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ABSTRACT

This paper generalizedizes a class of generalizedized mixed variational inequality problem, and we study the gap functions,
error bounds of solutions and related algorithms of a class of set-valued mixed variational inequalities. In order tosolve our
problem, we establish the corresponding generalized resolvent equations and prove the equivalence. Finally, we give three
iterative algorithms and analyze the convergence of algorithms.
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INTRODUCTION

Let H be a real Hilbert space, whose inner product and norm are denoted by < .,. > and |||| respectively.Let S be a non-
empty closed convex setin H and T : H — C(H) be a multivalued operator, where C(H ) is the nonempty compact set
inH,g:H—>Hisa

single-valued operator. Let a(p be the subdifferential of a proper, convex and lower
semicontinuous function @ : H — R U{+00} with dom O # ¢.
We consider the problem of finding U € H,w €T (U) such that

<w,v—g(u) >+@(v) —p(g(u)) >0, foral ve H . (1D

The problem (1.1) is called the generalizedized set-valued mixed variational inequality problem, the problem (1.1) is

denoted by GSMVIP(T, g, ).

The problem (1.1) contains several typical variational inequality problems.

(L fT: H — His asingle-valued mapping,the problem (1.1) is equivalent to finding U € H such that
<T(u),v=9(u)>+p(v)-p(g(u)) >0, foral veH. (1.2)

The problem (1.2) is known as the generalizedized mixed variational inequality problem.
Hence, our work generalizedizes the problem (1.2).

(2) If g is a identity mapping, the problem (1.1) is equivalent to finding U € S,W € T (U) such that

<W,Vv—U>+¢(V)—¢@U)=>0foral Ves. (1.3)
The problem (1.3) is called set-valued mixed variational inequality problem.

(3) If @ is the indicator function of S such that

0 ,ueS
o(u) =
+oo,U ¢ S

the problem (1.1) is equivalent to finding U € S, W € T (U) such that
<w,v—g(u) >—-¢(g(u)) >0 foral VeS.

(4) If @ is the indicator function of S and § is a identity mapping, the problem (1.1) is equivalent to finding
ueS,weT(u) such that

<W,Vv—U>>0/foral VveSsS. (1.4)

5 1f T: H — His asingle-valued mapping , @ is the indicator function of S and g is aidentity mapping,
the problem (1.1) is equivalent to finding U € S such that

<T(u),v—u>>0,vYeS (1.5)
The problem (1.5 is the typical variational inequality problem of VIP(T, S) .

In order to solve the the problem of VIP(T, S), in the reference of[6], WU. Florian and Marcotte define a gap
function G, : H — R such that

G, (u) =maxy, (u,v) = max{<T (u), u-v>-ag(u,v)}

Where, & > 0 ,the function @ : H x H — R satisfies the following conditions:
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C.1 ¢ is continuously differentiable on H x H ;
C.2 ¢ isnonnegativeon H xH ;

C.3 ¢(u,.) is strongly convex uniformly on H .i.e. there exists a constant 4 > 0 such that
2
PU,V,) — (U, V,) 2<V,0(U, V),V =V, > +A|v, =V, |, Vv, v, eH

forany Ue H .
C.4 ¢(u,v)=0ifandonlyif U=V;

WU proved that the function G, is equivalent to the optimization of VIP(T,S) ,and G, (u)=0, ueS ifand only if
U is the solution of VIP(F, S).
In order to solve the problem (1.1), this paper will construct the gap function and D — gap function of

GSMVIP(T, g,®) by using the function ¢ which satisfies C.1—C.5, and we will study the properties of gap
functions and give the error bounds of the problem (1.1)

One of the most difficult and important problem in variational inequality theory is the development of finding efficient
algorithm. There are a lot of algorithms including the projection technique, principle technique, Newton and descent
framework and so on.

In the reference [17], Noor considers the following problem:

Let H be a real Hilbert space, whose inner product and norm are denoted by <.,.> and |||| respectively.

T,A,g:H — H are nonlinear operators. Let 0@ be the subdifferential of a proper, convex and lower semicontinuous
function @ : H — R U{+00} with dom d@ # ¢, g(H) ndom(d¢) # ¢ .
Consider the problem of finding U € H such that

<T(u)+ A(u),v—g(u) >+@(v) —p(g(u)) >0 forall Ve H . (1.6)

In order to solve this variational inequality problem, Noor introduces resolvent operator and constructs the resolvent
equatons.

For given nonlinear operators T, A, g :H — H , consider the problem of finding U € H such that
N] LW A
TgJ,z+p Rz=-A(g"J,2). 1.7
where R, =1-J_. | isidentity operator, J =(I + p0) "is resolvent operator, o >0 is a constantand g

is the inverse of the operator (.

(1.7) is called the generalized resolvent equations of (1.6) .It has been shown in [17] that (1.6)and (1.7) are
equivalent and Noor gived the algorithms of solving the problem (1.6) .

In order to solve the problem (1.1), we will also use the resolvent operator and construct the generalized resolvent
equatons of the problem (1.1).

2.Definitions and assumptions

Definition 2.1 The set-valued mapping T : H — C(H) is said to be g — strongly monotone with module & , if there

exists a constantd > 0 such that
<V, —V,,g(u)—g(u,) >> 5||u1—u2||2, forall U,U,eH ., v, eT(u,),v,eT(U,).

Definition 2.2 [1] The set-valued mapping T : K = H — 2™ is said to be Lipschitz continuous with module L on the
subset U of the set K, if there exists a constant L > 0 such that

H(T (), T(u,))<L|u-u,|, vu,u,eU
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where H (.,.) is the Hausdorff metricon C(H).i.e.

H(T (u,),T(u,)) =max{sup inf [x—y]|, sy(p inf [x—y|} vu,,u, eU
X ye

€T () yeT (uy) Up) xeT (Uy)

Definition 2.3 [1] The mapping g : H — H is said to be LipSChitZ continuous with modulet on H , if there exists a
constant t > 0 such that

lo(u)—g(u,)| <tfu,—u,|, vu,u, eH

Definition 2.4 [1] The function f :H — R is said to be strongly convex uniformly, if there exists a constant d > O such
that

f (V)= f (V) 2<VE(V,), v, —V, > +d v, =V, |, Wy, v, € H.

Remark 2.1 If the function f is strongly convex uniformly on the convex set S  H | then f hasa unique minimizer

on the convex set S .

Lemma 2.1 [7] If the function ¢ satisfies C.1—C.4. Then V¢, (U,V) = Oifand only if U=V.
Lemma 2.2 [14] If the function ¢ satisfies C.3, then we have V,,V, € H
<V, B(UNV) — V(U V, ), vy —V, >2 24|V, —V, | forall v;,v, € H .
Sometimes the function ¢ need to satisfy the following condition:
C.5 V,é(u,.) is Lipschitz continuous uniformly. i.e. there exists a constant k >0 such that for any U€ H we have
V.6, v,) =V,p(u,v,)| <k|v, =V, . foran v,,v, eH .
Lemma 2.3 [8] If the function @ satisfies C.1—C.5, then we have
Alu —v||2 <gu,v) < (k—2)|u —v||2, forany U,Ve H .

Definition 2.5 [15] If T is a maximal monotone operator from H into 2" , then the resolvent operator associated with
T is difined by J;(U)=(1 +pT)*(u). forall Ue H .Where p > 0is aconstant and | is the identity operator. [s]

Lemma2.4 Foragiven Ue H, Z e H satisfies the inequality (U—2,v—U)+ p@(V)— pp(u) >0 forallve H ,

if and only if
u=J,(2),

_ 1. . : —
where J = (I + pOg) ~is the resolvent operator and p > 0 is a constant, | is the identity operator.
Definition 2.6 [16] J(p is a nonexpansive operator, thatis,
|9, =3,W)|<v-u] foratueH, veH.
Definition 2.7 [16] The operator T : H — C(H) is said to be
(1) o —strongly monotone, if there exists a constant ¢ > 0 such that
2
<W, =W, U —U, >>a|u, —U,|", forall u,u, eH, W eT(u,)w,eT(u,).

(2> H— g —Lipschitz continuous, if there exists a constant > 0 such that
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H(T(u,),T(u,)) sﬂ||u1—u2||, forall U, U, € H,
where H(.,.) is the Hausdorff metricon C(H).

Definition 2.8 The operator T : H — C(H)is said to be & — g strongly monotone, if there exists a constant & >0
such that

<W,—W,,g(u,)—-g(u,) >> a||ul—u2||2, vu,u, e H W, eT(u,),w, eT(U,)
Definition 2.9 [17] The mapping g : H — H is said to be
(i) & —Lipschitz continuous, if there exists a constant & > 0 such that
lo)—gv)|<S|u—v|. foratuveH.
(i) o strongly monotone, if there exists a constant o > 0 such that
<gu)-g(v),u-v>=clu —v||2 , forall u,ve H .
3 The gap function and error bounds of GSMVIP(T, g, ®)

We construct the gap function as follows:

G, ()= inf supy, (W, u,v)

veH

= inf sup{<w,,g(u) =v>+¢(g(u)) - p(v) —ap(g(u),v)}

W, €T (U) yeH
foralueH .

Where @ > Qis a constant, forgiven Ue€ H , any W, is choosed from the set T(u) . the function Y, isgiven as
follows:

W, (W, U, V) =<W,, g(u) =V >+p(g(u)) —o(v) —ag(g(u),v)

Lemma 3.1 If the function ¢(U,.) is uniformly convex, for given W, eT(u). then -, (Wu ,U,.) is uniformly
convexon H .

Proof :

Since ¢@(U,.) is uniformly convex, so, forany U€ H , there exists A > 0 such that

¢(g(u)’vl) —¢(g(u),v2) 2< Vz¢(g(u)’vz)’vl -V, > +/1||V1 _V2||2 ,‘v’Vl,Vz eH.

Let

F(V) ==y, (W,,u,v) =<w,,v=g(u) > +(v) —p(g(u)) + ag(g(u),v) .

We have
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F(v,) = F(v,) =<w,,v; —g(u) > +o(v,) — (g (u)) + ag(g(u),v,)
—<W,,V, —g(u) > —(v,) + (g (u)) —agd(g(u),v,)
=< W, V=V, > +0(V) —0(V,) + a{p(g(u), V) - #(g(u), v,)}
2<W,, vy =V, > +0(V;) —o(V,) + a{< V,4(g(u),V,), v, -V, > +/1||V1 -V, ”2}
=< W, +aV,4(g(u),v,),v, =V, > +o(V;) —p(Vv,) + aﬂ”Vl -V, ”2
><W, +aV,3(g(U), v, ),V —V, >+ < XV, —V, > +ad |V, v, |
=< W, +X+aV,3(g(U), V,),V, =V, > +ad |V, —v, |
=< VF(V,),V, =V, > +aA |V, =V,
Where a4 >0 and X € 0¢(V,) . Hence , =, (W, ,U,.) is uniformly convex on H .

By Lemma 2.4, —,(W,,U,.) is uniformly convex on H . Hence, for given UeH and W, eT(u) ,
-, (W,,U,.) has a unique minimizer V,, (U, W, ).

For given Ue H , while W, =W ,v=V_(U,W) , the function G, get the function value, then G, (U) can be
denoted as follows:

G, (U)=<W, g(u) =V, (u,wW)>+p(g(u)) - (v, (U,W)) =ag(g(u),v, (U,w)) (3.1)where
V_ (U, W) is the minimizer of —_ (W, U,.) on H after givn U € H and while W, =W .

Remark 3.1 Ifthere is not other explanations, throughout this paper, W and \ (U, W*) denote the above meaning.
Lemma 3.2 If the function ¢ satisfiesC.1—C.4.Then U € H and W, €T (U) is the solution of GSMVIP(T, g, ®)
if and only if g(u) =V, (U, W,) for any constant & > 0.
Proof :
(&) Forany ue H, w, €T (u) .Suppose that V,, (U, W,) is the minimizer of —,, (W,,U,.) on H . We have
0ed(—y, (w,u,v,(u,w,))=w, +0e(v, u,w,))+aV,s(gu),v, (u,w,)).
Hence
W, —aV,#(g(u).v, (U,W,)) € Bp(v, (U, W,)).
By the definition of subgradient, we have
(V) 2 (v, (U, W)+ < —W, —aV,4(g(u), v, (U, W,)), V=V, (u,w,) >

forany ve H.

By above inequality, we have
<WL V=V, (U, W) > +o(V) = (v, (U, W,) = = < aV,¢(g (), V, (U, W), V=V, (U, W,) > (3.2) for
anyVe H.

it g(u)=v,_(u,W,), by (3.2) and Lemma 2.1, we have
<wW,,Vv—g(u) >+e(V)—e(gu)) =0,vveH.
Hence, Ue H,w, €T (u) is the solution of GSMVIP(T, g, ).

(=) :Suppose that U € H,w, €T (u) is the solution of GSMVIP(T, g, @) , we have
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<W,,V—g(u)>+¢((v)—e(g(u)) =0,vweH.
Set V=V_(U,W,), we have

WL, (U W,) ~ 9 (W) >+, (U W,) - (W) 20, W e H | (33)
Since g(U)e H , let v=g(u), by (3.2) , we have

<W,, g(u) —v, (U, w,) > +e(g(u)) — (v, (U, w,)) = — < aV,¢(g(u).v, (U, w,)), g (u) - v, (u,w,) >. (3.4)
By (3.3) and (3.4) , we have

<V, (g (U)V, (U W,), 9 W)~V (U,W,) >0
Since ¢ >0, so

< V2¢(g(u)’va (U!Wu))1 g(U) -V, (U’Wu) >>0.

Since
A|g(u)—v,, (u,w,)|" 0.
Hence
<V,4(g(u),v, (u,w,)), g(u) -V, (u,w,) >+1[g(u) —va(u,wu)”2 >0.
Hence, by C.2, C.4 and the strongly convex of @(U,.), we have

0<<V,¢(g(u),v, (U,w,)), g(u) -V, (u,w,) > +A]g(u) -v, (u,w,)|"

<p(g(u), g(u)) —4(g(u), v, (U, w,))
<0

#(g(u),v, (u,w,)=0.

Hence, by C.4, we have

gu) =v, (u,w,)

Theorem 3.1 If the function ¢ satisfies C.1—C.5, and U € H,w e T (u) is the solution of GSMVIP(T, g, ¢) .
T is g — strongly monotone with moduledonH ,&6 >0, T, g are Lipschitz continuous on H with respective
module L,t>0.Thenforany U€ H , there exists W, € T (U) such that

ku —w| < H(T (), T)
and, while [, —w{|< H(T (), T()), we have
u—ul| < L+§akt lo)-v,(u,w,)|, YueH, a>0
W, —w s@”g(u)—va(u,wu)”, YueH, a>0
Proof :
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Suppose that U € H,w e T (u) is the solution of GSMVIP(T, g, ), thenforany U H , by the difinition of
Hausdorff metric , there exists W, € T (U) such that

ku “W{ < H(T ), T (). (3.5)

ifueH ,V:VeT(lj) is the solution of GSMVIP(T, g, ¢), then we have

<w,v—g(u) > +o(V)—(gu)) =0, WeH . (36)

ForanyueH, w, eT(u), setv=v, (u,w,)eH, by (3.6 ,we have
<W,v, (U, w,)—g(u) > +(v, (U,w,) —@(gU) =0, YueH,w, eT(U). 3.7
Set V= g(a), by (3.2) , we have

<W,,g(U) -V, (U, W,) > +(Q (W) ~ (v, (U,W,)) = — < aV,#(g(u).v, (U, W,)), GU) —V, (U W,) >. g

By (3.7) and (3.8) , we have

<W, —W,v, (U,W,) ~ g(U) >S< aV,@(g(u). v, (U w,), gW) v, (U W) > @9)

<aV,4(g(u),v, (U,w,)), g(u) v, (u,w,) >

— & < V,4(9(u),V, (u,w,)), g(u) - g(u) >
ra <V,g(g(u),v, (U,w,)), g(u) -V, (u,w,) >

=@ <V,4(9(u),v, (u,W,) - V,4(g(), 9(u)), 9(u) ~ g (u) >
—a <V,p(g(u), g(u)) = V,¢(g(u), v, (u,w,)), g(u) - v, (u, w,) >

< a[V,4(g(u), v, (u,w,)) - V,4(g (), g )|a(u) - g(w)

2 |g(u) v, (uw,)|

Sak‘g(a)—g(U) la)-v, (uw,)]| —2a2]jg)-v, (u,w,)|’
< aktu-u ||g(u)—va(u,wu)||—2aﬂ||g(u)—va(u,wu)||2
< akt|u-u o) -v, (u,w,)|.
(3.10)
By (3.9) and (3.10) , we have
<Wu—v:v,va(u,wu)—g(a) >< akt|lu—u o) -v, (u,w,)|. (3.11)

Since T is Lipschitz continuous on H , we have
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H (T (u), T) < Lju—ul . (3.12)
By (3.5) and (3.12) , we have
wu—\jv <Llu-ul . (3.13)
By (3.11) . (3.13) and T is g — strongly monotone with module & on H , we have
= 2 = -
ollu—ul| <<w,-w,g(u)-g(u)>
£<Wu—v:v,g(u)—va(u,wu)>+<wu—v:v,va(u,wu)—g(a)>
< Wl )y, @) <, v, ) -9 0) >
<Lfu-u lg)—v, (u,w,)|+akt u-u lg)-v, (u,w,)]
— (L+akt)u-u la)-v, (u,w,)]
i.e.
u—u| < L+5akt lo)-v, (u,w,)|. YueH, a>0. (3.14)

By (3.13) and (3.14) , we have

W, —W, sw”g(u)—va(u,wu)”, YueH. a>0.

u

Lemma 3.3 If the function ¢ satisfy C.1—C.4 forany Ue H,a >0, whilew, =W €T (U), we have
G, (u) = aa|gu) v, (uw)| 20.

if G, (u)=0, ifand onlyif Ue H,W €T (u) is the solution of GSMVIP(T, g, ¢).

Proof :
Forany Ue H,w, €T (u),a >0, set v=g(u), by (3.2) , we have
<w,, g(u) -V, (U, w,) > +e(gU)) —e(v, (u,w,)) = — < aV,¢(g(u),v, (u,w,)), g (u) -v, (U, w,) > .(315)
While W, =W €T (U). by (3.1) and (3.15) , we have
G, (U) =< W', g(u) -V, (U, W) > +0(g () — (v, (U, W) ~ (g (u), v, (U, "))
>~ < aV,$(g(u).v, (U W), g () -V, (U W) > ~ag(g(u).v, (U w)
= < aV,$(g(u).v, (U, W), gu) v, (U, W) > +ad(g(u),v, (u, W)}

> a{-p(g(), g () + Aa () ~v, W[}
—al Hg(u) ~v_(u, W*)HZ .
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Since & >0, A >0, we have
al>0.

Hence
G, (u)> axiug(u) ~v, (u,W*)H2 >0.
Next we will prove the last part of Lemma 3.3.
(=): 11G,(u)=0, wehave g(u)=V,(U,W).ByLemma 3.2, we have Uc H,w €T (U)is the solution of
GSMVIP(T, g,9).

(<): rueH,w eT(u) is the solution of GSMVIP(T,d,®) . by Lemma 3.2, we have

gu)=v, (u,w). (3.16)
By (3.1) and (3.16) , we have
G, (u)=<w,g(u)-v, (u,w)>+p(g(u)) - e, (u,w)) - ag(gu),v,(u,w))=0.
Theorem 3.2 If the function ¢ satisfies C.1—C.5, ue H,V:VET(G) is the solution of GSMVIP(T,g,9), T is

g — strongly monotone with module  onH ,6 >0, T,g are Lipschitz continuous on H with respective module
L,t >0.Thenforany Ue H , there exists W, € T (U) such that

<H(T (u),T ()

W, — W,

especially, while [|W, —w < H(l'(u),T(l])) and W, =W, we have

u—_H L+akt,¢G (u), YueH, a>0

L(L + akt)
<——"%0 |G (u), YueH, a>0
el . (U)

Proof :

By theorem 3.1, forany U € H , there exists W, € T (U) such that

W, — W[ < H (T (u), T (u)).
While ||W, _w< H(I'(u),T(lj)), we have
u—uf < L+akt||g(u) -V, (uw,)||, vueH, a>0, (3.17)
Wu—: s@”g(u)—va(u,wu)”, YueH, a>0. (3.18)

While W, =W*, by (3.17) and (3.18) , we have
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L+ah

u—ul < Hg(u) v, (u, W)H YueH, a>0, (3.19)

Hw*—\;vH: Wu—V:V swug(u)—va(u,w*)”, YueH, a>0. (3.20)

By lemma 3.3, forany U € H,a >0, while W, =W €T (U), we have

G, (u)=> a/l”g(u)—va (u,W*)H2 (3.21)

By (3.19) and (3.21) , we have

L+“ktJG ). YueH, a>0.

By (3.20) and (3.21) , we have

-l L(L+akt)
<—= 2 /G (Uu), YyueH, a>0.
sdar VoW

Theorem 3.3 If the function ¢ satisfies C.1—C.5, ueH,weT (l]) is the solution
of GSMVIP(T, g,®),T is g — strongly monotone with module d onH , &6 >0, @ is Lipschitz continuous

on H with module t > 0. Then we have

W_

u

- i 5
< ﬁﬁ%wLVUGH,O<a<
Jo+a(A—K)t? (k - A)t*

Proof :

For given U € H , choose W, € T (U) . Suppose that ue H,V:VET(G) is the solution of GSMVIP(T, g, @) , we
have
<W,V—g(u) > +p(v) - p(g(U)) 20,7V e H .

Set V=0(u), we have

<w,g(u)—g(u) > +p(g(u)) — (g (u)) = 0 (322)
G,(u)= |nf supwa( U, V)

€T (U) yeH

= lnf sup{<w,, g(u) —v>+¢(g(u)) - (v) —ag(g(u),v)}

Wy el (U) veH

—< W, g(u) -V, (U, W) > +(g(u)) - (v, (U, W) — ad(g(u),v, (u,w")
>< W', g(u) - g(u) > +@(g(u)) — (g (u)) - ad(g(u), g(u))
+ (9 (u) - (g (u)) —ah(g(u), g (u))

>< v=v g(u)—g(lj) >+0|u—

2

—{5u-u| —ag(g), gu)}+{<w,g(u) - g(u) > +p(g(u) —p(gU)}.  (3.23)
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)

By (3.22) and (3.23) , we have

2

u—u

G,(u)>s ~ap(g(u), 9(u)). (3.28)

By lemma 2.2, if the function ¢ satisfies C.3andC.5, we have

22 |v, —v2||2 <k|v, —v2||2 ,

Hence

By lemma 2.3, we have

4Hg(u)—g(ﬁ) s¢(g(u),g(6»s(k—@”g(u)—g(ﬁ) . (325)
By (3.25) , we have
—a¢(g<u>,g(G»Zau—k)Hg(u)—g(G)
> a(A—K)t? Ju-u 2 (3.26)

By (3.24) and (3.26) , we have

2

G, (u) 2[5 +a(A—K)t*]|u-u

’

u-—-u

Since 4’5+a(/1—k)t2 >0, we have

1
< a/G ,VYueH.
<«/§+a(l—k)t2 '

o
O<a<——
(k=)

4.The D—gap function and error bounds of GSMVIP(T, g, ¢)

We define the D — gap function of GSMVIP(T, g, ®) as follows:

D, (u) =G, (u) -G, (u)
= inf supy, (w,,u,v)— inf supy,(w,,u,v)

W, €T (U) yeq W, €T (U) yeH

= inf sup{<w,,g(u)-v>+¢(g(u)) - (V) - ap(g(u).v)}

W, €T (U) yenq

— inf sup{<w,,g(u)-v>+p(g(u)) - (V) - S4(g(u),V)}

W, €T (U) yeH
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—cw,,g(u) v, (U,w,") > +o(g(u)) — o(v, (U w, ") - ag(g(u).v, (u,w, ")
—<w,, gu) =V, (u,w,) > —(g(u)) + (v, (u,w, ) + Bé(g(u),v,(u,w,))
=<W,", g(u) =V, (U,w,") >—<w,", g(u) =V, (u,w,) > +e(v, (u,w,)) — (v, (u,w,"))

+BP(g(u), v, (U, W, ")) —ag(g(u), v, (u,w, "))
where & < f3, forgiven U H , while W, =W, ", G_(U) gains the function value, and while W, = Wﬂ*, G, (u)
gains the function value . V_ (U, W,") denotes the minimizer of — (W, ", U,.) WV, (U, Wﬁ*) denotes the minimizer of
—y/ﬁ(wﬁ*,u,.) on H.

Lemma 4.1 If the function ¢ satisfies C.3, forany U€ H , we have

(B-e)p(9(u), v, (u,w,)) < D,,(u) <(B-a)p(g(u), v, (u,w,")
Proof :
D) =G, (u)-G,(u)

= |nT1: )supy/a(w u, v)— |nf supy/ﬁ(w u,v)
W, u veH

= JORysunis v, g(u) - V>+§0(9(U)) @(v) —ap(g(u),v)}
- lnf SUID{<W g(u) —v>+e(g(u)) - o(v) - Se(g(u),v)}

WyeT (U) yepy
=<w,”, g(U) -V, (U,w,") > +9(g(u)) - (v, (u,w,")) - ag(g(u).v, u,w,")
—{<w,, gu) =V, (U, w,7) > +(g (u)) — (v, (u, W, 1)) = BA(g (u), v, (u, Wy )}
<<w,”, g(u) -V, (u W) > +o(g(u) - (v, (u,w,")) —ad(g (u),v, (u,w, "))
—{< W, g (u) =V, (U, w,7) > +0(g(u) — (v, (U, W, 7)) = Be(g(u), v, (u, W,y )}
<<w,', g(u) =V, (U, w,) > +(g(u)) - (v, (U, W, ) = ard(g (u), v, (u, w,))
—{<w,, gu) -V, (u,w,") > +o(g(u) —p(v, (U, w, ) - B9 (u), v, (u,w, )}
<(B-a)p(g(u),v, (u,w,))
D,,(U) =G, (u)-G,(u)
_ lnf supz//a(w u, v)— |nf supx//ﬁ,(w u,v)

W, € UVH

= inf sup{<w,,g(u)- V>+¢(9(U)) o(v) —ap(g(u),v)}

W, €T (U) yeH

— I sup{< w,, g(u) =V > +p(g(u)) — (V) - F¢(g (). )}

=W, gU) —V, (U, w,") > +o(g(u)) ~ o(v, (U, W, ")) - ad(g ). v, (u,w,)
LW, g(U) ~V, (U, W,) > +(g (L)) — (v, (U, W) — BA(g(U), v, (u,w, )}
><w,”, g(U) ~V, (U w,") > +o(g(u)) - e(v, U, W, ")) - ad(g ). v, (u,w,")
L, gu) v, (U W, ) > +(g()) - p(v, (U, W, ) — BA(g(U), v, (U, w, N}
><w,”, g(U) -V, (U,w,") > +o(g(u)) — o (v, (u,w,)) - ag(gu), v, (u,w,"))
LW, g(U) ~V, (U, w,") > +(g()) - (v, (U, W, ) - BHG(U), v, (U, w, )}
> (- @) (g(u),v, (U, w,"))

308 | Page Nov 5, 2013



)

Theorem 4.1 If the function ¢ satisfies C.1—C.4. Then the function D, is nonnegative on H . If W, = Wﬂ* =W,

then D, (u) =0ifand only if U € H, W €T (u)is the solution of GSMVIP(T, g, ¢).

Proof :

By lemma4.1, C.2 and >, we have
D, (u) =(B-a)p(g(u),v,(u,w,") 0.

Hence, the function Daﬁ is nonnegative on H .
Next we will prove the last part of theorem 4.1.

(<): fueH,w eT(u)is the solution of GSMVIP(T, g, ). by lemma 3.2, we have

g(u) =v, (u,w) . (4.1
If W =W, by (4.1),we have

g(u)=v, (u,w,).

By C.4, we have

#(g(u), v, (u,w,))=0 (4.2)

By lemma 4.1, we have
D,, () <(B-a)p(gu),v, (u,w,)). (4.3)

By (4.2) and (4.3) , we have

D,,(u) <0. (4.4)
Since Daﬂ is nonnegative on H , i.e.

D,,u) >0. (4.5
By (4.4) and (4.5) , we have

D,,(u) =0.

(=): 1t D,,(u) =0, bylemma 4.1, we have

(B-a)p(g(u),v,(u,w,"))<D,,(u) =0. (4.6)
Since

p—a>0. 4.7

Hence, by (4.7)and C.2, we have
(B-a)p(g(u),v,(u,w,")) =0, (4.8)

By (4.6) and (4.8) , we have

(B- )9 (). v, (u,w,) =0. 49)

By (4.7) and (4.9) , we have

#(g(u),v,(u,w,))=0.
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By C.4, we have

g(u)=v,(u,w,). (4.10)
If W, =W, by (410) , we have
g(u) =v,(u,w).

By lemma 4.1, we have U € H,W €T (U)is the solution of GSMVIP(T, g, ).

Theorem 4.2 Suppose that the function ¢ satisfies C.1—C.5.u € H,w T (u) is the solution of
GSMVIP(T,g,®),T is g — strongly monotone with module  onH ,6 >0, T,g are Lipschitz continuous
on H with respective module L,t>0. Thenforany U € H , there exists W, € T (U) such that

—w|<H (T(u),T(L:J)) andW, =W, fDaﬁ (u) will give the global error bounds of
GSMVIP(T,g,9). ie

—w| < H(T (u), T)

especially, while||W

Hl]—uH E L(;'Bkt f D,U),YueH,f>a,

- L(L + gkt
<<5<(ﬁ+/’a)> JB, @, VueH, f>a.

W, —W

u

Proof :

By theorem 3.1, we have forany U € H , there exists W, € T (U) such that

<H(T ), T ().

o

And while|Jw, —wi| < H (T(u),T(G)), we have

< L+ﬂkt Hg(u)

u—u

, YueH, >0, 41D

w, —w| <

, YueH, >0. (4.12)

While W, =Wa*, by (4.11) and (4.12) , we have

< I'Jrﬂktug(u) (u,wa*)H, VYueH, >0, 413

u—u

W_

u

W —w|[=

a

, YueH, >0. (4.14)

By lemma 4.1, we have
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D,;(U) >(8-a)p(g(u),v,(u,w,)). (4.15)

By lemma 2.3, we have

#(9(u),v,(u,w,”) zﬂug(u)—vﬁ(u,wa*)uz. (4.16)

By (4.13) . (4.14) . (4.15) and (4.16) , we have

= L + pkt
Hu—u <§ G- f w(U),VueH, B>a,

L(L+ gkt
—W <5((ﬁ+ﬂa)) / D), VueH,f>a.

5. The algorithms of GSMV“DO_, g, (D) and convergence of algorethms

5.1 Equivalence and Iterative Algorithms

In order to solve the problem (1.1) , we consider the following resolvent equations:
1 .1 | bl 1. 4 : .
LetR, =1—J_, where | isidentity operator. J, = (Il + 00¢) " is resolvent equations. T :H > C(H) isa
nonliner operator, we consider the problem of finding Z,Uu € H, weT (U) such that
A .
W+, R z=0. (5.1
Where p > 0 is a constant, we call (5.1) the generalized resolvent equations of the problem (1.1) .
If T: H — H is asingle-valued operator, then the problem (5.1)is equivalent to finding Z € H such that
-1 -
TJ,z+p R,z=0, (5.2)
we call (5.2) the resolvent equations. The resolvent equations is introduced by Noor, see reference[35,36].

Theorem 5.1 1f U H, WeT(u) is the solution of GSMVIP(T, g, @)ifand onlyif Ue H, WeT (U) satisfy the
following condition:

g(u)=1J,(gu)-pw),

-1
where p >0 is a constant, J(/, = (| + ,05(0) is resolvent operator.

Proof :

(=) : suppose that Ue H, WeT (u) is the solution of GSMVIP(T, g, ®) . we have

<W,V=g(u) > +o(v) - p(9(u)) 20
forallVeH.
<g(u)~(g(u)~pw),v=g(u) > +pp(v) - pp(g(u)) 20,
where p > 0 is a constant.

Hence, bylemma 2.4, we have
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(<): while UeH, weT(U), we have

g(u)=J,(9(u)—pw).
By lemma 2.4, we have
<g(u)—(g(u)-pw),v—-g(u) >+pp(v) - pp(g(u)) 20,

forall VEH .
i.e.
<WV=g(u)>+p(v) -p(g(u)) >0
forall VeH .
Hence, UeH, WeT(u) is the solution of GSMVIP(T, g, ®).

Next we will give the iterative algorithms of the problem (5.1) .
Algorithm 5.1

From theorem 5.1, the problem (1.1) is equivalent to the fixed point problem of the type
u={-2)u+Hu-g(u)+J,(g(u)-pw)},

Where 0 < A <1 is a parameter.

This fixed point formulation enables us to suggest the following algorithm:

Let T: H — C(H) be a multivalued operator, for given U, e H , take Wy €T (U,) such that
U = (1= A)u + A, —g(U) + J¢(g(u0) - PW)}.
sinceW, €T (U,) , there exists W, € T (U,) such that

”Wo _W1|| SH(T (Uo)lT (U1)) :
where H(.,.) is Hausdorff metricon C(H).

Let
u, = (1=, + A, -g(u) + ‘]w(g (Uy) — pwi)}.
Continuing this way, we can obtain te sequence {un}and {Wn} by the iterative algorithm
w, T (u,) :[w,,, —w, | <H(T (u,,,).T,)).
U, =@-Au, + Hu, —gu,)+J,(9,)—pow,)}. n=012,..
By theorem 5.1, we can establish the equivalence between the problem (1.1) and the problem (5.1) .

Theorem5.2 IfUeH, WET(U) is the solution of the problem (1.1) ifand onlyif Z,U€H , WET(U) is the solution
of the generalized resolvent equations (5.1) , where

g(u)=J,(2) (5.3)
z=g(u)-pw, (5.4)

where p >0 is a constant.

Proof :
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(Z>) :fueH, WeT(U)is the solution of the problem (1.1) , by theorem 3.1, we have
g(u)=J,(g(u)-pw) . (5.5)

By (5.5) and Rq) =1 —Jq), we have

R, (9(u) - pw) =(1-J,)(g(u) - pw)
=1(g(u)-pw)-J,(g(u)-pw)
=g(u)-pw-J,(g(u)-pw)
=g(u)-pw-g(u)
==pW. (5.6)

Let Z=Q(U)— oW, by (55) and (5.6) ,we have

g(u)=J,(2)
R, (2)=-pw. (5.7)
By (5.7) , we have
=il _
w+p R z=0.
(C): if Z,UeH, WET(U) is the solution of the generalized resolvent equations (5.1) , we have
w+p R, (2)=0. (5.8
By (5.4) and (5.8) , we have
pw=-R (2)
=-(1-3,)(2)
=J,(2)-1

=3,(9(u) ~ pw) - g(u) + pw

g(u)=J,(g(u)-pw)=J,(2).

Hence, bytheorem5.1, UeH, WET(U)is the solution of the problem (1.1) .

Algorithm 5.2

From theorem 5.2, we know that the problem (1.1) and the problem (5.1) is equivalent, hence, we can give the
following iterative algorithm by the equivalence:

The generalized resolvent equations (5.1) can be written as

using R, (2) = (I —J,)(2) and (5.9) , we have
z=J,(2)—pw. (5.10)

By (5.3) and (5.8) , we have
z=g(u)—pw.
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Hence, we can obtain the following iterative algorithm:

For given Z,,U, € H,W, €T(U,), compute the sequences {Z,}, {W,}and {u,}by iterative schemes:

g(u,)=3J,(z,) (5.11)
Wn ET(un) : ||Wn+l _Wn ” < H (T(un+1)7T(un)) (5.12)
z,,=9U,)-pw,, n=012,.. (5.13)

Algorithm 5.3

The generalized resolvent equations (5.1) can be written as

0=—p 'R, (2)—W,

-1
R,(2)=Q1-p )R, (2)-w. (5.14)
By R,(2)=(1-J,)(2) and (5.14) , we have
-1
z2=J,(2)+(1-p7)R,(2)-w. (5.15)
By (5.3) and (5.15) , we have
z=g(u)-w+(1-p "R (2).
Hence, we can obtain another iterative algorithm:

For given Z,,U, € H,W, € T(U,). compute the sequences {Z,}, {W,}and {u } by the iterative schemes:
9(u,)=13,(z,)
w, eT(U,):[W,,, —w, | <H(T U,,), Tu,))
Zyy = 9(U)-W, +(1-p R, (z,). Nn=0,12,...

5.2 Convergence Analysis of Iterative Algorithm

Next we will study those conditions under which the approximate solution obtained from Algorithm 5.2 converges to the
exact solution of the generalized resolvent equations (5.1). In a similar way , one can study the convergence analysis of
Algorithm 5.1 and 5.3.

Theorem 5.3 let the operator T : H — C(H ) be & —strongly monotone, H — —Lipschitz continuous.
g: H — H is strongly monotone with module & and O — LipSChitZ continuous, J(p is nonexpansive mapping »

and
6’ <20 (5.16)
6°>20-1 (5.17)
p°p%>20p-1 (5.18)

21-20+ 652 +\[1-2ap+ p* 5 <1 (5.19)
where o,0,a, p, f >0 are constants.

Then there exists Z € H , which satisfies (5.1) and (5.4) and the sequences{Zn} generated by Algorithm 5.2

converges to Z stronglyin H .
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Proof :

Let {Zn} be sequence generated by Algorithm 5.2, Z = g(u) — PW satisfies the generalized resolvent equations (5.1)
and (5.4) , we have

7.2 =2 =[l9ur) - 9(0) - plw,-w)]
=|9(u,) - 9(u) - (u, ~u)+(u, —u)- p(w,-w)|
<|la(u,) - gu) - (u, =) +]|u, —u) - p(w,~w)| (5.20)
I(u, —u) = pw,~w)[ =|u, —ul =20 <w,—w,u, —u > +p? w,~w
<[u, ~ul] ~2apfu, ~u]" + * 5 Ju, ~ulf
<(1-2ap+p*B)|u, —u||2 (5.21)
lou,) -9 -, ~w[" =[u, ~ul ~2<u, ~u,g(u,) - g(u) > +[gu,) - g W)
<[, ~ul ~20u, [+ &* Ju, ~ul}
<(1-20+68%)|u, —u[f (522)
By (5.20) . (5.21) and (5.22) , we have
|75 =2] <[l9(v,) - 9(u) = (u, )|+, ~w) - p(w, -w)]
S(\/1—20+52 +\/l—2ap+p2ﬂ2)||un—u|| . (5.23)
By (53) . (5.11) and (5.22) , we have

u,

<|u, —u—=(g(u,) - g(u)]+[J,(z,) -3, (2|
<\1-20+6% |u, —ul+||z, — |
< x|u, —u|+]z, - 2| (5.24)

where

X=\1-20+68" .
By (5.24) , we have
1
Ju, —u||sm||zn -1||. (5.25)
By (5.23) and (5.25) , we have
|20 — 2| < (N1-20+ 687 +\/1—2ap+p2ﬂ2)||u —u|

\/1 20 +52 +\[1-2ap + p* 5 -
1-x

<rllz,-7 . (5.26)

where
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- V1-20+ 62 +\1-2ap + p* 52

1-x
By (5.16) . (5.17) . (5.18) and (5.19) , we have
O<y<l.
By (5.26) , we have
|20 =2 < 7]z -]
<7*|za—1|
<7z~
<.
<7 a1
<7, (5.27)
where
r=lz-1).
Let N — 400, by (5.27) , wehave Z,, —> Z.

Theorem 5.4 Let the operator T : H — C(H) be « — g strongly monotone and H — / — Lipschitz continuous. g is
L, — Lipschitz continuous , g "exists and is L, — Lipschitz continuous, J, is nonexpansive mapping, and

E=L"-2pa+p’ B >0, (5.28)

L2J§<1, (5.29)

where L, L,, p,a, B >0 are constants.

Then Z, > Z,W, > W,U, —>U stronglyin H , where Z,, W,

h» U, are the approximate solutions from Algorithm 5.2,

and Z,u € H,weT(U)is the exact solution of the generalized resolvent equations (5.1) .

Proof :

By the Algorithm 5.2, we have
Iz =2 =l9,) - 9(u, ) - p(w, —w,,)|
=[a(u,) -9 )| —2p <w,-w,,,9(u,) - 9(u,.) >
+ 7w, —w,
< L2 |lu, —u, | —2pau, —u, 4" + P2 {H (T (), T U, )¥
< LPfu, —up [ =20 u, —u, [ + B2 u, —u,
< (L -2pa+p*f)|u, —u,
<&, —u,. |, (5.30)
where
=L ~2pa+p'p.

By (5.11) , we have
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u,=970,(z,)). (5.31)
By (5.31) , we have
Ju, v, =o', @) - 97, 2,
<L 2,2 =3,z )
<L2|z, -z, (5.32)
By (5.30) and (5.32) , we have
20 =2, < €Ju, —
<&, (z) - 970,z
<L, @) -3,

< 5"22 ”Zn iy Zn—l”2

<ylz. 2.4, (5.33)
where
y=¢L"
By (5.33) , we have
|zon—2 |7 |20~ 24| - (5.34)

By (5.28) and (5.29) , we have

\/;<1. (5.35)

By (5.34) and (5.35) , {Zn} is a Cauchy sequence in H, hence, there exists Z € H L, LE H, 6 as h—oo.
By (5.12) and T is H — 8 — Lipschitz continuous, we have

||Wn+l —W, ” <H (T(un+1)’T(un)) < ﬂ”uml —U, ” ) (5.36)
By (5.32) , we have

lu —ul <Lz =2z, - (5.37)

Hence, by (5.37) and {Zn} is a Cauchy sequence in H. we have {Un} is also a Cauchy sequence in H . Hence,

there exists Ue H ,U, »>UeH as N—>x.

By (5.36) and (5.37) , we have
||Wn+1 _Wn” <H (T(um-l)lT (un)) < ﬂ”uml _un” < ﬂLZ ||Zn+1 - Zn”' (5.38)

Hence, by (5.38) and {Zn} is a Cauchy sequence in H , we have that {Wn}is aCauchyinH , hence, there exists
weH W, —->Was nN—>o0.

Since T, g,J(p are continuous and theorem 5.1 and 5.2, by (5.11) and (5.13) , as N —, we have
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2=g()-pw=1,(2) - pw.
Next we will prove We T (U). In fact
d(w,T(u)) <d(w,w,)+d(w,T(u))
<|w, —w]+H (T (u,),T (u))

<[, —w + lu, -u,
where d(w, T (u)) =inf{Jw—v|,veT u)}.

since {W,}, {u,} are Cauchy sequences in H , hence, d(w,T(u))=0 as N> . since T(U)eC(H) . so
WET(U), using theorem 5.2, we see that Z,U € H,w e T (U) is the solution of the generalized resolvent equations
(5.1) .
From theorem 5.2, we see that the generalized resolvent equations (5.1) and the problem (1.1 are equivalent,
hence the sequences {Un}and{Wn} generated by Algorithm 5.2 converge to the exact solution of the problem (1.1) .
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