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Abstract 

In this paper we derived the Yang-Mills equations from Maxwell equations. Consequently we find a new form for self-
duality equations. In addition exact solution class of the classical SU(2) Yang-Mills field equations in four-dimensional 
Euclidean space and two exact solution classes for SU(2) Yang- Mills equations when is 𝜌 a complex analytic function are 

also obtained. 
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1. Introduction 

The self-dual Yang-Mills equations (a system of equations for Lie algebra valued functions of 𝐶4) play a central role in the 

field of integrable systems and also play a fundamental role in several other areas of mathematics and physics [1-4].  

In addition the self-dual Yang-Mills equations are of great importance in their own right and have found a remarkable 
number of applications in physics and mathematics as well. These equations arise in the context of gauge theory [5], in 
classical general relativity [6,7], and can be used as a powerful tool in the analysis of 4-manifolds [8]. 

Non-Abelian gauge theories first appeared in the seminal work of Yang and Mills (1954) as a non-Abelian generalization of 
Maxwells equations [9]. The fact that the Yang-Mills equations have a natural geometric interpretation was recognized 
early on in the history of gauge theory [10,11]. 

 The Yang-Mills equations are a set of coupled, second-order partial differential equations in four dimensions for the Lie 

algebra-valued gauge potential functions 𝐴𝜇 , and are extremely difficult to solve in general. The self-dual Yang-Mills equa-

tions describe a connection for a bundle over the Grassmannian of two-dimensional subspaces of the twister space 
[12.13]. 

A very important property of the theory of non-abelian gauge fields is that the action functional has local minima in the 
Euclidean domain with non-vanishing field strength Fμv  [14]. The corresponding field configurations, which are often called 

pseudoparticles, have the self-dual or anti-self-dual field strength, and fall into topologically inequivalent classes labelled 
by an integer n, the Pontryagin index. The existence of these non-local minima was first pointed out by Belavin et al.(1975) 
who also exhibited the solution of the self-duality equation with n =  1 for an SU(2) gauge group [15]. Solutions of the self-
duality equations with an arbitrary number of pesudoparticles were discovered by Witten (1979) and t' Hooft (1979) [16]. 

In this paper we found a new representation for self-duality equations. In addition exact solution class of the classical 
SU 2  Yang-Mills field equations in four-dimensional Euclidean space and two exact solution classes for SU(2) Yang-Mills 

equations when  ρ is a complex analytic function are also obtained. 

 This paper is organized as follows: This introduction followed by the derivation of Yang – Mills equations from  Maxwell 
Equations in section 2.  A new representation of the self-duality equations in section 3. In section 4 we found an exact 
solution class of the classical 𝑆𝑈(2) Yang-Mills field equations. Moreover two exact solution classes for self-dual 𝑆𝑈(2) 

gauge fields on Euclidean space when 𝜌 is a complex analytic function are given in section 5.  

Derivation of Yang –Mills equations from Maxwell Equations 

The classical equations of Maxwell describing electromagnetic phenomena are 

∇. 𝐸 = 4𝜋𝜌 ,     ∇ × 𝐵 = 4𝜋𝐽 +
𝜕𝐸

𝜕𝑡
 , 

∇. 𝐵 = 0 ,      ∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡
 , 

We would like to formulate these equations in the language of differential forms. Let 𝑥𝜇 = (𝑡, 𝑥1 , 𝑥2, 𝑥3) be local coordi-

nates in Minkowski’s space M1,3. Define the Maxwell 2-form  𝐹 by the equation  

𝐹 =
1

2
𝐹𝜇𝑣𝑑𝑥

𝜇𝑑𝑥𝑣,        𝜇, 𝑣 = 0,1,2,3 ,                                (2) 

where 

𝐹𝜇𝑣 =  

0
𝐸𝑥
𝐸𝒴
𝐸𝒵

−𝐸𝑥
0
−𝐵𝒵
𝐵𝒴

−𝐸𝒴
𝐵𝒵
0
−𝐵𝑥

−𝐸𝒵
−𝐵𝒴
𝐵𝑥
0

                                                     (3) 

Written in complete detail, Maxwell’s 2-form is given by 

𝐹 = −𝐸𝑥𝑑𝑡 ∧ 𝑑𝑥
1 − 𝐸𝒴𝑑𝑡 ∧ 𝑑𝑥

2 − 𝐸𝒵𝑑𝑡 ∧ 𝑑𝑥
3 + 

𝐵𝒵𝑑𝑥
1 ∧ 𝑑𝑥2 − 𝐵𝒴𝑑𝑥

1 ∧ 𝑑𝑥3 + 𝐵𝑥𝑑𝑥
2 ∧ 𝑑𝑥3 .                  (4) 

We also define the source current 1-form 

𝐽 = 𝐽𝜇𝑑𝑥
𝜇 = 𝜌𝑑𝑡 + 𝐽1𝑑𝑥

1 + 𝐽2𝑑𝑥
2 + 𝐽3𝑑𝑥

3 .                            (5) 

Proposition 1:  Maxwell’s Equations (1) are equivalent to the equations 

𝑑𝐹 = 0, 
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𝑑 ∗ 𝐹 = 4𝜋 ∗ 𝐽.                                                     (6) 

Proof:   The proof is by direct computation using the definitions of the exterior derivative and the Hodge-∗ operator.    

𝑑𝐹 = −
𝜕𝐸𝑥
𝜕𝑥2

∧ 𝑑𝑥2 ∧ 𝑑𝑡 ∧ 𝑑𝑥1 −
𝜕𝐸𝑥
𝜕𝑥3

∧ 𝑑𝑥3 ∧ 𝑑𝑡 ∧ 𝑑𝑥1 −
𝜕𝐸𝒴

𝜕𝑥1
∧ 𝑑𝑥1 ∧ 𝑑𝑡 ∧ 𝑑𝑥2 + 

            −
𝜕𝐸𝒴

𝜕𝑥3
∧ 𝑑𝑥3 ∧ 𝑑𝑡 ∧ 𝑑𝑥2 −

𝜕𝐸𝒵
𝜕𝑥1

∧ 𝑑𝑥1 ∧ 𝑑𝑡 ∧ 𝑑𝑥3 −
𝜕𝐸𝒵
𝜕𝑥2

∧ 𝑑𝑥2 ∧ 𝑑𝑡 ∧ 𝑑𝑥3 + 

             
𝜕𝐵𝒵
𝜕𝑡

∧ 𝑑𝑡 ∧ 𝑑𝑥1 ∧ 𝑑𝑥2 −
𝜕𝐵𝒵
𝜕𝑥3

∧ 𝑑𝑥3 ∧ 𝑑𝑥1 ∧ 𝑑𝑥2 −
𝜕𝐵𝒴

𝜕𝑡
∧ 𝑑𝑡 ∧ 𝑑𝑥1 ∧ 𝑑𝑥3 + 

                 −
𝜕𝐵𝒴

𝜕𝑥2
∧ 𝑑𝑥2 ∧ 𝑑𝑥1 ∧ 𝑑𝑥3 +

𝜕𝐵𝑥
𝜕𝑡

∧ 𝑑𝑡 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 +
𝜕𝐵𝑥
𝜕𝑥1

∧ 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 .       

Collecting terms and using the anti-symmetry of the wedge operator, we get 

𝑑𝐹 =  
𝜕𝐵𝑥
𝜕𝑥1

+
𝜕𝐵𝒴

𝜕𝑥2
+
𝜕𝐵𝒵
𝜕𝑥3

 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 +  
𝜕𝐸𝒴

𝜕𝑥3
−
𝜕𝐸𝒵
𝜕𝑥2

−
𝜕𝐵𝑥
𝜕𝑡
 𝑑𝑥2 ∧ 𝑑𝑡 ∧ 𝑑𝑥3 + 

      
𝜕𝐸𝒵
𝜕𝑥1

−
𝜕𝐸𝑥
𝜕𝑥3

−
𝜕𝐵𝒴

𝜕𝑡
 𝑑𝑡 ∧ 𝑑𝑥1 ∧ 𝑑𝑥3 +  

𝜕𝐸𝑥
𝜕𝑥2

−
𝜕𝐸𝒴

𝜕𝑥1
−
𝜕𝐵𝒵
𝜕𝑡

 𝑑𝑥1 ∧ 𝑑𝑡 ∧ 𝑑𝑥2 . 

Therefore, dF = 0 iff 

𝜕𝐵𝑥
𝜕𝑥1

+
𝜕𝐵𝒴

𝜕𝑥2
+
𝜕𝐵𝒵
𝜕𝑥3

= 0, 

which is the same as 

∇. 𝐵 = 0 , 

and 

𝜕𝐸𝒴

𝜕𝑥3
−
𝜕𝐸𝒵
𝜕𝑥2

−
𝜕𝐵𝑥
𝜕𝑡

= 0, 

𝜕𝐸𝒵
𝜕𝑥1

−
𝜕𝐸𝑥
𝜕𝑥3

−
𝜕𝐵𝒴

𝜕𝑡
= 0, 

𝜕𝐸𝑥
𝜕𝑥2

−
𝜕𝐸𝒴

𝜕𝑥1
−
𝜕𝐵𝒵
𝜕𝑡

= 0, 

which means that 

−∇ × 𝐸 −
𝜕𝐵

𝜕𝑡
= 0 ,                                                   (7) 

To verify the second set of Maxwell equations, we first compute the dual of the current density 1-form (5) using the results 
of 

         ∗ 𝑑𝑡 = −𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3  

∗ 𝑑𝑥1 = 𝑑𝑥2 ∧ 𝑑𝑡 ∧ 𝑑𝑥3  

∗ 𝑑𝑥2 = 𝑑𝑡 ∧ 𝑑𝑥1 ∧ 𝑑𝑥3  

∗ 𝑑𝑥3 = 𝑑𝑥1 ∧ 𝑑𝑡 ∧ 𝑑𝑥2.     

 We get 

∗ 𝐽 = −𝜌𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 + 𝐽1𝑑𝑥
2 ∧ 𝑑𝑡 ∧ 𝑑𝑥3 + 𝐽2𝑑𝑡 ∧ 𝑑𝑥

1 ∧ 𝑑𝑥3 + 𝐽3𝑑𝑥
1 ∧ 𝑑𝑡 ∧ 𝑑𝑥2 .                           (8)                      

     We could now proceed to compute  d ∗ F, but perhaps it is more elegant to notice that F ∈ ⋀2(M), and  F splits into F = 
F+ + F− . In fact, we see from (3) that the components of F+ are those of −E and the components of F− constitute the 

magnetic field vector  B. Using the above results, we can immediately write the components of ∗ F: 
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𝐹 = 𝐵𝑥𝑑𝑡 ∧ 𝑑𝑥
1 + 𝐵𝒴𝑑𝑡 ∧ 𝑑𝑥

2 + 𝐵𝒵𝑑𝑡 ∧ 𝑑𝑥
3 + 

𝐸𝒵𝑑𝑥
1 ∧ 𝑑𝑥2 − 𝐸𝒴𝑑𝑥

1 ∧ 𝑑𝑥3 + 𝐸𝑥𝑑𝑥
2 ∧ 𝑑𝑥3,                      (9) 

or equivalently, 

𝐹𝜇𝑣 =  

0
−𝐵𝑥
−𝐵𝒴
−𝐵𝒵

𝐵𝑥
0
−𝐸𝒵
𝐸𝒴

𝐵𝒴
𝐸𝒵
0
−𝐸𝑥

𝐵𝒵
−𝐸𝒴
𝐸𝑥
0

      .                                    (10) 

Since the effect of the dual operator amounts to exchanging 

𝐸 ⟼ −𝐵 

  𝐵 ⟼ +𝐸, 

we can infer from equations (7) and (8) that 

∇. 𝐸 = 4𝜋𝜌 ,      

and 

∇ × 𝐵 −
𝜕𝐸

𝜕𝑡
= 4𝜋𝐽 . 

2.  New form of the self-duality equations 

The essential idea of Yang and Mills (1954) is to consider an analytic continuation of the gauge potential Aμ  into complex 

space where x1 , x2 , x3 and x4 are complex. The self-duality equations Fμv=*Fμv  are then valid also in complex space , in a 

region containing real space where the x, s are real. Now consider four new complex variables , 𝒴 , 𝒵 and 𝒵  defined by  

 2𝒴 = 𝑥1 + 𝑖𝑥2  ,           2𝒴 = 𝑥1 − 𝑖𝑥2 , 

 2𝒵 = 𝑥3 − 𝑖𝑥4  ,           2𝒵 = 𝑥3 + 𝑖𝑥4  , 

it is simple to check that the self-duality equations Fμν  =*Fμν  reduces to 

                              𝐹𝒴𝒵= 0,        𝐹𝒴 𝒵 = 0 ,           𝐹𝒴𝒴 +  𝐹𝒵𝒵 = 0.                           (12) 

Equations (12) can be immediately integrated, since they are pure gauge, to give [17,18,19] 

𝐴𝒴 = 𝐷−1𝐷𝒴 ,       𝐴𝒵  = 𝐷−1𝐷𝒵 ,       𝐴𝒴  = 𝐷 −1𝐷 𝒴  ,        𝐴𝒵  = 𝐷 −1 𝐷 𝒵  ,      (13)  

where D and D  are arbitrary 2 × 2 complex matrix functions of 𝒴, 𝒴 , 𝒵 and  𝒵  with determinant = 1 (for SU(2) gauge group) 
and D𝒴= ∂𝒴D, etc. For real gauge fields Aμ = −Aμ

+ (the symbol=  is used for equations valid only for real values of x1 , x2 

, x3and x4), we rquire 

                                                                𝐷 =  (𝐷+)−1.                                               (14) 

Gauge transformations are the transformations 

𝐷 →  ,           𝐷  → 𝐷 𝑈 ,          𝑈+𝑈 =  I,                                (15) 

where U is a 2 × 2 matrix function of 𝒴, 𝒴 , 𝒵, 𝒵  with determined = 1. Under transformtion (15), equation (14) remains un-
changed.. We now define the hermitian matrix 𝒥 as  [20-22] 

                                              𝒥 ≡ 𝐷 𝐷 −1 =  𝐷 𝐷+.                                           (16) 

𝒥 has the very important property of being invariant under the gauge transformation (15). The only nonvanishing field 

strengths in terms of 𝒥 becomes 

𝐹𝑢𝑣  = −𝐷 −1 (𝒥−1 𝒥𝑢)
𝑣 
𝐷 ,                                                 (17) 

(u, v = 𝒴, 𝒵) and the remaining self-duality equation (12) takes the form: 

                                 ( 𝒥−1𝒥𝒴) 𝒴  + ( 𝒥−1𝒥𝒵)𝒵   = 0.                                         (18) 

The action density in terms of 𝒥 [23] is 

    (11) 
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𝜙( 𝒥) ≡ −
1

2
 𝑇𝑟 𝐹𝜇𝜈𝐹𝜇𝜈     = −2Tr (  𝐹𝒴𝒴 𝐹𝒵𝒵  +𝐹𝒴𝒵 𝐹𝒴 𝒵),               (19) 

where 

                             𝐹𝜇𝑣= 𝜕𝜇  𝐴𝜈−𝜕𝑣𝐴𝜇  − [𝐴𝜇 , 𝐴𝑣] .                            (20) 

Our construction begins by explicit parametrization of the matrix 𝒥 

𝒥 =  
𝜙  𝜌

𝜌 𝜙(1 + 𝜌𝜌 )
 ,                                                          (21) 

and for real gauge fields Aμ = −Aμ
+ , we require ϕ = real,  ρ = ρ∗ (ρ∗ ≡ complex conjugate of ρ). The self-duality equations 

(18) take the form 

1

2
 1 + 𝜌𝜌  𝜕𝜇𝜕𝜇 𝑙𝑛∅ +

1

2
𝜌𝜕𝜇𝜕𝜇𝜌 +

𝜌 

∅
 ∅𝒴𝜌𝒴 + ∅𝒵𝜌𝒵  +

𝜌

∅
 ∅𝒴𝜌 𝒴 + ∅𝒵𝜌 𝒵  + 

+ 𝜌𝒴 𝜌  𝒴 + 𝜌𝒵  𝜌 𝒵 = 0,                                                      (22) 

𝜙

𝟐
𝜕𝜇𝜕𝜇𝜌 +

𝜌 

2
𝜕𝜇𝜕𝜇∅ −

2𝜌 

𝜙
 ∅𝒴∅𝒴 + ∅𝒵𝜙𝒵  +  ∅𝒴𝜌 𝒴 + ∅𝒵𝜌 𝒵 − ∅𝒴 𝜌 𝒴 − ∅𝒵 𝜌 𝒵 = 0  ,                                

(23) 

𝜙

2
𝜕𝜇𝜕𝜇𝜌 +

𝜌

2
𝜕𝜇𝜕𝜇∅ −

2𝜌

𝜙
 ∅𝒴∅𝒴 + ∅𝒵𝜙𝒵  +  ∅𝒴 𝜌𝒴 + ∅𝒵 𝜌𝒵 − ∅𝒴𝜌𝒴 − ∅𝒵𝜌𝒵  = 0  ,                               

(24) 

where  𝜕𝜇𝜕𝜇 = 2 𝜕𝒴𝜕𝒴 + 𝜕𝒵𝜕𝒵  . 

The positive definite Hermitian matrix 𝒥 = D D+ can be factored into a product upper and lower (or vice versa) triangular 

matrices as follows 

𝒥 = 𝑅 𝑅+ = 𝑅𝐼  𝑅𝐼+, 

     𝑅 =  

1

 𝜙
0

𝜌  𝜙  𝜙
 ,        𝑅𝐼 =  

 𝜙𝐼 𝜌 𝐼 𝜙𝐼

0
1

 ∅𝐼

    ,                          (25) 

𝜙 = 𝑟𝑒𝑎𝑙,        𝜌 = 𝜌∗,                  𝜌 𝐼 = 𝜌𝐼∗. 

It is evident from (25) that one can choose a gauge so that D = R or D = RI  and it is easy to check that in both gauges the 

self-duality equations (22)-(24) (in the case of D = RI all the ϕ , ρ , ρ  are replaced by ϕI , ρI , ρ I ). 

     From equation (2.25) we see that R−1RI is a unitary matrix so that we can always make a gauge transformation from 

the R gauge to the RI gauge. 

Theorem 1: If (∅, ρ, ρ ) satisfy equations (22)-(24) then so do (ϕI, ρI, ρ I) defined by [24] 

𝜙𝐼 =
𝜙

1 + 𝜌𝜌 
  ,          𝜌𝐼 =  

𝜌 

1 + 𝜌𝜌 
   ,              𝜌 𝐼 =

𝜌

1 + 𝜌𝜌 
  ,        

3.   Exact solution class of the classical 𝑺𝑼(𝟐)Yang-Mills field equations 

 To obtain an exact solution class of the classical SU(2) Yang-Mills field equations in four-dimensional Euclidean space, 

consider the system. 

1

2
 1 + 𝜌𝜌  𝜕𝜇𝜕𝜇 𝑙𝑛𝜙 +

1

2
𝜌 𝜕𝜇𝜕𝜇𝜌 +

𝜌

𝜙
 𝜙𝒴 𝜌 𝒴 + ∅𝒵 𝜌 𝒵 +

𝜌 

𝜙
 𝜙𝒴 𝜌𝒴 + 𝜙𝒵 𝜌𝒵 + 

+ 𝜌 𝒴𝜌𝒴 + 𝜌 𝒵𝜌𝒵  = 0,                                                 (26) 

𝜙

2
𝜕𝜇𝜕𝜇𝜌 +

𝜌

2
𝜕𝜇𝜕𝜇𝜙 −

2𝜌

𝜙
 𝜙𝒴𝜙𝒴 + 𝜙𝒵𝜙𝒵  +  𝜙𝒴 𝜌𝒴 + 𝜙𝒵 𝜌𝒵 − 𝜙𝒴𝜌𝒴 − 𝜙𝒵𝜌𝒵  = 0  .       

    Let us make the ansatz [25] 

ϕ = ϕ g ,                  ρ = eiaσ g .                                       (27) 



ISSN 2347-1921 

356 | P a g e                                                             N o v  1 6 ,  2 0 1 3 

Where g =  g(x1  , x2  , x3  , x4) is a real function of xμ , μ =  1, 2, 3, 4, ϕ and σ are real functions of g, and a is a real constant. 

Then equation (26) give the relations 

 𝑔𝒴𝒴 + 𝑔𝒵𝒵    1 + 𝜍2 𝜙2 
′
− 2 𝑔𝒴𝑔𝒴 + 𝑔𝒵𝑔𝒵  𝜙

2[ 1 + 𝜍2 
𝜙 ′

𝜙
+ 𝜍𝜍 ′ ]′ = 0 ,                             (28) 

 𝑔𝒴𝒴 + 𝑔𝒵𝒵   𝜙𝜍 
′ +  𝑔𝒴𝑔𝒴 + 𝑔𝒵𝑔𝒵  𝜙

2  
 𝜙𝜍  ′

𝜙2  
′

= 0 .               (29) 

Where the prime means differentiation with respect to g. The above relations imply that the determinant of the coefficients 

of  g𝒴𝒴 + g𝒵𝒵   and  g𝒴g𝒴 + g𝒵g𝒵   is zero i.e. 

  1 + 𝜍2 𝜙2 
′
 
 𝜙𝜍  ′

𝜙2
 
′

+ 2[ 1 + 𝜍2 
𝜙 ′

𝜙
+ 𝜍𝜍 ′ ]′ 𝜙𝜍 ′ = 0 .              (30) 

We shall determine ϕ and σ from the above equation (30), let  ϕσ = c , where c is constant,  then  ϕσ ′ = 0 ,  

  1 + 𝜍2 𝜙2 
′
 
 𝜙𝜍  ′

𝜙2  
′

= 0 ,  

[ 1 + 𝜍2 
𝜙 ′

𝜙
+ 𝜍𝜍 ′ ]′ 𝜙𝜍 ′ .        

We suppose  

𝜙 =  𝑐𝑒−𝑔  ,   𝜍 =  𝑐𝑒𝑔  ,   𝑡ℎ𝑒𝑛  𝜌 =  𝑐𝑒𝑔+𝑖𝑎  .                            (32) 

Applying theorem (1) to ϕ and  ρ of equation (32), then we get 

𝜙𝐼 =
 𝑐𝑒−𝑔

1+𝑐𝑒2𝑔  ,   𝜌𝐼 =
 𝑐𝑒𝑔−𝑖𝑎

1+𝑐𝑒2𝑔  ,          𝜌 𝐼 =
 𝑐𝑒𝑔+𝑖𝑎

1+𝑐𝑒2𝑔   .                            (33) 

Equations (32) and (33) is a new class of solutions of Yang-Mills equations for self-dual SU(2) gauge fields. 

4. Exact solutions for self-dual 𝐒𝐔(𝟐) gauge fields on Euclidean space when 𝛒 is a 
complex analytic function  

    We reduce the equations for self-dual SU(2) gauge fields on Euclidean space to the following equations  

           
1

2
 1 + 𝜌𝜌  𝜕𝜇𝜕𝜇 𝑙𝑛𝜙 +

1

2
𝜌𝜕𝜇𝜕𝜇𝜌 +

𝜌 

∅
 𝜙𝒴𝜌𝒴 + 𝜙𝒵𝜌𝒵  +

𝜌

𝜙
 𝜙𝒴𝜌 𝒴 + 𝜙𝒵𝜌 𝒵  +  

+ 𝜌 𝒴𝜌𝒴 + 𝜌 𝒵𝜌𝒵  = 0,                                              (34) 

𝜙

2
𝜕𝜇𝜕𝜇𝜌 +

𝜌

2
𝜕𝜇𝜕𝜇∅ −

2𝜌

𝜙
 𝜙𝒴𝜙𝒴 + 𝜙𝒵𝜙𝒵  +  𝜙𝒴 𝜌𝒴 + 𝜙𝒵 𝜌𝒵 −𝜙𝒴𝜌𝒴 − 𝜙𝒵𝜌𝒵  = 0. 

When ρ is a complex analytic function of 𝒴 and 𝒵, then we have 

𝜌𝒴 = 𝜌𝒵 = 0 ,           𝜌𝒴𝒴 + 𝜌𝒵𝒵 = 0 .                                  (35) 

Then, the self-dual Yang-Mills equations (34) takes the form 

𝜙(𝜙𝒴𝒴 + 𝜙𝒵𝒵 ) −  𝜙𝒴𝜙𝒴 + 𝜙𝒵𝜙𝒵  = 0,                                (36) 

𝜌(𝜙𝒴𝒴 + 𝜙𝒵𝒵 ) −
2𝜌

𝜙
 𝜙𝒴𝜙𝒴 + 𝜙𝒵𝜙𝒵  +  𝜌𝒴𝜙𝒴 + 𝜌𝒵𝜙𝒵  = 0  .            (37) 

We consider now two cases: 

(a) Let ρ = ρ ϕ , then we find 

𝜌𝒴 = 𝜌′𝜙𝒴  ,        𝜌𝒵 = 𝜌′𝜙𝒵  .                                  (38) 

Then the two equations (36) and (37) becomes 

𝜙(𝜙𝒴𝒴 + 𝜙𝒵𝒵 ) −  𝜙𝒴𝜙𝒴 + 𝜙𝒵𝜙𝒵  = 0,                                (39) 

𝜌(𝜙𝒴𝒴 + 𝜙𝒵𝒵 ) + (𝜌′ −
2𝜌

𝜙
)  𝜙𝒴𝜙𝒴 + 𝜙𝒵𝜙𝒵  = 0.                                (40) 

    (31) 
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If we do not consider the case (ϕ𝒴𝒴 +ϕ𝒵𝒵 ) = 0  and  ∅𝒴ϕ𝒴 + ∅𝒵ϕ𝒵  = 0 ,  then we have 

𝜙𝜌′ − 𝜌 = 0 ,                                                            (41) 

by integration we obtain 

𝜌 = 𝑐𝜙 ,   where c is complex constant.                                  (42) 

Both equations (39) and (40) reduce to the same equation.  A solution is given by 

     𝜙𝒴 = 𝜙𝒵   ,          𝜙𝒴 =  −𝜙𝒵    .                                        (43) 

The solution class is given by [26] 

𝜙 = 𝐹 𝒴 + 𝒵,𝒴 − 𝒵   ,                                             (44) 

where F is an arbitrary function, equations (42) and (44) gives a new class of solutions of Yang-Mills equations for self-

dual SU(2) gauge fields. Applying theorem (1) to ϕ and ρ of equations (42) and (44) then we get 

𝜙𝐼 =
𝐹

1+𝑐𝑐 𝐹2  ,   𝜌𝐼 =
𝑐  𝐹

1+𝑐𝑐  𝐹2  ,          𝜌 𝐼 =
𝑐𝐹

1+𝑐𝑐 𝐹2  .                            (45) 

(b) Let us make the ansatz 

𝜙 = 𝜙 𝑔 ,                  𝜌 = 𝑒𝑖𝑎𝜍 𝑔 .                                       (46) 

Where g =  g(x1  , x2  , x3  , x4) is a real function of xμ , μ =  1, 2, 3, 4, ϕ and σ are real functions of g, and a is a real constant. 

Then equation (36) and (37) gives the relations 

𝜙𝜙′(𝑔𝒴𝒴 + 𝑔𝒵𝒵 ) +  𝑔𝒴𝑔𝒴 + 𝑔𝒵𝑔𝒵  [𝜙𝜙′′ − 𝜙′
2

] = 0 ,                (47) 

𝜍𝜙′ 𝑔𝒴𝒴 + 𝑔𝒵𝒵  +  𝑔𝒴𝑔𝒴 + 𝑔𝒵𝑔𝒵   𝜍𝜙
′′ −

2𝜍𝜙 ′
2

𝜙
+ 𝜙′𝜍 ′ = 0 .                (48) 

Where the prime means differentiation with respect to g. The above relations imply that the determinant of the coefficients 

of (g𝒴𝒴 + g𝒵𝒵 ) and  g𝒴g𝒴 + g𝒵g𝒵   is zero i.e. 

𝜍 ′

𝜍
=

𝜙 ′

𝜙
  ,                                                     (49) 

by integration (49) we obtain 

𝜍(𝑔) = c𝜙 𝑔 ,                  𝜌 = c𝑒𝑖𝑎𝜙 𝑔 .                              (50) 

Applying theorem (1) to ϕ and ρ of equation (50), then we get 

𝜙𝐼 =
𝜙 𝑔 

1+𝑐2𝜙2(𝑔)
 ,   𝜌𝐼 =

𝑐𝑒−𝑖𝑎𝜙 𝑔 

1+𝑐2𝜙2(𝑔)
 ,          𝜌 𝐼 =

𝑐𝑒 𝑖𝑎𝜙 𝑔 

1+𝑐2𝜙2(𝑔)
  .                            (51) 

Equations (50) and (51) is a new class of solutions of Yang-Mills equations for self-dual 𝑆𝑈(2) gauge fields. 
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