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Abstract

In this paper we derived the Yang-Mills equations from Maxwell equations. Consequently we find a new form for self-
duality equations. In addition exact solution class of the classical SU(2) Yang-Mills field equations in four-dimensional

Euclidean space and two exact solution classes for SU(2) Yang- Mills equations when is p a complex analytic function are
also obtained.
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1. Introduction

The self-dual Yang-Mills equations (a system of equations for Lie algebra valued functions of C*) play a central role in the
field of integrable systems and also play a fundamental role in several other areas of mathematics and physics [1-4].

In addition the self-dual Yang-Mills equations are of great importance in their own right and have found a remarkable
number of applications in physics and mathematics as well. These equations arise in the context of gauge theory [5], in
classical general relativity [6,7], and can be used as a powerful tool in the analysis of 4-manifolds [8].

Non-Abelian gauge theories first appeared in the seminal work of Yang and Mills (1954) as a non-Abelian generalization of
Maxwells equations [9]. The fact that the Yang-Mills equations have a natural geometric interpretation was recognized
early on in the history of gauge theory [10,11].

The Yang-Mills equations are a set of coupled, second-order partial differential equations in four dimensions for the Lie
algebra-valued gauge potential functions 4, and are extremely difficult to solve in general. The self-dual Yang-Mills equa-
tions describe a connection for a bundle over the Grassmannian of two-dimensional subspaces of the twister space
[12.13].

A very important property of the theory of non-abelian gauge fields is that the action functional has local minima in the
Euclidean domain with non-vanishing field strength F,, [14]. The corresponding field configurations, which are often called
pseudoparticles, have the self-dual or anti-self-dual field strength, and fall into topologically inequivalent classes labelled
by an integer n, the Pontryagin index. The existence of these non-local minima was first pointed out by Belavin et al.(1975)
who also exhibited the solution of the self-duality equation with n = 1 for an SU(2) gauge group [15]. Solutions of the self-
duality equations with an arbitrary number of pesudoparticles were discovered by Witten (1979) and t' Hooft (1979) [16].

In this paper we found a new representation for self-duality equations. In addition exact solution class of the classical
SU(2) Yang-Mills field equations in four-dimensional Euclidean space and two exact solution classes for SU(2) Yang-Mills
equations when pis a complex analytic function are also obtained.

This paper is organized as follows: This introduction followed by the derivation of Yang — Mills equations from Maxwell
Equations in section 2. A new representation of the self-duality equations in section 3. In section 4 we found an exact
solution class of the classical SU(2) Yang-Mills field equations. Moreover two exact solution classes for self-dual SU(2)
gauge fields on Euclidean space when p is a complex analytic function are given in section 5.

Derivation of Yang —Mills equations from Maxwell Equations

The classical equations of Maxwell describing electromagnetic phenomena are
0E
V.E =4mp, VXB :47T]+E,

0B
VMBl=0, VXE =%,
at
We would like to formulate these equations in the language of differential forms. Let x, = (t, x*, x2,x%) be local coordi-
nates in Minkowski’s space M 3. Define the Maxwell 2-form F by the equation

1
& = EFde“dx”, (w,v=0,1,2,3), )
where
0 —E, _E‘y—Ez
E; By —-B, 0

Written in complete detail, Maxwell's 2-form is given by

F = —E,dt Adx' — Eydt Adx* — Ezdt Adx® +

Bzdx' A dx* — Bydx' A dx® + B,dx* Adx? @)
We also define the source current 1-form
J =], dx* = pdt + Jydx' + [dx* + Jadx3. )
Proposition 1: Maxwell’'s Equations (1) are equivalent to the equations
dF =0,
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d*F =4m«]. (6)
Proof: The proof is by direct computation using the definitions of the exterior derivative and the Hodge-* operator.
J0E JE JE.
dF = ——2Adx? Adt Adx! — 2 Adx3 Adt Adx! ——F Adx! Adt Adx? +
dx d0x dx

dE. oE 0E
Y Ndx3 Adt Adx? — =2 Adxt Adt Adx3 — —Z Adx? Adt Adx3 +
dx3 dx1 Jdx?

0B dB dB
ZZadt Adxt Adx? — =2 Adx3 Adx! Adx? — —Z Adt Adx! Adx3 +
Jt dx3 Jt

B,
dx1

X

0By 0B
__J 2 1 3
axz/\dx Adx* Ndx® + 5%

Adt Adx® Adx3 + Adxt Adx? Adx3.

Collecting terms and using the anti-symmetry of the wedge operator, we get

. _<an 0By By 0Ey O0E, 0B,

ozl T oax? T oxd x> ax? ot
0E; O0E, 0By
dx1 0x3 ot
Therefore, dF = 0 iff

)dxl/\dxz/\dx3+< >dx2/\dt/\dx3+

0E, O0Ey 0By
dx2 0x! Jt

>dt/\dx1/\dx3+< )dxl/\thdxz.

0B, 0By 0B,
dx! 0 dx? E ax3 T

which is the same as
V.B=0,

and
0By 0E; 0B, _ q
ox3 0x% Ot g
0F; 0E, 9By _
ox! 0x3 ot ’
0, 0y 0By
oxz odx! ot !

which means that
dB

—VXE— o — 0, 7
Tfo verify the second set of Maxwell equations, we first compute the dual of the current density 1-form (5) using the results
0
*dt = —dx' Adx? Adx3

« dx! = dx* Adt A di®

* dx® = dt Adx! A di®

* dx® = dx! Adt Adx?
We get
* ] = —pdx? Adx? Adx® + J;dx? Adt Adx3 + J,dt Adxt Adx3 + [3dxt Adt A dx?. ®)

We could now proceed to compute d = F, but perhaps it is more elegant to notice that F € A>(M), and F splits into F =
F+ 4+ F- . In fact, we see from (3) that the components of F+ are those of —E and the components of F- constitute the
magnetic field vector B. Using the above results, we can immediately write the components of * F:
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F = B,dt Adx' 4+ Bydt Adx* + Bzdt Adx® +

Ezdx® Adx?® — Eydx' Adx® + E,dx* Adx?, ©)
or equivalently,
0 B, By By
o = _BB;—%Z bz EExy (10)
—-Bz Ey —E, 0
Since the effect of the dual operator amounts to exchanging
Ew— —B
B — +E,
we can infer from equations (7) and (8) that
V.E =4mp,

and
0E
VXB——=4n].
2. New form of the self-duality equations

The essential idea of Yang and Mills (1954) is to consider an analytic continuation of the gauge potential A, into complex
space where xy,x,,x3 and x, are complex. The self-duality equations F,,=*F,, are then valid also in complex space , in a
region containing real space where the x’ s are real. Now consider four new complex variables , ¥, Z and Z defined by

\/E'y=x1+ix2, \/E'y_=x1—ix2,
\/EZ = X3 — iX4 5 \/EZ_ = X3 + iX4 ) (11)
it is simple to check that the self-duality equations F,, =*F,, reduces to
Fyz=0, Fgz=0, Fyg+ Fzz=0. (12)
Equations (12) can be immediately integrated, since they are pure gauge, to give [17,18,19]
Ary = D_lD«y ' Ay = D_lDZ : Ag = 5_1517 , Az = D1 527 ,  (13)

where D and D are arbitrary 2 x 2 complex matrix functions of Y, Y, Z and Z with determinant = 1 (for SU(2) gauge group)
and Dy= dyD, etc. For real gauge fields A, =-A} (the symbol= is used for equations valid only for real values of x; , x,
, xzand x,), we rquire

D= (D" L (14)
Gauge transformations are the transformations
D— , D - DU, Utu =1, (15)

where U is a 2 x 2 matrix function of Y, Y, Z, Z with determined = 1. Under transformtion (15), equation (14) remains un-
changed.. We now define the hermitian matrix J as [20-22]

J=DD'=DD. (16)

J has the very important property of being invariant under the gauge transformation (15). The only nonvanishing field
strengths in terms of J becomes

Fi5 =-D7" (J7" J),D, @
(u, v =7, Z) and the remaining self-duality equation (12) takes the form:
(J7'Jy) g+ (I T2z =0. (18)

The action density in terms of J [23] is
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1
¢( J) = —E Tr ElvE,tv = =2Tr ( F'y'gFZZ +F'yz7Frgz), (19)
where

F,=0,A,—0,A, —[A,, A,]. (20)

Our construction begins by explicit parametrization of the matrix J

¢ p

=(r ), 21
J (p ¢(1 + pp)) @)

and for real gauge fields A, =-A} , we require ¢ =real, p = p* (p* = complex conjugate of p). The self-duality equations
(18) take the form

%(1 + pp)a,d,In® + %p@uaup_ + g [0ypg + Dzpz] + % [0ypg + Oz0z] +
+logpy +pzh2] =0, 22)
20,0.0 +50,0,0 —Z(ByBy + 02¢7) + (Bypy + 0zpz — Bypy — 0zpz) = 0.,
(23)
20,0,p +29,0,0 - %(@y@rg +0z¢z) + (Bgpy + Ozpz — Oypy — Bzpz) =0,
(24)

where 8,0, = 2(0y0g + 0503).

The positive definite Hermitian matrix J = D D* can be factored into a product upper and lower (or vice versa) triangular
matrices as follows

(7=RR+=RIRI+,

ha T ST
_ (8 R’:(ﬁ px{E)'

o o 0 W

Vo
¢ =real, p=p p' = p'.

It is evident from (25) that one can choose a gauge so that D = R or D = R' and it is easy to check that in both gauges the
self-duality equations (22)-(24) (in the case of D = R all the ¢ , p , p are replaced by ¢!, p', p').

R (25)

From equation (2.25) we see that R"'R! is a unitary matrix so that we can always make a gauge transformation from
the R gauge to the R! gauge.

Theorem 1: If (@, p, p) satisfy equations (22)-(24) then so do (¢!, p', p') defined by [24]

__9¢ i__P g__P
14pp’ P =1%05 "’ p= 5’
pPp +pp 1+pp

3. Exact solution class of the classical SU(2)Yang-Mills field equations

d)l

To obtain an exact solution class of the classical SU(2) Yang-Mills field equations in four-dimensional Euclidean space,
consider the system.

P
¢
+pypg + pzpz] =0, (26)
2
20,0u0 +50,0,0 — 2 (pydy + dz0z) + (dypy + dzpz — bypy — $2pz) = 0 .

Let us make the ansatz [25]

1 _ 1_ _ _ p
5 (1+pp)9,9,Ing +0,9,p + = |bghy + Ozpz] + P [pgoy + dzpz] +

= ¢, p = ea(g). (27)
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Where g = g(x1,X;,X3,%4) is a real function of x,, p= 1,2,3,4,¢ and o are real functions of g, and ais a real constant.
Then equation (26) give the relations

(gyg + 922) (1 +06)P?) — 2(gygq + 9292)P*[(1 + 02) % +00] =0, (28)

(9yg + 922)(@0) + (9ygy + 9z92)° ((d’a) ) =0. (29)

Where the prime means differentiation with respect to g. The above relations imply that the determinant of the coefficients
of (gyg + 822) and (gygy + 828z) is zero i.e.

((1+0%)¢?) (‘fp?) +2[A+09% 4007 (o) =0. (30)

We shall determine ¢ and o from the above equation (30), let (¢o) = ¢, where ¢ is constant, then (¢po) =0,

((1 + 2)¢)2) ((¢J)) =0,

' (31)
[(1+ 02) + oo'] (o).
We suppose
=+/ce 9, o =+/ced, then p =+cedTa,
Vece™ Vced, then p = +cedti 32)
Applying theorem (1) to ¢ and p of equation (32), then we get
Ay \/Ee—g I \/Eeg—ia 1 1 \/Eeg-Ha
¢ 1+ce?9 ’ T 14ce?d ’ T 14ce?d (33)

Equations (32) and (33) is a new class of solutions of Yang-Mills equations for self-dual SU(2) gauge fields.

4. Exact solutions for self-dual SU(2) gauge fields on Euclidean space when p is a
complex analytic function

We reduce the equations for self-dual SU(2) gauge fields on Euclidean space to the following equations
1 — 1
>+ pp)9,0,Ind +-p0,9,p [‘Py,oy +dzpz] +5 [¢ypy +¢zpz] +

+|pypy + Pzpz] = 0, (34)

2
fa d,p + gauauq) s ?p (pydg + dz¢z) + (bgpy + Pzpz — Pypy — $zpz) = 0.

When p is a complex analytic function of Y and Z, then we have

pg=pz=0, Pyy +pzz=0. (35)
Then, the self-dual Yang-Mills equations (34) takes the form
P (Pyg + dzz) — (Pydyg + d20z) =0, (36)
2
p(byy + $22) = (bydy + ¢202) + (oydby + pz¢z) =0 . @)
We consider now two cases:
(a) Let p = p(¢), then we find
py=pdy, pzr=pdz. (38)
Then the two equations (36) and (37) becomes
P(Pyg + Pzz2) — (PyPg + P2¢z) =0, (39)
' 2
p(byg + bz2) + (0 =) (Pydyg + b262) = 0. (40)
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If we do not consider the case (pyg + dzz) = 0 and (Oydy + 0zdz) = 0, then we have

$pp —p=0, (41)
by integration we obtain
p = c¢, wherecis complex constant. (42)

Both equations (39) and (40) reduce to the same equation. A solution is given by
by = ¢z, by = —dz . (43)
The solution class is given by [26]

p=F(Y+2Y-2), (44)

where F is an arbitrary function, equations (42) and (44) gives a new class of solutions of Yang-Mills equations for self-
dual SU(2) gauge fields. Applying theorem (1) to ¢ and p of equations (42) and (44) then we get

¢I _ F I CF ] _ cF

= — S —— = —. 45
14+ccF2’ p 1+ccF2’ p 1+ccF2 (45)

(b) Let us make the ansatz

¢ = ¢(g), p =e'“a(g). (46)
Where g = g(x1,x2,X3,X4) is a real function of x,,, p = 1,2,3,4,¢ and o are real functions of g, and a is a real constant.
Then equation (36) and (37) gives the relations

Od (Gyg + 9z2) + (Gygy + 9292) 0" —¢°1=0, (47)
’ " 20 vz ;0
op (gyg + 92z) + (9y97 + 929z) (qu — Tf’ +¢o ) =0. (48)

Where the prime means differentiation with respect to g. The above relations imply that the determinant of the coefficients
of (gyy + 8zz) and (gygrg + gzgg) is zero i.e.

o _¢
= (49)
by integration (49) we obtain
a(9) = cp(g), p = ced(g). (50)
Applying theorem (1) to ¢ and p of equation (50), then we get
[ 1 C)) [ _ ce 9 (g) _; _ cel¢(g)
¢ =asim P T i ~ TecZpr(g) 1)

Equations (50) and (51) is a new class of solutions of Yang-Mills equations for self-dual SU(2) gauge fields.
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