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ABSTRACT 

In this paper the Diffusion equation and Laplace's equation is solved by Modified separation of variables (MSV) method, 
suggested by Pishkoo and Darus. Using this method, Meijer's G-function solutions are derived in cylindrical coordinates 
system for two typical problems. These complex functions include all elementary functions and most of the special 
functions which are the solution of extensive problems in Physics and engineering. 

Keywords: Meijer's G-function; Partial differential equation; Modified separation of variables; Diffusion equation; 

Laplace's equation. 
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INTRODUCTION 

Meijer's G-functions are defined as Mellin-Barnes contour integrals which have been inexistence for over 60 years [1, 2, 3, 
4, 5]. Evidence for the importance of the Meijer's G-function is given by the fact that the basic elementary functions and 
most of the special functions of mathematical physics, including the generalized hypergeometric functions, follow as its 
particular cases. Meijers G-function satisfies the linear ordinary differential equation (LODE) of the generalized 
hypergeometric type whose order isequal to max(p; q) [6, 7, 8]. This fact triggered us to verify the equality conditions 
between Meijer’s G-function's LODE and some partial differential equations governingphysical phenomena [9, 10]. In 
physics, we have many ordinary and partial differential equations, in which their solutions are elementary functions, 
special functions or acombination of both of them. Thus, Meijer’s G-functions can be the solution for manyphysical 
problems if the equality requirement between Meijers G-function's LODE those differential equations are verified. As such 
, we seek to deduce the solution of physical problems explicitly in terms of Meijer’s G-functions. 

Our previous works had focused on the introduction of the Modified separation of variables method (MSV), and applying it 
to solve partial differential equation related to the Reaction-Diffusion process [9], Laplace's, Diffusion and Schrodinger 
equations[10, 11] which led to representing its solution in terms of Meijer's G-functions. The Cartesian coordinates system 
is used to derive their solutions. However, In this paper we obtain G-function solutions for the same problems solved by 
"separation of variables (SV)", see [12], by using modified separation of variables (MSV) method, and incylindrical 
coordinates system as follows: 

2 Meijer's G-function 

We begin with the definition of Meijer's G-function as the following: 

Definition 2.1 A definition of the Meijer's G-function is given by the following path integral in the complex plane, called 

Mellin-Barnes type integral [1, 2, 3, 4, 5]: 

 

Here, the integers, m; n; p and q are called the orders of the G-function, or the components ofthe order (m; n; p; q). Here, 
both ap and bq are called "parameters" which are generally complex numbers. The definition holds under the following 

assumptions: and , where m; n; p and q are integer numbers. fork = 1,2,…,n and 

j = 1,2,…,m imply that no pole of any  coincides with anypole of any  

Example 2.1 Using (2.1), we obtain the follows see [13] 

 

 

 

The Meijer's G-function  satisfies the linear ordinary differential equation of the generalized 

hypergeometric type 

 

whose order is equal to max(p; q), see [6, 7, 8]. 

Choosing appropriate values for m; n; p; q; orders of G-functions, Equation (2.5) can bechanged to complex first and 
second order linear differential equations. The following section discusses the properties of the solutions of complex first 
and second order differential equations, and then studies the properties of coefficient functions of these differential 
equations in the complex plane. 

3 Results and Discussion 

We start with using Modified separation of variables method (MSV) in cylindrical coordinates system as follows: 
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3.1 The G-function Solutions for the Laplace's Equation 

Step 1: In this section the separation of variables is employed while the Laplace's equation is solved in cylindrical 

coordinates system. 

Step 2: Writing 𝛷(𝜌, 𝜑, 𝑍) as a product of three functions, 𝛷(𝜌, 𝜑, 𝑍) = 𝑅 𝜌 𝑆 𝜑 𝑍(𝑧); Laplace's equation, ∇2𝛷 𝜌, 𝜑, 𝑍 = 0, 

is separated, into three ODEs: 

 

 

 

where in anticipation of the correct BCs, we have written the constants as k
2
 and -m

2 
with m an integer. 

Step 3: 

1. ρ-component: for m = 1; n = 0; p = 0; q = 2, equation (2.5) reduces to 

 

By changing 𝑧 → 𝛼𝑧2, we have 

 

By multiplying both sides of the equation by -4, we have 

 

On the other hand, let Bessel equation (3.1) with z = kρ  is 

 

The conditions for equivalence or these two differential equations are 

 

and its solution is 

 

where 𝐺0,2
1,0 is the first basic univalent G-function, see [13]. 

2. φ-component: for m = 1; n = 0; p = 0; q = 2, the equation (2.5) is reduced to: 

By changing 𝑧 → 𝛼𝑧2, the following is obtained: 

 

Dividing it by z
2
, the following is retrieved: 
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On the other hand let the equation (3.2) 

 

The conditions for equality of these two differential equations are as follows: 

 

Consequently, if b1 = 1/2 ; b2 = 0; α= m2/4 ; the first independent solution is: 

 

Furthermore, if b1 = 0; b2 = 1/2 ;α= m2/4 , and the second independent solution is: 

 

As it can be seen from above, the function 𝐺0,2
1,0 is the solution again but its parametersare different. 

3. z-component: likewise from the equation (2.5), and just like the φ-component, for the z-component equation 

(3.3) we have: 

 

Consequently, if b1 = 1/2 ; b2 = 0; α=-k
2
/4 ; the first independent solution is: 

 

Furthermore, if b1 = 0; b2 = 1/2 ;α=-k
2
/4 , and the second independent solution is: 

 

Thus, 𝐺0,2
1,0  is appeared again as the solution, but it with different values of parametersis equivalence of sinh z and 

cosh z functions. Combining the solutions for ρ, φ and zcomponents the overall solution is: 

 

The equation (3.5) shows the solution of each of components (ρ,φ and, z-component) is 𝐺0,2
1,0, namely the same 

orders 1,0,0,2 but with different parameters. Because Laplace's equation is the special case of heat equation, 
here the time part of heat equation is alsosolved by MSV 

4. t-component: for m = 1; n = 0; p = 0; q = 1, the equation (2.5) is reduced to: 

 

By changing z into δ2
z and dividing it by -z, the following is obtained: 
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On the other hand, ; the condition for the equivalence of these two differential equations is b1 =0, 

δ
2
 = γ

2
, and the solution is as follows: 

 

Thus we have 

 

Finally, we complete Table 1 and all results are summarized in Table 1. 

 

4 Conducting Cylindrical Can 

Example 4.2 Consider a cylindrical conducting can of radius a and height h. The potential varies at the top face as 

𝐕(𝛒, 𝛗)), while the lateral surface and the bottom faceare held at zero potential. Let us find the electrostatic potential at all 

points inside thecan in terms of Meijer's G-functions. 

This is the step: 

This is a three-dimensional problem involving Laplace's equation, a separation of variables for Laplace's equation, 
𝛷(𝜌, 𝜑, 𝑍) = 𝑅 𝜌 𝑆 𝜑 𝑍(𝑧), leads to the three ODEs: 

 

where in preparation for the correct BCs, we have chosen the constants as k
2
 and -m

2 
with m an integer. The first of these 

equations with x = kρ is Bessel equation, whose general solution as shown in Table 1 can be written as: 

 

Using this fact that the potential must be finite everywhere inside the can (including at ρ = 0) causes B to vanish because 

the Neumann function Ym(kρ) is not defined at ρ = 0.On the other hand, Φ must vanish at ρ = a. This gives 

which needs that ka be a root of the Bessel function of order m. Let xmn denote thenth zero of 
the Bessel function of order m, then we have k = xmn/a for n =1,2,… . 

Since the extra condition of periodicity is usually imposed on the potential for variable φ, the second DE, in terms of 

Meijer's G-functions, has the general solution (see Table1) 

 

Finally the third DE has a general solution of the form 
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The vanishing of Φ at z = 0 yields that  If we multiply R; S;and Z and sum over all possible values of m 
and n, then we have the following solutionfor potential Φ: 

 

5 Circular Heat-conducting Plate 

Example 5.3 Consider a circular heat-conducting plate of radius a whose temperatureat t = 0 has a distribution function 
f(ρ,φ). Let us find G-function solution for the variation of T for all points (ρ,φ) on the plate for time t > 0 when the edge is 
kept at T = 0. 

where in anticipation of the correct BCs, we have written the constants as k
2
 and -m

2 
with m an integer. 

Here are the steps: 

For this two-dimensional problem involving heat equation, a separation of variables, , results in the 
following ODEs: 

 

If we assume that there is exponential decay for the temperature, then we need that  Thus we have 

 

when the extra condition of periodicity is imposed on the temperature, we must have µ= m
2
, where m is an integer. Then it 

can be written as the following: 

 

To have finite T at ρ = 0, no Neumann function Ym(kρ) is to be presented. This leadsto the following solutions: 

 

If the temperature is to be zero at ρ = a, another BC, then we must have Jm(ba) = 0,or b = xmn/a . Now we can multiply g(t), 

S(φ), and R(ρ) and then the general solutioncan be written as 

 

Thus the variation of temperature for all points is obtained in terms of G-functions. 
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