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1 Introduction

The concept of a linear 2-normed space was introduced as a natural 2-metric analogue of that of a normed space. In
1963, Siegfried Gahler, a German Mathematician introduced the notion of a 2-metric space, a real valued function of
point-triples on aset X , whose abstract properties were suggested by the area function for a triangle determined by a triple
in Euclidean space. Many Mathematician have intensively studied this concept in the last three decades and obtained new
applications of these notions in some abstract settings. In this paper, we prove an analogue of Baire’s theorem and Banach

Steinhauss theorem in linear 2-normed spaces X by constructing a locally convex topology for X . We now state some
definitions before presenting our main results.

Let X be a linear space of dimension greater than 1 over R . Suppose ||, || is a real valued function on X x X
satisfying the following conditions:

a). ||x,y][=0 ifandonlyif X and Yy are linearly independent.
b). |Ix, yl[=]ly,x|| foral X,yeX.

o). ||ex,y][=lal||x Y| foral AcR andall X,ye X.

d). [|[x+VY,z||<[|x z]|+]]y,z|]|, foral X,y and Ze€ X.

Then ||,|| iscalleda 2-normon X and the pair (X ,||,||)is called alinear 2 -normed space. Some basic properties of

linear 2 -normed space can be immediately obtained as follows:

* ||x,y]|=0,forall X,ye X
o |IXx,y+ex||=|% Y],V X, ye X and VaeR

A standard example of a linear 2 -normed space is R? equipped with the 2-norm:

I, y|| = area of the parallelogram determined by the vector X and Y as the adjacent sides.

In any given 2-normed space, we can define a function P, on X by

P (X) =1/ €]

for some €€ X . ltis easy to see that this function satisfies the following conditions:
1) Pe(X+Y) < P (X)+ p.(Y)
@ Pe(@) =[] p(X)

Any function defined on X and satisfying the conditions (1) and (2) is called seminorm on X . Since X is of
dimension =2 , corresponding to each X#0 there exist some € € X suchthat X and € are linearly independent
and therefore [, (X) #0.Thusif X isa 2-normed space, the collection P = {pe -BE X} forms a separating family of

seminormson X .
2 Main Results
2.1 Baire’s Theorem in Linear 2-normed space

In this section we investigate the structure of open sets in linear 2-normed space and using this structure we formulate an
analogue of Baire’s Theorem in linear 2-normed space.

Theorem[2.1.1]: Let X be a real linear 2-normed space. Then the subset B, (0,1)={xe X :||x,e|[<1} of X is
convex, symmetric, balanced and absorbing.

Proof: Forany X, Yy € B,(0,1) and t €[0,1],
[tx+(1-)y. el <|[tx el +[(1-1)y.e]
= t][xell+[(1-1)[]ly.e]l
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<t+(1-t)=1
implying that tX+(1-t)yeB,(0,1) . Hence B,(0,1) is convex. Also for any Xe X
|- x, ]| =[-1]||x,e|| =] x,e|| implies that B,(0,1) =—B,(0,1). This shows that B,(0,1) is symmetric.
Forall @ with |@|<1 and X € B,(0,1),
lox.el|=la]||x.e]
<Jlx.el<1
= axeB,(0,1)V xeB,(0,1;

Hence B,(0,1) is balanced.

We shall now show that B,(0,1) is absorbing. Let X€ X . If X and e are linearly dependent then
Ix,e]|[=0<1 and so X e B,(0,1) =tB,(0,1) where t=1. On the other hand, if we take t=2||x,e||>0, then

H%X,EH=%||X,€H=%<1. This shows that X € tB,(0,1) for some t>0.Hence B,(0,1) is absorbing. [J

Theorem [2.1.2]: Let X be a linear 2-normed space and IP = {p, :e € X} where p,(X)=||x,e||. Associate to
1

each p, € P and each positive integer N set V(p,,n) = B,(0,—) .Let B be the collection of all finite intersection of
n

the sets V(pe,n) . Then B is a convex balanced local base for a topology T on X which turns X into a locally

convex space such that

1) Every p, € P is continuous.
2) Aset E < X isbounded ifand only if every p, € P is bounded on E.

Proof: Define a family T of subsets of X by AeT if and only if A is a (possibly empty) union of translates of
members of B. For any xeX, ||xe]|<n, implies that xen,B,(0,1)=nV(p,1) and so

X = Un NV (p,,1)eT. clearly &< T and closed under arbitrary union and finite intersection.This shows that T isa
X

translation invariant topology topology on X . Since B is the family of finite intersection of convex and balanced subset
V(pe, n) of X, each member of B is convex and balanced, and B forms a local base for T . Next we shall prove
that X is a locally convex topological vector space. Let 0# X € X .The family [P being separating, there exist
P, € P such that P,(X)>0. Note that X isnotin V(p,,N) if np,(x)=n|x,e||>1. This shows that O is notin

1 1

the neighbourhood X—V (p,,N) = Xx—B,(0,=) =B,(X,=) of X andso X is notin the closure of {0}. Since T
n n

is translation invariant, every singleton set {X} = X +{0} is a closed set.

We now show that addition and scalar multiplication are continuous. Let U bea neighbourhood of 0.Thenas
B is alocal base, there exist pe1’ p,32 yeur sy pem in P and some positive integers N;, N,, ..., N, such that

V(P AV(P,,.1) NV (p, ) < U.

Put Vv :V(pel,an)mV(pez ,2n2)m...mV(pem ,2N.)

Forany Z=X+YyeV +V,
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1 1 1 .
&l =X+ VY. || ZIX&l+]Y.&l|<—+=—=—, VI
lz.ell=lx+y.e I<lel+ly.ell<5-+o-=0

i

implying that Z = X+Yy eV (p,.,N,), Vi andso Ze€U. Therefore V +V < U . This shows that vector addition is
1

continuous. Suppose that X € X , ¢ is any scalar and U and V are as above. Then X €SV for some S>0. If

S 1
we take 1 = ———— and | f—a |< =, then
I+|als S

|Blt=|(B-a)+al|t<(B-al+|al)

<[Iija)—S =1
S I+|als

1
Therefore if Yy € X+tV and | f—a |< =, thenas V is balanced
S

I+|a|s

N—ox=p(y—xX)+(f—a)xgq gItV+|f—a|sV <V +V cU
Thus for any neighbourhood aX+U of a@X , there exist a neighbourhood W =X+tV of X such that

PW < ax+U forall B with | f—a |[< =. This proves that scalar multiplication is continuous. Hence X is a locally
S
convex topological vector space. If U =(—¢,&) is any neighbourhood of P.(0)=0 in R then we can find a
i
neighbourhood V =V (p,,—) of 0 in X suchthat pP,(V)<U . This shows that P, is continuous at O . Now let
£

U be any neighbourhood of P,(X). Then P,(X)—U is a neighbourhood of O and therefore there exist some
neighbourhood V' of 0 in X such that P,(X)—pP,(V)<U . Since V is balanced and P, is a seminorm, it
follows that P,(X+V) U . Hence p, is continuouson X .

Now suppose that E is bounded and let p, € IP. Then corresponding to the neighbourhood V(pe,l)) of 0,

there existsome K >0 suchthat E < kV(p,,1). Thusforany X€ E , p,(X) <K. Itfollows thatevery p, € P is
bounded on E .

Conversely suppose that every p, € P is bounded on E andlet U be a neighbourhood of 0 in X .Then

as B is alocal base, there exist pe1’ pez’"" P, in P and some positive integers N, N,,...,N, such that
m

m

V(pelfnl) mv(pez ! nz)ﬁ...ﬁV(pem ! nm) gU
By our assumption, corresponding to each [P, there exist numbers |\/|i such that F’e (X) < Mi, forall X€ E and
I 1

. n
1<i<m. rForany XeE, p, (X) <M, <—,if n>M;n,. Then,
i n.

pe_(lxj<l Y.
i\n n,

= XEnV(pei,ni) V.

= XenU and so EcnU.
Hence E is bounded. OJ
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Definition [2.1.3]: Let A be a convex and absorbing set in a topological vector space X . The Minkowski’s functional
MU, of A is defined by

w,(X)=inf{t>0:t"'xe A} for xe X.
Theorem [2.1.4]: Let X be alinear 2-normed space and let B be the collection of all finite intersection of the sets of

1
the form V (p,,n) = B,(0,=). Then V ={xe X : s, (X) <1} V V e B, where L, isthe Minkowski’s functional
n

on X.
m
Proof: Forany V € B, we can takeitas V =ﬂ_ l\/(pe_ ) D
1= 1
1 . .
Then for any XeV, |[|x,g]|<-— for 1<1<m. Choose t such that n;||x,e]|<t<1 for all i. But then
n;
X 1t _1 : X X
|=,&l|<=—=-=, for all i implies that —e&V. Thus if XeV then —eV , for some t<1 and so
t tn, n t t
L, (X) <1.

X t i
Conversely if XV , then TGV would imply that ||x,&;||<— for all i. Also from (1) ,if XV then
n.

||x,ei||2ni for some | andso t>n;||x,e]|>1. It follows that £4, (X) =1. Equivalently if £4, (X) <1 then X €V .

HenceVZ{XEX Z,uV(X)<1}. O

Many authors have described open set in a linear 2-normed space in different ways. Here by using theorem [2.1.2], we
define open and closed sets in a linear 2-normed space as follows :

Definition [2.1.5]: A subset A of a linear 2-normed space X is said to be open if for any X € A then there exist
€,.,6,,...,€, in X and I,I,,..r, >0 such that

n

X+V(p, . 6) AV (P, L) N..aV(p, .,) =B, (x, L))" B, (X,)N..AB, (1)

cA
where B, (X,F)={ze X :Px-z,eP<r}
1
A subset B of alinear 2-normed space X is said to be closed if its compliment is openin X .
Theorem [2.1.6]: Let X be a linear 2-normed space. Then the ball B, (0,r) = {x:||x,&||<r} isopenin X .

Proof: Let X € B,(0,1). Choose €, =me and r,, =m(1—||x,e|) for m=1,23,...,n.1f yen,_, Bem (x,r,)

then ||y —X,&4||<Fy, VvV M and

l

ly.ell<lly —x.el|+[[xell

e
=lly =%l +lIx.e]

21
=—[ly —x.eq+[x.ef
m
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1
<, +lxe]

_1 _
= E[m(l—HX'eH)]Jr 1% ef|=1.

=yeB,/(0,1)
Hence B,(0,1) isopenin X . O

Corollary [2.1.7]: The ball B,(a,r)={x:||x—a,e|/<r} is open in a linear 2-normed space X for all a, € e X
and >0.

Proof: Let X=a+ryea+rB,(0,1) =B,(a,r). since B,(0,1) is open in X , there exist €,8&,,...,6, in X

and I,T,,...,I, >0 such that
M=y B, (V.1,)=B.(0,1]
= a+rng, Bem(y, r.)ca+rB,(0,1) =B, (a,r).

— s B, (x,R)=""_B i (a+ry,R)cB,(a,r).

m=1""e
Hence B,(@,r) isopenin X . W

Example: Let X =R? be a linear 2-normed space with 2-norm defined by ||X,Y||=| X, Yo =X, Y, |, where
X=(X,X,) and Y=(Y,,Y,) andlet € =(€,€,). Then,
B (0,1)= {(x,., ;) :[|x.el| <1j
:{(X1’X2):|X1_X2 |<1}
={(x, %,): x, =1< x, < x, +1}is openin X.

Definition [2.1.8]: A sequence {Xn}—> X in alinear 2-normed space X if for any open set V' containing 0 there

exist a positive integer N suchthat X, —Xe€V foral n= N.

Theorem [2.1.9]: A sequence {Xn}—> X ina2-normedspace X ifandonly limn_,.|/X, —X,€||=0, foral ee X

1
Proof: Consider the open set V = B{O,—j containing 0 and for any €€ X . If the sequence {Xn} converges to
n

1
X then we can find some positive integer N such that X, —Xe Be (O,— forall N> N. Then
n

1
Ix, —x,e||<=,¥v n>N and ee X.
n

Letting N —> 0, we get limy_|/X, — X,€||=0, foral e€ X .

Conversely, suppose that limn_.||X, —X,€]|=0, for all €€ X and V is any open set containing 0. Then there

exist €,€,...€, in X and I},I,,...I, such that

n

Bel(O, )N Bez O,r,)N..n Ben O,r)cV.
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But then by our assumption corresponding to each I; > 0, there exist a positive integer Ni such that
IIx, —x,e]|[<r,¥vn=N; and foralle=¢,.
In otherwords, X,—X€B, (0,1,), VN>=N =max;(N;)and Vi . It follows that X, —X€V,Vn>N. Hence
1

x.}—>x O

Definition [2.1.10]: A sequence {Xn} in a linear 2-normed space X is said to be Cauchy sequence if there exist two

linearly independent elements Y and Z such that limm.n—swol|Xn = Xm: Y| =0 and limm noel| Xy — Xm, Z||=0.

Definition [2.1.11]: Let X be a linear 2-normed space and A C X . Then a point X € X is called limit point of A
in X if for any open set U containing X, Aﬁ(U —{X})¢ .

Theorem [2.1.12]: Let X be alinear 2-normed space and AC X. If X is alimit pointof A then corresponding to
each €€ X there exist a sequence {X,} in A suchthat limn_.|[X, —X,e||=0.

1
Proof: If X is a limit point of A then corresponding to each open ball Be(x,— we can choose
n

1 1
X, € Am(Be(X,—j—{X}]. Then X, € A and ||X, — X,€|]|<= forall N. Thus forany e e X, there exist {X,}
n n

in A such that lim_.|/X, —X,e[|=0.
Definition [2.1.13]: Let X be a linear 2-normed space and A C X. Apoint X € X is called a closure point of A
if every open set containing X intersects A . The set of all closure points of A, denoted by A is called closure of A.

Definition [2.1.14]: Let X be a linear 2-normed space and A X. Then A s said to be dense in X if every
openset U in X intersects A.

Definition [2.1.15]: A linear 2-normed space in which every Cauchy sequence is convergent, is called a 2-Banach space
or a complete space.

We now prove the main objective of this section :

Theorem [2.1.12][Analogue of Baire’s Theorem in Linear 2-normed space]: Let X be a 2-Banach space.
Then intersection of a countable number of dense open subsets of X is densein X.

Proof: Let V},V,,... bedenseopensubsetsof X. For X, € X, consider an arbitrary non-empty open subset By, of

X' containing X,. Then there exist f}, f,,..., f. in X and p;, P,,..., B; >0 such that

i
Bfl(X01 PN sz (X1 P2) N Bfi (%1 P;) < B,.

since V, is dense in X and M, Bfk (Xg» P) is open, Vlﬁ(ﬁ:(:l Bfk (Xo» pk));t (J. Choose an element

X eVlﬁ(ﬁLzl By, (%o, pk)) Then as Vlﬁ(ﬁ:(zl By, (X pk)) is open in X , we can find an open set B,

containing X, such that §1 <V, ﬁ(ﬁL:l Bfk (X, pk))gvl M B,. B, being an open set containing X, there exist

0,95, 9; in X and 0y,0,,...,q; >0 such that

By, (%1, 0) N By, (X, 0;) N...N By (%, 0;) = By.

Note that V, is dense in X and ﬁdzl ng (X,,0,) is open in X. Consequently, V, ﬁ(ﬁdzl ng (Xl,qk))i .

Let X, evzm(ﬁdzl By, (xl,qk)) Then as above, we can choose an open set B, containing X, such that
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B,cV, ﬁ(ﬂd:l ng (Xl,qk))gV2 M B,. Thus proceeding inductively we can find a sequence {X,} such that

k
i=

X, €V ﬁ(ﬂ , B (Xm, r,)) for al N> M and a decreasing sequence {Rn} of positive real numbers such that
1

m+1

1
R, <E' where R =max{p,, p,,..., B}, R, =max{q,,d,,...q;}, -... R, =max{r,r,,...,r}.

1 .
IIX, — X, &l <R, <—=,Vn>mand Vi
m

= Hxn _XrleiHSHXn _vaei||+||xm _erei”
1 1

<—+—:3,Vn,r>mand Vi
m m m

If we let M—>00, we obtain limMnr_w|/X, —X,,€||=0, Veespanfe,,e,,....e,}. This shows that {X,} is a
Cauchy sequence in a 2-Banach space X and hence there exist some X € X such that X, —> X in X. Since
X,€B,,¥Yn=m, it follows that XEB_m and as B_mngﬁBO for m=1,223... we see that
Xe(ﬁﬁ:lvm)m B,. Hence B, intersects M _,V,, and therefore densein X. W

2.2 Banach Steinhaus Theorem in Linear 2-normed space

In this section, we will consider linear operators defined on a linear 2-normed space into a linear 2-normed space. We will
formulate Banach Steinhauss Theorem for a family of continuous linear operators.

Definition [2.2.1]: Let X and Y be linear 2-normed spaces over R. Thenalinearmap T : X —Y is continuous
at X if for any open ball B,(T(X),R) in Y there exist an open ball B,(X,r) in X such that

T(Be (X, r))g By (T (x), R). In otherwords for any d €Y and R >0, there exist some €€ X and I >0 such
that || T(y)=T(x),d||<R whenever ||y—X,e||<r and VY, Xe X

Theorem [2.2.2]: Let X and Y be linear 2-normed spaces over R . If a linear operator T : X —Y is continuous
at O thenitis continuous on X.

Proof: Assume that the linear operator T:X —Y iscontinuous at 0. For any open ball Bd (0, R) in Y ,we can find
an open ball B,(0,r) such that
T(Be (0’ r))g Bd (0’ R)

Then by linearity, T (Y)—T(X) € B,(0,R) whenever y—x e B,(0,r). Thusif y € X+B,(0,r) =B,(X,r) then
T(y) eT(x)+B,(0,R) =B, (T(x),R). Hence

T(Be (X! r))g Bd (T(X)! R)

implying that T is continuous on X.

Definition [2.2.3]: Let X and Y be linear 2-normed spaces over R and T : X —Y be a linear operator. The

operator | is said to be sequentially continuous at X € X if for any sequence {Xn} of X convergingto X we have

T(x,) > T(x).

Theorem [2.2.4]: Every continuous linear map T from a linear 2-normed space X into a linear 2- normed space Y
is sequentially continuous on X.

Proof: Let T : X —Y be continuousat X € X. If By (T (x), R) is any open ballin Y then by the continuity of T ,

there exist some open ball Be(X, r) in X. such that
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T(B,(xr))< B,(T(x),R) (1)

Let {X,} be any sequence in X such that X, — X in X. Then corresponding to the open ball B,(X,r), there
exist some K >0 such that

X, €B,(x,r),vn=K )
=. [|x, = xe[|<r, Vn>K
(1) and (2) showsthat T(X,)€B,(T(X),R),Vn=>K
= |IT(x,)-T(x),d||<R, Vn>K
since B, (T (X),R) is arbitrary, it follows that T (X,) — T (X). Hence T is sequentially continuous on X.

Theorem [2.2.5]: Let X and Y be linear 2-normed spaces over R. If X is finite dimensional, then every linear
map from X into Y is sequentially continuous.

Proof: Let X be finite dimensional and T : X —Y be linear. If X ={0} then there is nothing to prove. Let now
X #{0} and {e,e,,..,6,} be a basis for X. For a sequence {X,} in X
X,y = 8, 81 + 8, 8+t 8y € Where B €R. If X, —> X = &€ +a,8, +...+ a6, in X, then

, et

IXa =X, &5][=l(a,, —a,)e; +(a,, —ay)e;, +...+ (@, —am)em,eJH
=[l(an; —a;)e; +y' el

where y’ eY; =spafg; :i=12,..mand i = j}
=la,; —a;llle; +y;.l, wherey, =myj
>|a, ; —a;|dist(e;,Y;),

where dist(e;,Y;) =inf{|y,e;|:yY;}

xa=xel|

= O < — =
13 =35 | dist(e;,Y;)

—0asn—>wandV j.

= a,;—>a; V]
By the linearity of T , it then follows that
T(x,)=T(a,& +a,,e,+..+a,.€,)
=a,, l(e)+a,,l(e,)+..+a,,T(e,)
—>aTl(e)+a,l(e,)+...+a,T(e,)
=T(ag +ae, +..+a.e,)
=T(x)
Thus every linearmap T from X to Y is sequentially continuous. [J

Definition [2.2.6]: Let X and Y be two real linear 2-normed spaces, {T/I}k/\ a family of linear operator from X

to Y. Wesaythat {T,},_, isequi-continuous if for any neighbourhood B, (0,R) in Y there existsome B,(0,r) in
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X such that
T,(B.(0,r))=B,(0,R), ¥ A€ A.

In otherwords if for any d €Y and R>0, there exist €€ X and I >0 such that || T(x),d||<R, whenever
Ix,e||<r and VAe€A.

Definition [2.2.7]: A subset E of a linear 2-normed space X is said to be locally bounded if there exist some

ee X —{0} and r >0 suchthat E = B,(0,r).

Asubset E of alinear 2-normed space X is bounded if for any open ball Be (0, I‘) there exist some t >0 such that
EctB,(0,r) = B,(0,R).
Alinearmap T : X — Y is bounded if it maps bounded set into bounded set.

Theorem [2.2.8]: Suppose X and Y are linear 2-normed spaces over R. Let {T/l}/le,\ be an equi-continuous
collection of linear mappings from X into Y and B be abounded subsetof X .Then T,(B) isabounded subset of
Y forall AeA.  thatis, {T,},., isequi-bounded.

Proof : Let {T/l}ze/\ be an equi-continuous collection of linear mappings from X into Y. For any open ball

B,(0,R) in Y, we can find an open ball B,(0,r) in X such that T/l(Be (O, I’))g B,(O,R) VAeA.

= ||T,(x),d|| < R, whenever ||x,e

|<rand VAieA........ (1)
Since B is bounded, corresponding to the open ball Be (0, I’) there exist some t >0 such that

BctB.(0,1)cee. (2
If Xe€ B then H%,EH <r. Butthen from (1), we obtain

IT,(x),d]|<tR=R*, VAeA, deY and xeB.
This shows that T,(B) is a bounded subsetof Y forall A€ A., thatis, {T,},_, is equi-bounded.

Theorem [2.2.9] [Banach Steinhauss Theorem in Linear 2-normed space]:

Let X and Y be linear 2-normed spaces over R. If X is a 2-Banach space and {-r/l}leA is a family of continuous

linear operator from X to Y suchthatforany X € X, there exist C, >0 such that
T, (). yll<c.x.e|, VAeA yeY ande g span{x}........... (1)
then the family {T,},_, is equi-continuous.

Proof: Let B, (0,R) be any open ballin Y . Note that B, (0, R) is absorbing in Y. choose a positive real number
r suchthat By(0,r)+B,(0,r) = B, (0,R).

Define A, = {XE X :T,I(x)ean(O,r),v/ieA}
:{xe X :%eTf(Bd(o,r)) ‘v’ﬂ,e/\}

= {XG X:Xxe nTﬂfl(Bd(Ofr))v V/"LEA}

= ,anT; (B, (0)
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Then An is closed for all N and by using the given condition (1) ,we obtain X = Unen A1 Since X is a2-Banach

space, Baire’s theorem shows that atleast one of Ah has non-empty interior. Let X, be an interior point of AnO . Then

there exist an open ball B,(0,t) such that

X+B,(0,t) c B,(x,t) = A10
= Tz(Be(OI))gTz(A]O)_TA(X)

cnyB,(0r)—n,B,(0))

=ny(B, (0.)+ B, (0 1))
cnBy(O,R), VAeA.

= Tz(Be(Q%)jg B,(0,R), 1€A.

This shows that {TA}AeA is equi-continuous and hence equi-bounded.
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