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ABSTRACT 

An analytical probabilistic integral representation for the European call option price in the Hurst – Platen -- Rachev 
subordinated asset price model with generalized inverse Gaussian subordinator is obtained. For the limiting gamma 
mixing case, the representation yields simpler closed-form formulas for the European risk-neutral call option price in the 
exponential variance-gamma process by Madan, Carr and Chang. An elementary state-price deflator derivation of the 
Hurst-Platen-Rachev option pricing formula is also included. 
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1. INTRODUCTION 

The Hurst-Platen-Rachev subordinated asset price model, introduced by Hurst et al. (1997/99), leads to a remarkable 
extension of the option pricing formula by Black and Scholes (1973) that besides the subordinator only depends upon the 
volatility parameter. In this model European call option prices depend upon a two-parameter normal mixed integral of the 
form 

 




0

1 )()(),( dxxfxbxaba GG ,    (1.1) 

where  )(xfG   is the probability density function of a non-negative mixing random variable  G ,  and  )(x   is the 

standard normal distribution. For the class of generalized inverse Gaussian mixing distributions, we derive a probabilistic 

integral representation for this normal integral   -function.  

     For a standardized gamma mixing distribution, the   -function in (1.1) is of the form stated in Kotz et al. (2001), 
p.296. It is related to the European risk-neutral call option price for an exponential variance-gamma (VG) price process 
initially derived by Madan et al. (1998), Theorem 2 and Appendix (see also Madan (2001), Section 6.3.1, equation (14)). 
These authors express (1.1) for the gamma mixing density in terms of the Macdonald function (modified Bessel function of 
the second kind) and the degenerate hyper-geometric function of two variables. As an important application, equation 

(4.12) yields a closed-form expression for the gamma  -function as a sum of an incomplete beta function and an 
integrated Macdonald function, which is much simpler than the original representation. A more detailed account of the 
content follows. 

     Section 2 recalls the Hurst-Platen-Rachev subordinated asset price model together with its call option pricing formula, 
which involves the normal integral (1.1). For the class of generalized inverse Gaussian subordinators, we derive in 
Theorem 2.1 a probabilistic integral representation of the normal integral (1.1) in terms of two different generalized 
hyperbolic densities. Section 3 contains an elementary probabilistic derivation of the Hurst-Platen-Rachev option pricing 
formula. It is obtained through generalization of a previous result by the author in the state-price deflator option pricing 
framework. Applications to specific examples follow in Section 4. We discuss several sub-cases of the generalized 
hyperbolic distribution, in particular the hyperbolic, normal inverse Gaussian, and the normal harmonic distributions. 
Detailed formulas for the limiting gamma and reciprocal gamma mixing distributions associated to the variance-gamma 
and skew hyperbolic Student T distributions are also obtained. 

2. Probabilistic Representation 

In Mathematical Finance, the subordinated Gaussian process is defined as a drifted Brownian motion time changed by an 
independent mixing process. Viewed from the initial time 0 it is defined by 

  ,0,0, tWGX
tGtt ,   (2.1) 

where  tW   is a standard Wiener process and  tG   is an independent subordinator, that is an increasing, positive Lévy 

process. Hurst et al. (1999) consider the following subordinated asset price model. Given the current price of a risky asset 

at time 0 its future price at time  0t   is described by an exponential subordinated Gaussian process with drift     and 

volatility     of the type 

tGtttt WGXXtSS   2

2
1

0 ),exp( .   (2.2) 

Through application of the equivalent martingale measure method they derive the price of a European call option with 

maturity date  T   and exercise price  K   as 

),,(),(])[(),,,,( 0

*

0  dKedSKSErKTSC
TT G

rT

GT



    (2.3) 

,)/ln(,)()(),( 0
0

2

2
1

rTKSddwwfd
TT Gw

wd

G 









    (2.4) 

where  )(xf
TG   is the probability density function of the mixing random variable  TG ,  r   is the risk-free interest rate 

and  )(x   is the standard normal distribution. If  TGT    with probability one, then (2.3)-(2.4) yields the famous 

formula by Black and Scholes (1973). The subordinated asset price model is a remarkable generalization of the Black-
Scholes-Merton asset price model that besides the subordinator only depends upon the volatility parameter. It has been 
first discussed in Hurst et al. (1997) (see also Rachev and Mittnik (2000) and Rachev et al. (2011), Section 7.6 with 
correction of the misprint in the stock price model, however). An elementary probabilistic derivation of (2.3)-(2.4) based on 
the state-price deflator approach follows in Section 3. 
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     From an analytical point of view the formula (2.4) depends upon the two-parameter normal mixed integral of the form 

 




0

1 )()(),( dxxfxbxaba GG .    (2.5) 

where  )(xfG   is the probability density function of the non-negative mixing random variable  G . 

     The focus is now on the three-parameter generalized inverse Gaussian (GIG) mixing random variable  

),,(~ GIGG   with density function 

,0,),,;()(
)(1

)(2

)/(
212

2

1






xexxfxf
xx

KGIGGIG











   (2.6) 

where  )(xK   is the Macdonald function defined by the integral representation 







0

)(1
1

2

1

2

1
)( dyeyxK

yy
 .     (2.7) 

Used as subordinator the GIG leads to the generalized hyperbolic Lévy motion (see Eberlein (2001), Section 5, for 
stochastic process justification, and Section 4 below for some important examples). The five parameter generalized 

hyperbolic (GH) random variable  ),,,,(~ GHX   is defined by the density function 

.),,,(

),)(())((),,,(

),,,,;()(

)(2

)(

222/)(22)(

222

1
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2

1
2

1
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
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xKxeC

xfxf

  (2.8) 

The use of the GIG as mixing distribution for the GH follows from the normal variance-mean mixture representation  

),,,,(~  GHWGX G   expressed in integral form by 

    




0

2211 ,,,;}{),,,,;( dxxfyxyyxf GIGGH   (2.9) 

with  )(')( xx    the density of the standard normal. Now, the partial derivative with respect to  a   of the integrand 

in (2.5) is related to the integrand in (2.9) with  b  ,0 , which suggests a close relationship between the GIG  

 -function and GH distributions. Filling out the details one obtains the following main probabilistic representation. 

Theorem 2.1. (Probabilistic GIG   -function representation) The normal GIG mixed integral  

 




0

1 ),,;()(),( dxxfxbxaba GIGGIG    is determined by 

dxxfadxxfbba
a

babGH

b

GHGIG 


0
)0,,)sgn(,,(

0
)0,,0,,( )()sgn()()sgn(

2

1
),(

22  .     (2.10) 

Proof. In the special case  0,0  ba   set  0,)()(),0()(
0




zdxxfxzzzJ GIGGIG . One has  

2
1)0( J , 

b

dzzJJbJ
0

)(')0()( . A calculation shows that 





 

0

})({1)(

)(2

)/(

2

1

0

2212

2
1

2
1

)()()(' dxexdxxfxzxzJ
xzx

KGIG







 



 . 

The integrand is related to a GIG density with changed parameters, namely to  ),,( GIG   with 
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22

2
1 ,, z  . 

Using (2.6) with changed parameters and the reflection relationship  )()( xKxK   , one sees that 
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
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Comparing with (2.8) shows that this is the density of a  ),,,,( GH   with parameters 

0,,0,,   . 

The formula (2.10) for 0,0  ba  is shown. The formula for  0,0  ba   follows by noting that  

)(1)()( xbxbxb  , hence )(1)( bJbJ  . In general, if 0a  set )(zI   

0,)()(

0

1 


 zdxxfxbxz GIG . One has  )()0( bJI  , 
a

dzzIbJaI
0

)(')()( , and 
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



 



 . 

The integrand is related to the density of a  ),,( GIG   with transformed parameters 

2222

2
1 ,, bz   . 

Using again (2.6) one sees that 
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A comparison with (2.8) shows that this is the density of a  ),,,,( GH   with parameters 

0,,,, 22   bb . 

The formula (2.10) for  0a  and arbitrary  b   follows. If  0a   one notes that 

)(1)()( 111 xbxaxbxaxbxa  
, 

hence  ),(1),( baba GIGGIG  , and (2.10) follows immediately.  ◊ 

3. Hurst-Planten-Rachev Option Pricing Formula 

A generalization of Theorem 4.1 in Hürlimann (2013a) is formulated and used to derive the option pricing formula (2.3)-
(2.4) by Hurst et al. (1999). 

     Consider the following subordinated asset price model. Given the current price of a risky asset at time 0, its future price 

at time  0t   is described by an exponential subordinated Gaussian process 

,),)exp((0 tGtttt WGXXtSS      (3.1) 

where     represents the mean logarithmic rate of return of the risky asset per time unit.  Using the defining relationship  

)exp(][ 0 tSSE t    at unit time, one sees that  )1(XC , where one assumes that the cgf of  1XX    exists 

over some open interval, which contains one.  Suppose that the subordinated Gaussian deflator has the same form as the 

price process in (3.1). For some parameters   ,   (both to be determined) one sets for it (an Esscher transform 

measure) 

.0),exp(  tXtD tt        (3.2) 
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A simple cgf calculation shows that the state-price deflator martingale conditions 

,0,][,][ 0   tSSDEeDE tt

rt

t     (3.3) 

are equivalent with the system of two non-linear equations in the three unknowns   ,,  (use that  tX   is a Lévy 

process, hence  )()( uCtuC XX t
 ): 

0)1(,0)(   XX CCr .   (3.4) 

Inserting the first equation into the second ones yields the necessary relationship 

0)()1(   XX CCr .    (3.5) 

Since the system (3.4) has one degree of freedom, the unknown     can be chosen arbitrarily, say 

r  ,      (3.6) 

which is interpreted as the (time-independent) subordinated market price of the risky asset. With the made restriction on 

the cgf this value is always finite. Inserted into (3.5) shows that the parameter     is determined by the equation 

)()1(   XX CC .      (3.7) 

We are ready to show the following subordinated Gaussian deflator representation. 

Theorem 3.1. (Subordinated Gaussian deflator) Given is a risk-free asset with constant return  r   and a risky asset with 

real-world price (3.1), where one assumes that the cgf of  1XX    exists over some open interval, which contains one. 

Then, the subordinated Gaussian deflator of the exponential subordinated Gaussian process is determined by 

2

2
12),(),exp(   Xtt CrXtD .   (3.8) 

Proof. The first equation in (3.4) yields the expression for     . Since  tX , tG   are Lévy processes, one has  

1),(),()( GGuCtCuCtuC GGXX tt
 . Therefore, the known relationship  )()( 22

2
1 uuCuC

tt GX     

(e.g. Feller (1971), Section II.5) is equivalent with the equation )()( 22

2
1 uuCuC GX   . It follows that the 

condition (3.7) is equivalent with the equation 

,0)1()1( 22

2
122

2
1    

which implies the stated condition for   .  ◊ 

As an immediate application, the special choice  0  implies that 

2

2
1,,0)(   rCX  . 

It follows that the subordinated Gaussian deflator degenerates to the risk-free discount factor  
rt

t eD  . In this simple 

subordinated market the risky asset follows the price process (insert (3.6) into (3.1)) 

)exp( 2

2
1

0 tGtt WGrtSS   .    (3.9) 

Moreover, the pricing of the European call option with maturity date  T   and exercise price  K   reduces to the Hurst-

Platen-Rachev option pricing formula (2.3)-(2.4). A justification of the deflator approach and its relationship with the 
equivalent martingale measure method is found in Hürlimann (2013a), Remarks 4.1. 

Theorem 3.2. (European call option formula in the simple subordinated market) Given is the asset price model (3.9) 

subject to the risk-free discount factor  
rt

t eD  . Then one has 

),,(),(])([),,,,( 00  dKedSKSDErKTSC
TT G

rT

GTT



   (3.10) 

,)/ln(,)()(),( 0
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rTKSddwwfd
TT Gw
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








   (3.11) 
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Proof.  Through conditioning rewrite  ])([  KSDEC TT   as  


0

)()( dwwfwCC
TG   with 

])}exp{[()( 2

2
1

0 wGKeWGSEwC T

rT

GT T
 

 . 

The distribution of the conditional random variable  )( 2

2
1 wGWG TGT T

    is determined by the conditional 

mean 

wwGWGE TGT T

2

2
12

2
1 ][   , 

and the conditional variance 

wwGWGVar TGT T

22

2
1 ][   . 

It follows that 

 



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0
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1

dxxKeeSwC rTxww
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Now, the expression in the bracket is non-negative provided  wwdx
w

rTSK


 2
1)/ln( 0)( 


, and one obtains 

(using e.g. Hürlimann (2013a), Lemma A1.1) 
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which implies the result.  ◊ 

4. Application to some generalized inverse Gaussian Mixing Distributions 

An important class of subordinated Gaussian processes is induced by the generalized hyperbolic (GH) distribution. It 

belongs to the generalized inverse Gaussian (GIG) mixing random variable  ),,(~ GIGG   with cgf 

   
)(

)2(

22
1

2

2

2

lnln)(











K

tK

tG tC



 . 

The domain of variation of the parameters depends upon three cases. 

Case 1:  generic GH distribution with  0,0,    

The main examples include the hyperbolic (HYP)  for  1 , the normal inverse Gaussian (NIG) for 
2
1 , and the 

normal harmonic (NH) for  0 . 

Case 2:  variance-gamma (VG) distribution for  0,0,0      

In this limiting situation the mixing distribution degenerates to a gamma distribution. 

Case 3:  skew hyperbolic T (SHT) distribution for  0,0,0    

In this limiting case the GIG degenerates to a reciprocal or inverse gamma distribution. 

Based on Theorem 2.1 we evaluate the  -function case by case. Recall that it depends upon the random variables  

)0,,0,,( GH   and  )0,,)sgn(,,( 22  babGH    associated to the generalized inverse Gaussian mixing 

random variables  ),,( GIG   and  ),,( GIG   respectively. In the following, the reciprocal of a random 

variable  X   is denoted by   
1 XRX . Using that the density of a reciprocal random variable is given by  

)()( 12  xfxxf XRX   one sees that  ),,(),,(  RGIGGIG  . 

Case 1:  generic case 
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Hyperbolic distribution (HYP) :  1  

One has the normal variance-mean mixture relationships 

),,1(),,1()0,,0,,1(  RGIGGIG WWGH   ,     (4.1) 

),,1(

22 ),,1()sgn()0,,)sgn(,,1(  GIGWGIGbababGH   (4.2) 

Normal inverse Gaussian (NIG) :  
2
1  

The special case  
2
1   of (2.6) is called inverse Gaussian. It belongs to the random variable denoted  ),( IG . 

First of all, one has  ),,(),(),(),,(
2
1

2
1  RGIGRIGIGGIG  . One obtains the normal variance 

reciprocal inverse Gaussian random variable 
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The special case of (2.8) for  0,
2
1     is called normal inverse Gaussian. The corresponding random variable is 

denoted by  ),,( NIG . One has the normal variance-mean mixture representation 
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Normal harmonic (NH) :  0  

The special case  0   of (2.6) defines the harmonic law. It belongs to the random variable denoted  ),( H . One 

has  ),,0(),(),(),,0(  RGIGRHHGIG    and 

),()0,,0,,0(  RHWGH  ,       (4.6) 
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Case 2 : variance-gamma (VG) 

Paolella (2007) shows that the limiting case  0   of (2.6) with  0,0     is a gamma random variable  
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the latter distribution, one notes that the reciprocal gamma has density 
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With (2.9) and a change of variables it follows that 
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where the last expression follows by noting that the integrand is related to the gamma density  ))(,( 22
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is by (2.9) given by 
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where the last equality is shown by using that the integrand is related to the density of the generalized inverse Gaussian  
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is the density of a variance-gamma  ),,( VG   (e.g. Hürlimann (2013b), equation (A4.21)). Inserting (4.10) and 

(4.11) into (2.10) one obtains the gamma   -function representation 
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Case 3 :  skew hyperbolic T (SHT) 

Paolella (2007) shows that the limiting case  0   of (2.6) with  0,0     is a reciprocal gamma random variable  
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the distribution of the latter, one uses (2.9) to see that 
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where the last equality is shown by using that the integrand is related to the density of the generalized inverse Gaussian  
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1  xGIG  . With the parameter transformation    , and (4.11), one sees that this is the density of a 

generalized Laplace  ),,(),(   VGGL   studied previously by Mathai (1993a/b), Koponen (1995) and Chan 

(1998) (see Hürlimann (2013b), Notes 2.2). Similarly, the density of the variance reciprocal gamma mixture 

bacWRccbGHX
R

)sgn(,),()0,,,,(
),(

2

2
1

2

2
1 

 
 , 

is by (2.9) given by 

 

),()()()(

)()()()(

222

2
1

)(

2

0

}){(1)(2

2
1

)(2

1

0

})({1)(2

2
1

)(2

1

0
),(

11

2
1

2
1222122

2
1

2
1

122

2
1

2
1

2

2
1

xbKedyeye

dyeydyyfycyxyxf

b

xcxycyxcx

ycyx

RX



 













































 

where for the last equality one uses that the integrand is related to the density of the generalized inverse Gaussian  
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1 bxGIG   . Comparing this with the density of a skew hyperbolic T  random variable 
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shows that  ),)sgn(,()0,,)sgn(,,(  baSHTbabGH  . Together, one obtains from Theorem 2.1 the 

reciprocal gamma   -function representation 
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To conclude, let us mention that the naming “skew hyperbolic T” was proposed by Scott et al. (2011). Further applications 
of the SHT are found in Frecka and Hopwood (1983), Theodossiu (1998), Aas and Haff (2006), Hürlimann (2009), Ghysels 
and Wang (2011), etc. 
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