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Abstract: In this paper we prove a common fixed point theorem for multi-valued and single-valued mappings in a  

dislocated metric space. The set of generalized - weak contractive mappings considered in this paper contains the 

family of generalized -weak contractive mappings as a proper subset. The theorem use weakly compatibility and  --
weak contractivity condition. It extends the work of several authors.  

Keywords: Dislocated metric spaces; common fixed point; generalized - -weak contractions; weakly compatible 

mappings; complete dislocated metric spaces. 

Academic Discipline And Sub-Disciplines 

Mathematics, Functional Analysis, Fixed point theory. 

SUBJECT  CLASSIFICATION 

Fixed point theory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Council for Innovative Research 

Peer Review Research Publishing System 

Journal: Journal of Advances in Mathematics 

Vol 4, No 1 

editor@cirworld.com 
www.cirworld.com, member.cirworld.com 
 

http://member.cirworld.com/
http://www.cirworld.com/
http://www.cirworld.com/


ISSN 2347-1921 

343 | P a g e                              N o v  9 ,  2 0 1 3  

1. Introduction. 

The notion of dislocated metric spaces (d-metric spaces) was introduced by Pascal Hitzler in [8]. The study of common 
fixed point mapping in dislocated metric space satisfying certain contractive conditions has been at the center of vigorous 
research activity.. 

Weakly contractive mappings in Hilbert spaces setting was first introduced by Alber and Guerr-Delabriere [1] in 1997. 
Rhoades showed that most results of [1] arew still true for any Banach spaces and Bae considered these type of multi-
valued mappings [2]. Kammran [13], Zhang and Song [17], Beg and Abbas [3], Bose and Roychowdhury considered some 
generalized versions of these mappings and proved some fixed point theorems. 

After Jungck has introduced the notion of compatible and weakly compatible mappings for single valued maps [6] many 
authors have immediately extended the concepts to multi-valued maps.  

The purpose of the present paper is to contribute in this field. We have considered a family of generalized - weakly 

contractive mappings, which contains the class of generalized -weakly contractive mappings and have proved a fixed 
point theorem for them when they are weakly compatible maps on dislocated metric spaces, which extends the work of 
several authors ([ 7], [4],[16],[12], [5]) 

2. Preliminaries. 

For convenience we start with the following definitions, lemmas, and theorems. 

Definition 2.1.[9] Let X be a non-empty and let d:XX[0,+[ be a function, called a distance function if for all x,y,zX 

satisfies: 

d1: d(x,x)=0 

d2: d(x,y)=d(y,x)=0 x=y 

d3: d(x,y)=d(y,x) 

d4: d(x,y)d(x,z)+d(z,y) 

If d satisfies the condition  d1 d4 , then d is called a metric on X. If it satisfies the conditions d1, d2 and d4 it is called a 
quasi-metric space. If d satisfies conditions d2, d3 and d4 it is called a dislocated metric (or simply d-metric).  

A nonempty set X with d-metric d, i. e., X,d is called a dislocated metric space. 

Example. Let be X= R
+
and the function d : XXwhere d x, yx y . Then X,d is a 

dislocated metric space. 

Definition 2.2 [9] A sequence {xn}nN  in a d -metric space X,d is called a Cauchy sequence if for all 0 

,n0N such that  m,nn0 , we have d(xm ,xn) . 

Definition 2.3 [9] A sequence in d -metric space converges with respect to d , if there exists xX such that lim
n

d(xn,x)= 

0.  

In this case x is called a d-limit of {xn}nN  and we write xn →x. 

Definition 2.4 [9] A d -metric space X,d is called complete if every Cauchy sequence in it is convergent with respect 
to d . 

Lemma 2.5 [9] Limits in a d-metric space are unique. 

Lemma 2.6. [12] Let ( , )X d  be a d-metric space. Then 

(A) if d(x,y)=0, then d(x,x)=d(y,y)=0 

(B) if {xn}nN  is a sequence such that lim
n

d(xn,xn+1)= 0, then lim
n

d(xn,xn) = lim
n

d(xn+1,xn+1)= 0 

(C) if xy, then d(x,y)>0 

(D) 
1

2
( , ) ( , )

n

i

i

d x x d x x
n 

   holds for all x, xiX, where 1in. 

Let ( , )X d  be a d-metric space. We denote the family of all nonempty, bounded subset of  X  by ( )B X
 

Definition 2.7. Let ,  ( )A B B X , then  

( , ) max sup ( , ),  sup ( , )
x A y B

H A B d x B d y A
 

  
  

  
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 ( , ) inf ( , ) : ,d A B d x y x A y B  
 

 ( , ) sup ( , ) : ,A B d x y x A y B   
 

Definition 2.8. A sequence  nA of nonempty subset of X is said to be convergent towards a subset A of X if 

i) each point a A is a limit of a convergent sequence  na , n na A  for n N . 

ii) for arbitrary 0  , there is an integer m such that for ,  nn m A A  , where { : / ( , ) }A x X a A d x a     
,
 

A is then said to be the limit of the sequence  nA . 

Lemma 2.9. Let  nA ,  nB be sequences in ( )B X converging respectively to A and B in ( )B X . Then the sequences of 

numbers  ( , )n nH A B ,  ( , )n nd A B
 
and  ( , )n nA B  converge to ( , )H A B , ( , )d A B and ( , )A B , respectively. 

Lemma 2.10. Let  nA be sequences in ( )B X and y X  such that ( , ) 0nA y  . Then the sequence  nA converges to 

the set  y in ( )B X . 

Definition 2.11. [10] The self maps f, g of X are compatible iff lim ( , ) 0n n
n

d fgx gfx


 , whenever  nx is a sequence in X 

such that lim limn n
n n

fx gx t
 

 

 

for some t X .    

Several authors ([11], [15]) extend the Definition 2.3 by introducing the compatibility of set-valued mappings as below. 

Definition 2.12. The mappings : ( )F X B X  and :f X X are -compatible iff lim ( , ) 0n n
n

fFx Ffx


 ,  

whenever  nx is a sequence in X such that ( ), lim { } and limn n n
n n

fFx B X Fx t fx t
 

  

 

for some t X .     

Definition 2.13 [10] The mappings : ( )F X B X  and :f X X are weakly compatible (or sub compatible) if they 

commute at coincidence points that is    / { } /t X Ft ft t X Fft fFt     . 

Definition 2.14. Two set-valued mappings , : ( )F G X B X , are called generalized -weak contractions if there exist a 

map 

: [0, [ [0, [   with ( ) 0t  for all t>0 and (0) 0  , such that 

 ( , ) ( , ) ( ( , ))H Fx Gy M x y M x y  for all ,x y X , where  

( , ) ( , )
( , ) max ( , ),  ( , ), ( , ),

2

d x Gy d y Fx
M x y d x y d x Fx d y Gy

 
  

 
. 

Definition 2.15. Two set-valued mappings , : ( )F G X B X , are called generalized --weak contractions if for all x, yX, 

 ( ( , )) ( ( , )) ( ( , ))H Fx Gy M x y M x y    ,  

where 
( , ) ( , )

( , ) max ( , ),  ( , ), ( , ),
2

d x Gy d y Fx
M x y d x y d x Fx d y Gy

 
  

 
and ,  : [0, [ [0, [    ,  is non-decreasing and 

continuous,  is lower semi continuous function such that, ( ) 0,  ( ) 0t t   for all t>0 and (0) (0) 0   .  

The aim of this work is to prove a theorem on the common fixed point for two multi-valued and two single valued mappings 

not necessary continuous, where the multi-valued mappings are generalized --weak contractions on dislocated metric 
spaces. 

3. MAIN RESULTS. 

Theorem 3.1. Let , : ( )F G X B X
 

be mappings, where ( , )X d  is a complete dislocated metric space and let 

, :I J X X  be self mappings. Suppose that  

(1) ( ( , )) ( ( , )) ( ( , ))H Fx Gy N x y N x y    , where  

( , ) ( , )
( , ) max ( , ), ( , ), ( , ),

d Ix Gy d Jy Fx
N x y d Ix Jy d Ix Fx d Jy Gy

a

 
  

 
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2 2 2 2 1 2 2 1( , ) ( , ) ( , )n n n n n nd Ix Ix d Ix Jx d Ix Jx  

for all , ,  3 4x y X a    and ,  : [0, [ [0, [    ,  is non-decreasing and continuous,  is lower semi continuous 

function, ( ) 0,  ( ) 0t t   for all t>0 and (0) (0) 0   .  

(2)  ( ) ( )G X I X  , ( ) ( )F X J X   and either I(X) or J(X) is closed  

(3) the pairs of mappings {F, I} and {G, J} are weakly compatible,  

then F, G, I, J have a unique common fixed point u X . Moreover, Fu = Gu = {u}.  

Proof. Let x0 be an arbitrary point of X. By the condition (2) there exists x1  X such that Jx1  Fx0. Furthermore, for this 

point x1 we can choose x2  X such that Ix2  Gx1 and   02 11 ( ), ,Hd Jx Ix Fx Gx  

By the condition (1) of Theorem 3.1 we have   0 1 0 1 0 1 0 11 2 ) ( ( ,( , )) ( ( , )) ( ( , )) ( ( , )H Fx Gx N x x N x xd Jx x N x xI        . 

Continuing this process, we can define inductively the sequence  nx as follows: 

2 1 2 2 2 1,         n n n nJx Fx Ix Gx    for nN and  2 2 22 1 1,, ( )nn n nH Fx Gxd Ix Jx   . 

Hence as  is monotonically increasing and (1) we have 

2 2 1 2 2 1 2 2 1 2 2 1 2 2 1( ( , )) ( ( , )) ( ( , )) ( ( , )) ( ( , ))n n n n n n n n n nd Ix Jx H Fx Gx N x x N x x N x x           
             

 (4) 

and  2 2 12 1 2, ( , )nn n nd Ix Jx N x x  . 

2 1 2( , )n nN x x = 2 2 1 2 1 2
2 2 1 2 2 2 1 2 1

( , ) ( , )
max ( , ), ( , ), ( , ), n n n n

n n n n n n

d Ix Gx d Jx Fx
d Ix Jx d Ix Fx d Jx Gx

a

 
  

 
 
 

 
2 2 2 1 2 1

2 2 1 2 2 1 2 1 2

( , ) ( , )
max ( , ), ( , ), ( , ), n n n n

n n n n n n

d Ix Ix d Jx Jx
d Ix Jx d Ix Jx d Jx Ix

a

 
  

 
  

 
                   

(5) 

On the ather hand, from lemma 2.6 (D) we have  

 

and by definition 2.1 (d4) we have , 

2 1 2 1 2 2 1 2 2 1( , ) ( , ) ( , )n n n n n nd Jx Jx d Ix Jx d Ix Jx    
 

So,  

2 2 2 1 2 1 2 2 1 2 2 1( , ) ( , ) 2 [ ( , ) ( , )]n n n n n n n nd Ix Ix d Jx Jx d Ix Jx d Ix Jx

a a

    


  

and for 3<a4 we have  

 2 1 2 2 2 1 2 2 1( , ) max ( , ), ( , )n n n n n nN x x d Ix Jx d Ix Jx   .   

Now, if  2 2 1 2 2 1 2 2 1max ( , ), ( , ) ( , )n n n n n nd Ix Jx d Ix Jx d Ix Jx   , by (4) we have  

2 2 1 2 2 1 2 2 1 2 2 1 2 2 1( ( , )) ( ( , )) ( ( , )) ( ( , )) ( ( , ))n n n n n n n n n nd Ix Jx N x x N x x d Ix Jx d Ix Jx            ,  a contradiction.  

Hence, we have  

 2 1 2 2 2 1 2 2 1 2 2 1( , ) max ( , ), ( , ) ( , )n n n n n n n nN x x d Ix Jx d Ix Jx d Ix Jx     ,   

So, 

  2 2 1 2 21 2 12 ( ,, ) ( , )n n nn n nd Ix J N x d Ixx x Jx                                                                                                        (6) 

Also  

 2 2 2 2 22 11, ( , )nn n nH Fx Gxd Ix Jx   
,  

and  

2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1( ( , )) ( ( , )) ( ( , )) ( ( , )) ( ( , ))n n n n n n n n n nd Ix Jx H Fx Gx N x x N x x N x x            
         

             (7) 

so  2 12 2 2 1 2( ,, )n n n nd Ix N x xJx   . 
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In the same way, we have  

 2 12 2 2 2 1, ( , )nn n nd Ix N xJ xx    2 2 1 2 1 2 2 2 2 1max ( , ), ( , ) ( , )n n n n n nd Ix Jx d Jx Ix d Ix Jx     .                  (8) 

Let put for convenience,  

2

2 1

          2

      2 1

n
k

n

Ix k n
y

Jx k n


 

  . 
  

By (6) and (8), we conclude that  1 1 1( , ) ( , ),k k k k k ky N y y d y yd y    , for kN .  

It implies that the sequence   1,k kd y y   is monotone non-increasing and bounded below. So there exists l  0 such that 

1 1lim l( , )i) ,m (
k k

k k k kd y y y y lN





   . 

Since  is continuous and  is lower semi-continuous,  

1 1lim ( ( , )                    lim i( ) ( ) ( )( ,nfk k k
k k

kl lN y y y yN  
 

   . 

By (4), (7) and the property of the function  and  we conclude that 

( ) ( ) ( )l l l     i.e. (l) = 0 and l = 0, and so 1 1lim l( , ) ) 0i ,m (
k k

k k k ky y yNd y


 


   .                             (9) 

Next we show that { }ky  is a Cauchy sequence.  

Let,  sup{ ( , ) : , }k i jC d y y i j k  . 

Obviously { }kC  is decreasing. So there exists C  0 such that lim
k

k CC


  . 

For every p  N, there exist k(p), s(p)  N such that k(p), s(p)  p  and 

( ) ( )

1
( , )p k p s p pC d y y C

p
    . 

So, ( ) ( ) )l ( ,im k p s p
p

d y y C


  . 

Let us to prove that C = 0. 

Case 1: If k(p) is even and s(p) is odd, so k(p) = 2q and s(p) = 2t – 1, then  

 ( ) 1 ( ) 1 2 1 2 2 1 2 2 2 1( , ) ( , ) ( , ) ( , )k p s p q t q t q td y y d y y d Jx Ix H Fx Gx              

By (1), we have  

 

( ) 1 ( ) 1 2 1 2 2 1 2 2 2 1 2 2 1 2 2 1( ( , ) ( ( , )) ( ( , )) ( ( , )) ( ( , )) ( ( , ))k p s p q t q t q t q t q td y y d y y d Jx Ix H Fx Gx N x x N x x                                           (10)  

So,  

( ) 1 ( ) 1 2 2 1 ( ) ( )( , ) ( , ) ( , )k p s p q t k p s pd y y N x x N y y     

2 2 1 2 1 2
2 2 1 2 2 1 2 2 2 1 2 1

( , ) ( , )
( , ) max ( , ), ( , ), ( , ),

q t t q
q t q t q q t t

d Ix Gx d Jx Fx
N x x d Ix Jx d Ix Fx d Jx Gx

a

 
   

  
  

  
 

2 2 2 1 2 1
2 2 1 2 2 1 2 1 2

( , ) ( , )
max ( , ), ( , ), ( , ),

q t t q
q t q q t t

d Ix Ix d Jx Jx
d Ix Jx d Ix Jx d Jx Ix

a

 
  

  
  

  
  

( ) ( ) 1 ( ) ( ) 1
( ) ( ) ( ) ( ) 1 ( ) ( ) 1

( , ) ( , )
max ( , ), ( , ), ( , ),

k p s p s p k p
k p s p k p k p s p s p

d y y d y y
d y y d y y d y y

a

 
 

  
  

  
                 (11) 

As p+ in inequality (11), we have  2 2 1 ( ) ( )( , ) ( , ) max{ ,0,0,lim lim }q t k
p

p s
p

p

C C
x x y y C CN

a
N







    .        (12) 

Taking p+ in inequality (10), since  is continuous and  is lower semi-continuous and (9) and (12) hold, we have 

( ) ( ) ( )C C C    . Hence (C) = 0 and so C = 0.  
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So, ( ) ( )( )m , 0li k p s p
p

d y y


 , for k(p) is even and s(p) is odd.                                                             (13) 

Similarly, if k(p) is odd and s(p) is even.  

Case 2: If k(p) and s(p) is even, so k(p) = 2q and s(p) = 2t, then 

( ) ( ) 2 2 2 2 2 2 1 2 1 2 ( ) ( ) 1 ( ) 1 ( )( , ) ( , ) ( , ) (( , ) ( , ) ( , ) ( , )k p s p q t q t q q q t k p k p k p s pd y y d y y d Ix Ix d Ix Jx d Jx Ix d y y d y y         ,   

Taking p+ in this inequality, since (9) and (13) hold, we have ( ) ( )( )m , 0li k p s p
p

d y y


  

Similarly, if k(p) and s(p) is odd. 

Therefore, {yk} is a Cauchy sequence. 

Since (X, d) is d-complete, there exists u  X such that lim
k

ky u


 .  

This implies 2 2 1lilim mn n
nn

I x ux J 


   and sequences    2 2 1,n nFx Gx   converge at  u .                (14) 

Suppose now that the set J(X) is closed. Then there is, by condition (2), a point v  X such that Jv = u. 

Using (1) we obtain  

2 2 2 2( ( , )) ( ( , )) ( ( , )) ( ( , ))n n n nd Fx Gv H Fx Gv N x v N x v       .                                 (15) 

2 2
2 2 2 2

2 2
2 2 2

( , ) ( , )
( , ) max ( , ), ( , ), ( , ),

( , ) ( , )
max{ ( , ), ( , ), ( , ), }

n n
n n n n

n n
n n n

d Ix Gv d Jv Fx
N x v d Ix Jv d Ix Fx d Jv Gv

a

d Ix Gv d u Fx
d Ix u d Ix Fx d u Gv

a

 
  

 




. 

Letting n   in the above inequality and by (14) we get  

 

2

( ,{ }) ( , )
lim ( , ) max ( , ), ( ,{ }), ( , ),

2

( , ) ( , ) ( , )
max ( , ), ( , ), max ( , ), ( , )

n
n

d u u d u Gv
N x v d u u d u u d u Gv

d u Gv d u Gv d u Gv
d u u d u Gv d u u d u Gv

a



 
  

 

  
 

 

.                                                        (16) 

Taking n   in (5) and by (14), we have 0 max{ ( , ), ( , )} ( , )d u u d u u d u u  and by (16) we have 

2lim ( , ) ( , )n
n

N x v d u Gv


 ,                                (17) 

Letting n  in (15) and by (17) we get, so ( ( , )) 0d u Gv   and ( , ) 0d u Gv  . 

Hence { } { }Gv u Jv  . But the pair of maps {G, J} are weakly compatible, thus  ,  i.e. { }GJv JGv Gu Ju  . (18) 

Now we show that u is a fixed point for G and for J.  

  2 2
2 2 2 2

( , ) ( , )
( , ) max ( , ), ( , ), ( , ), n n

n n n n

d Ix Gu d Ju Fx
N x u d Ix Ju d Ix Fx d Ju Gu

a

 
  

 
. 

Letting n   in the above inequality and by (14), (18) and equality 0 ( , )d u u  we get  

2

( , ) ( , )
lim ( , ) max ( , ), ( ,{ }), ( ,{ }), ( , )n
n

d u Gu d u Gu
N x u d u Gu d u u d Ju Ju d u Gu

a

 
  

 
 .                                             (19) 

By (1) we have 2 1 2 2 2( ( , )) ( ( , )) ( ( , )) ( ( , ))n n n nd Jx Gu H Fx Gu N x u N x u          

Letting n   in this inequality and by (19) we get ( ( , )) ( ( , ) ( ( , )) ( ( , ))d u Gu H u Gu d u Gu d u Gu      , so ( ( , )) 0d u Gu   

and ( , ) 0d u Gu  . 

Thus we have { } { }Gu u Ju   and u is a fixed point for G and J. 

Now, ( ) ( )G X I X   implies that exists w  X such that { }Gu Iw . Hence { } { } { }u Gu Ju Iw   and 

( , ) ( , )H Fw u H Fw Gu  

Using (1) we get 

( ( , )) ( ( , )) ( ( , )) ( ( , ))H Fw u H Fw Gu N w u N w u        
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and 
( , ) ( , )

( , ) max ( , ), ( , ), ( , ), ( , )
d Iw Gu d Ju Fw

N w u d Iw Ju d Iw Fw d Ju Gu d u Fw
a

 
  

 
. 

So, ( ( , )) ( ( , )) ( ( , ))H Fw u d Fw u d Fw u     and ( ( , )) 0d Fw u   and ( , ) 0d Fw u   and { } { }u Fw Iw  .  

Hence, 

{ } { } { }u Gu Ju Fw Iw    . 

But the pair of maps {F,I} are weakly compatible, thus  ,  i.e. F { }FIw IFw u Iu  .  

Moreover, 

( ( , )) ( ( , )) ( ( , )) ( ( , )) ( ( , ))d Fu u H Fu u H Fu Gu N u u N u u         

and 
( , ) ( , )

( , ) max ( , ), ( , ), ( , ), ( , )
d Iu Gu d Ju Fu

N u u d Iu Ju d Iu Fu d Ju Gu d u Fu
a

 
  

 
. 

So,  ( ( , )) ( ( , )) ( ( , )) ( ( , ))d Fu u H Fu u d Fu u d Fu u       and ( ( , )) 0d Fu u   and ( , ) 0d Fu u   and  

{ } { } { }u Gu Ju Fu Iu     i.e. u is e common fixed point for F, G, I, J. 

Similarly, one can reach the above fact by assuming that I(X) is closed.   

Furthermore, we can prove that u is unique. In fact, if u and v are two common fixed points for F, G, I, J, then by (1) we 
have 

( ( , )) ( ( , )) ( ( , )) ( ( , )) ( ( , ))d u v H u v H Fu Gv N u v N u v         

and 
( , ) ( , )

( , ) max ( , ), ( , ), ( , ), ( , )
d Iu Gv d Jv Fu

N u v d Iu Jv d Iu Fu d Jv Gv d u v
a

 
  

 
   

So,  ( ( , )) ( ( , )) ( ( , ))d u v d u v d u v     and ( ( , )) 0d u v   and ( , ) 0d u v   and u=v. The proof is complete. 

Remark. The above theorem extends Theorem 3.1 of [7].  If we take (t)=t for all t0 then the above theorem reduces to 

theorem 3.1. of [7]. 

Theorem 3.2. Let , : ( )F G X B X
 
be mappings, where ( , )X d  is a complete dislocated metric space and let :J X X  

be self mappings. Suppose that  

(1) ( ( , )) ( ( , )) ( ( , ))H Fx Gy N x y N x y    , where  

( , ) ( , )
( , ) max ( , ), ( , ), ( , ),

d Jx Gy d Jy Fx
N x y d Jx Jy d Jx Fx d Jy Gy

a

 
  

 
 

for all , ,  3 4x y X a    and ,  : [0, [ [0, [    ,  is non-decreasing and continuous,  is lower semi continuous 

function, ( ) 0,  ( ) 0t t   for all t>0 and (0) (0) 0   .  

(2)  ( ) ( )G X J X  , ( ) ( )F X J X   and J(X) is closed  

(3) the pairs of mappings {F, J} and {G, J} are weakly compatible,  

then F, G, J have a unique common fixed point u X .  

Proof. F, G, J complete the condition in Theorem 3.1 by taking I J . Hence F, G, J  have a common fixed point u X   

Remark. This theorem extends the Ciric and Ume theorem (Theorem 2.1.[5] 

Theorem 3.3. Let ( , )X d  be a complete d-metric space, and let , : ( )F G X B X be two multi-valued mappings such that 

for all ,x y X   

(1) ( ( , )) ( ( , )) ( ( , )H Fx Gy M x y M x y   

  

where 
( , ) ( , )

( , ) max ( , ), ( , ), ( , ),
d x Gy d y Fx

M x y d x y d x Fx d y Gy
a

 
  

 
 

for all , ,  3 4x y X a    and ,  : [0, [ [0, [    ,  is non-decreasing and continuous,  is lower semi continuous 

function, ( ) 0,  ( ) 0t t   for all t>0 and (0) (0) 0   .  

 then F, G, have a unique common fixed point u X . Moreover, Fu = Gu = {u}.  
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Proof. By taking XI J I   we have 
 

( ) ( )G X I X X    , ( ) ( )F X J X X    and X is closed. Hence F, G, I, J 

complete the condition in Theorem 3.1 and F, G, have a common fixed point u X  .  

Remark. This theorem extends the Bose and Roychowdhury theorem (Theorem 51. [4]). 

Theorem 3.4. Let ( , )X d  be a complete d-metric space, and let , , , :F G I J X X
 
four mappings such that for all ,x y X   

(1) ( ( , )) ( ( , )) ( ( , )H Fx Gy N x y N x y   

  

where 
( , ) ( , )

( , ) max ( , ), ( , ), ( , ),
d Ix Gy d Jy Fx

N x y d Ix Jy d Ix Fx d Jy Gy
a

 
  

 
 

for all , ,  3 4x y X a    and ,  : [0, [ [0, [    ,  is non-decreasing and continuous,  is lower semi continuous 

function, ( ) 0,  ( ) 0t t   for all t>0 and (0) (0) 0   .  

(2)  ( ) ( )G X I X , ( ) ( )F X J X  and either I(X) or J(X) is closed  

(3) the pairs of mappings {F, I} and {G, J} are weakly compatible,  

 then F, G,I, J have a unique common fixed point u X .  

Proof. The proof of this theorem is similar to the Theorem 3.1 for { }Gx Gx , { }Fx Fx . 

Remark. If we take (t)=t and (t)=(1-)t for all t0 then the above theorem reduces to theorem 3.1. of Kumari and Kumar 

and Sarma theorem (Theorem 3.1. [14]). 

Theorem 3.5. Let ( , )X d  be a complete d-metric space, and let , :F G X X
 
two mappings such that for all ,x y X   

(1) ( ( , )) ( ( , )) ( ( , )H Fx Gy M x y M x y   

  

where 
( , ) ( , )

( , ) max ( , ), ( , ), ( , ),
d x Gy d y Fx

M x y d x y d x Fx d y Gy
a

 
  

 
 

for all , ,  3 4x y X a    and ,  : [0, [ [0, [    ,  is non-decreasing and continuous,  is lower semi continuous 

function, ( ) 0,  ( ) 0t t   for all t>0 and (0) (0) 0   .  

 then F, G have a unique common fixed point u X .  

Proof. The proof of this theorem is similar to the Theorem 3.1 for { }Gx Gx , { }Fx Fx and XI J I   

Remark. This theorem extends the Shrivastava and Ansari and Sharma theorem (Theorem 3.7.[16]) 

Theorem 3.6. Let ( , )X d be a complete d-metric spaces and F: X  X a self-map, such that for all ,x y X   

(1) ( ( , )) ( ( , )) ( ( , )H Fx Fy M x y M x y   

  

where 
( , ) ( , )

( , ) max ( , ), ( , ), ( , ),
d x Fy d y Fx

M x y d x y d x Fx d y Fy
a

 
  

 
 

for all , ,  3 4x y X a    and ,  : [0, [ [0, [    ,  is non-decreasing and continuous,  is lower semi continuous 

function, ( ) 0,  ( ) 0t t   for all t>0 and (0) (0) 0   .  

 then F  have a unique common fixed point u X .  

Proof. The proof of this theorem is similar to the Theorem 3.1 for { }Fx Gx Fx   and XI J I  . 

Remark. Theorem 3.5 extends the Karapinar and Salimi theorem (Theorem1.9. [12]). 
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