.7)
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4.1- Separation of variables

Assume a solution in the form

v(z,y) = X ()Y (y). (4.8)
Differentiate (4.8) and substitute into the first equation of (4.6) to obtain
X" (z Y (y) i “X* Y"(2 1. X% ;
B _\’(l.r)] - Y’(lz;/)) - (,‘:(y)) p“‘”)"::‘; & (piy)) Ply)- (4.9)
This means that each side is really a constant. We have two ordinary differential equations
X"(x) — XX (z) =0 (4.10)

and

"

o(y) + X‘W Y'(y) =0. (4.11)

1 X" 1
rn 1 ‘) y Al \ =1/ \
Y™ (y)+2 (_;(3/)) ely)Y"(y) + [(;(!/))

In order to solve Eq. (4.11), we introduce a new dependent variable Z(y) such that Z(y) = Y'(y). Therefore, Eq. (4.11)
becomes a second-order differential equation

. , 1 ’ . , l " :
Z (y,)+2( — ) pw)Z (y) + ( o ) P(y) + A°
(y) P(y)

Once the function Z(x) is determined, we can readily return to the original dependent variable Y(y).

Z(y)=0. (4.12)

In the following, we discuss an example to illustrate the procedure as outlined above.

Example 1. Let ¢; (%) = sin (%x) @, (x)=c— sini?Ean—ﬂx) forn=1, 2,..., where cis aconstant,a=0 and b =L, then
@(x) = c and the equation for the dependent variable Z is

Z"(x) + X2Z(x) =0, (5.1)
which has a solution
Z(x) = C, cos Ax + C, sin Ax. (5.2)
Integrating this equation yields the solution
Y(z) = /Z(.r)d.r +C,, (5.3)
Thus
: 1 - Cs :
Y(z) = - sin Az — T" cos Ax + Ca, (5.4)

so that the homogeneous Dirichlet boundary conditions give

‘2 Y oy . C[ - )
3 +C3=0and Y(L) = iy sin AL — )

Since the constants of integration C; for i = 1,2,3 cannot all be zero.

Y (0) =

cos AL +C3z=0. (5.5)

Thus the eigenvalues and the corresponding eigenfunctions are
nw o _. L . nm
An = —. Y, (z) = —sin (—L—l

L ' nmw

The solutions X, (t) corresponding to % for the heat and wave problems are given as

) ; Ior n=1,2.... (5.6)
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Xal(t) = c"\?‘“. forn=1,2,.. (5.7)
and
Xn(t) = cos VEMt +sin VEAL, forn=1.2, ..., (5.8)
respectively, thus
nw &
v(t,x) ZB e bm( T ) (5.9)

n=1
for the above nonlocal heat problem.

Upon substituting t = 0 in the above equation and using v(0,x) = h(x), we obtain

ISSN 2347-1921

3 nw
=2 | h(z)sn (—.r) da. (5.10)
w0 A (z) I .

Returning to the original dependent variable by Eq. (2.4), we obtain the solution to the nonlocal heat problem as given by
the series

‘ - ‘e nmw 2

u(t,z) = l,.(l‘.l) ZB (os(L.l.). (5.11)
where
B} = 17 By,.

Similarly, for the above nonlocal wave problem, we have

o(t, z) = ism ("L ) (C,, cos VEAt + D, sin VEA, t). (5.12)

Upon substituting t = 0 in Eq. (5.12) and using v(0; x) = h1(x) v(0,x) = h;(x) and v,(0,x) = h,(x), we obtain

= nmw
(0,2) =Y C,sin(—z) =h 5.13
v(0,z) T; aln( i .I‘) () (5.13)
and
0,29 =37 DB din (T58) = (), 5.14’
v.(0, ) X::[ wVEA,sin (2 ) = ha(2) (5.14)
Thus
C J— 2 /Lh ‘) 3 T“T- d, (r lf)
n—f 1( QIH(L.I) xZ a9.10
[ )
D, "“\/_/ ha( 5111 L )dx (5.16)
Consequently, the solution to the nonlocal wave problem is given by the series
u(t,z) = Z cos (nL—ﬁx) (C',‘,‘ cos \/E)\,,t + D} sin \/E,\nt) ; (5.17)
n=1
where

ve _ mwmy « _ nw
C” — EC"" and Dn = ED"‘
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Example 2. Let @ (X) = %sin (%X) +cos (%x),forn =1,2,...,0,(x) =ez—@p1(x),a=0andb =1L,

then ¢,(X) = e2 and the equation for the dependent variable Z is

" lrdd l ANy \ 7 oo 3\
Z (.r)—Z(.r)+(1+/\“)[(.z'):(). (5.18)
which has a solution
Z(x) = Cye¥ sin A\x + CeT cos Az. (5.19)
Integrating this equation yields the solution
Y(z)= /Z(.r)d.r + C5. (5.20)
Thus
2C 4ACH x 2C 4\CH T =
Y(z) = - 4 — e? sin Ax + ( — — ) eZ cosAz 4+ Cz, (5.21
() (,4A2+1 :1/\2+1) ? D241 241 a g R
so that the homogeneous Dirichlet boundary Y (0)=Y (L) = O conditions give
2C, ANC, g
e s +C3=0 (5.22
D241 a1 |
and
2C, 4NC> E) ( 2C ANCy ) L X =
>Z sin AL - e T cos AL + C3 = 0. 5.23
(4/\2+1+4)\‘2—:1)C AT\ DE 11 a2 )T o 8 (223

Since ,A # 0, the constants of integration C; for i = 1,2,3, cannot all be zero; if we choose C; = 0 then we have 21C; = C,,

L
and Y (L) = 2C;ezSinAL = 0, so that SinAL = 0. In order to satisfy the last boundary condition, we must have AL = nr for
n = 1,2,..... Thus the eigenvalues and the corresponding eigen functions are

A= % Y, (z) = €T sin (”[—7) s form=1,2,..: (5.24)

Consequently, the solution to the nonlocal heat and wave problems can be given by the series

o
2, nw =
u(t,r) = Z Br‘lf-‘*’\"“ cos (Tz) (5.25)
n=1 -
and
o0
; ) nw A /1. Wie 1. - O
u(t,r) = Z cos (TI) <C rcosVEAt+ D) sinV k,\nf) ; (5.26)
n:l
* N Vg . MW Y — mwm
respectively, where By = YTBH' Ca = ‘1_7( " and D:*u — T Dy,.
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