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1  Introduction 

  The concept of a linear 2-normed space was introduced as a natural 2-metric analogue of that of a normed space. In 
1963, Siegfried Gähler, a German Mathematician introduced the notion of a 2-metric space, a real valued function of 

point-triples on a set X , whose abstract properties were suggested by the area function for a triangle determined by a triple 

in Euclidean space. Many Mathematician have intensively studied this concept in the last three decades and obtained new 
applications of these notions in some abstract settings. In this paper, we prove an analogue of Baire’s theorem and Banach 

Steinhauss theorem in linear 2-normed spaces X  by constructing a locally convex topology for X . We now state some 
definitions before presenting our main results. 

Let X  be a linear space of dimension greater than 1 over  . Suppose  ,  is a real valued function on XX   

satisfying the following conditions: 

    a).  0=,  yx  if and only if x  and y  are linearly independent.  

    b).   xyyx ,=,  for all Xyx , .  

    c).   yxyx ,|=|,   for all   and all Xyx , .  

    d).   zyzxzyx ,,,  , for all yx ,  and Xz .  

Then  ,  is called a 2 -norm on X  and the pair ( X ,  , ) is called a linear 2 -normed space. Some basic properties of 

linear 2 -normed space can be immediately obtained as follows:   

    • 0,  yx , for all Xyx ,   

    • Xyxyxxyx  ,,,=,    and R   

A standard example of a linear 2 -normed space is 
2  equipped with the 2-norm: 

=,  yx  area of the parallelogram determined by the vector x  and y  as the adjacent sides. 

In any given 2-normed space, we can define a function ep  on X  by  

       exxpe ,=)(  

for some Xe . It is easy to see that this function satisfies the following conditions:   

    (1)  )()()( ypxpyxp eee    

    (2)  )(|=|)( xpxp ee    

Any function defined on X  and satisfying the conditions (1)  and (2)  is called seminorm on X . Since X  is of 

dimension 2  , corresponding to each 0x  there exist some Xe  such that x  and e  are linearly independent 

and therefore 0)( xpe .Thus if X  is a 2-normed space, the collection  Xepe :=  forms a separating family of 

seminorms on X .  

2  Main Results 

2.1   Baire’s Theorem in Linear 2-normed space 

In this section we investigate the structure of open sets in linear 2-normed space and using this structure we formulate an 
analogue of Baire’s Theorem in linear 2-normed space. 

Theorem[2.1.1]: Let X  be a real linear 2-normed space. Then the subset  1<,:=(0,1)  exXxBe   of X  is 

convex, symmetric, balanced and absorbing. 

Proof: For any (0,1), eByx   and [0,1],t   

  eytetxeyttx ,)(1,,)(1   

                    eytext ,|)(1|,|=|   
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                   1=)(1< tt   

 implying that (0,1))(1 eByttx  . Hence (0,1)eB  is convex. Also for any Xx , 

 exexex ,=|,|1=|,   implies that (0,1)=(0,1) ee BB  . This shows that (0,1)eB  is symmetric. 

For all   with 1||   and (0,1)eBx ,  

  exex ,|=|,   

          1<,  ex  

    (0,1) .(0,1) , ee BxBx    

 Hence (0,1)eB  is balanced. 

We shall now show that (0,1)eB  is absorbing. Let Xx . If x  and e are linearly dependent then 

1<0=,  ex  and so (0,1)=(0,1) ee tBBx  where 1=t . On the other hand, if we take 0>,2=  ext , then 

1.<
2

1
=,

1
=,

1
 ex

t
ex

t
 This shows that (0,1)etBx  for some 0>t . Hence (0,1)eB  is absorbing.   

Theorem [2.1.2]: Let X  be a linear 2-normed space and  Xepe :=  where  exxpe ,=)( . Associate to 

each ep  and each positive integer n  set )
1

(0,=),(
n

BnpV ee .Let   be the collection of all finite intersection of 

the sets ),( npV e . Then   is a convex balanced local base for a topology   on X  which turns X  into a locally 

convex space such that   

    1)  Every ep  is continuous.  

    2)  A set XE   is bounded if and only if every ep  is bounded on E .  

Proof: Define a family   of subsets of X  by A  if and only if A  is a (possibly empty) union of translates of 

members of .  For any ,Xx  xnex <,   implies that ,1)(=(0,1) exex pVnBnx  and so 

.,1)(= ex
x

n
pVnX   clearly   and closed under arbitrary union and finite intersection.This shows that   is a 

translation invariant topology topology on X . Since   is the family of finite intersection of convex and balanced subset 

),( npV e  of X , each member of   is convex and balanced, and   forms a local base for  . Next we shall prove 

that X  is a locally convex topological vector space. Let Xx0 .The family   being separating, there exist 

ep  such that 0.>)(xpe  Note that x  is not in ),( npV e  if 1>,=)(  exnxnpe . This shows that 0  is not in 

the neighbourhood )
1

,(=)
1

(0,=),(
n

xB
n

BxnpVx eee   of x  and so x  is not in the closure of {0}. Since T  

is translation invariant, every singleton set {0}=}{ xx  is a closed set. 

We now show that addition and scalar multiplication are continuous. Let U  be a neighbourhood of 0 . Then as 

  is a local base, there exist 
m

eee ppp ,,...,
21

 in   and some positive integers mnnn ...,,, 21  such that 

 

  .),(...),(),( 2
2

1
1

UnpVnpVnpV m
m

eee   

 

Put        ),2(...),2(),2(= 2
2

1
1

m
m

eee npVnpVnpVV   

For any VVyxz = ,  
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 i
nnn

eyexeyxez
iii

iiii  ,
1

=
2

1

2

1
<,,,=,   

implying that inpVyxz i
i

e  ),,(=  and so .Uz  Therefore UVV  . This shows that vector addition is 

continuous. Suppose that Xx ,   is any scalar and U  and V  are as above. Then sVx  for some 0>s . If 

we take 
s

s
t

||1
=


 and 

s

1
|<|   , then  

  
s

s
tt

||1
|||||)(=|||





  

            1.=
||1

||
1

<
s

s

s 











  

 Therefore if tVxy   and 
s

1
|<|   , then as V  is balanced  

         UVVsVtVxxyxy  ||||)()(=   

Thus for any neighbourhood Ux  of x  , there exist a neighbourhood tVxW =  of x  such that 

UxW   for all   with 
s

1
|<|   . This proves that scalar multiplication is continuous. Hence X  is a locally 

convex topological vector space. If ),(= U  is any neighbourhood of 0=(0)ep  in   then we can find a 

neighbourhood )
1

,(=


epVV  of 0  in X  such that UVpe )( . This shows that ep  is continuous at 0 . Now let 

U  be any neighbourhood of )(xpe . Then Uxpe )(  is a neighbourhood of 0  and therefore there exist some 

neighbourhood V  of 0  in X  such that UVpxp ee  )()( . Since V  is balanced and ep  is a seminorm, it 

follows that UVxpe  )( . Hence ep  is continuous on X . 

Now suppose that E  is bounded and let ep . Then corresponding to the neighbourhood ,1))( epV  of 0 , 

there exist some 0>k  such that ,1)( epkVE  . Thus for any Ex  , kxpe <)( . It follows that every ep  is 

bounded on E . 

Conversely suppose that every ep  is bounded on E  and let U  be a neighbourhood of 0  in X . Then 

as B  is a local base, there exist 
m

eee ppp ,,...,
21

 in   and some positive integers mnnn ...,,, 21  such that  

 .),(...),(),( 2
2

1
1

UnpVnpVnpV m
m

eee   

By our assumption, corresponding to each 
i

ep  there exist numbers iM  such that ,<)( i
i

e MxP  for all Ex  and 

.1 mi   For any Ex , 

i

i
i

e
n

n
Mxp <<)( , if iinMn > . Then,  

        .
1

<
1

i
n

x
n

p
i

i
e 








 

                  .),( inpnVx i
i

e   

         .nUEsoandnUx   

 Hence E  is bounded.   
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Definition [2.1.3]: Let A  be a convex and absorbing set in a topological vector space X . The Minkowski’s functional 

A  of A  is defined by  

 .}:0>{inf=)( 1 XxforAxttxA   

Theorem [2.1.4]: Let X  be a linear 2-normed space and let   be the collection of all finite intersection of the sets of 

the form ).
1

(0,=),(
n

BnpV ee  Then    VxXxV V 1<)(:=  , where V  is the Minkowski’s functional 

on X . 

Proof: For any V , we can take it as .....(1)).........,(=
1= i

i
e

m

i
npVV    

Then for any ,Vx  

i

i
n

ex
1

<,   for .1 mi   Choose t  such that 1<<, texn ii   for all .i  But then 

ii

i
nn

t

t
e

t

x 1
=

1
<,  , for all i  implies that .V

t

x
  Thus if Vx  then V

t

x
 , for some 1<t  and so 

1.<)(xV  

Conversely if Vx , then V
t

x
  would imply that 

i

i
n

t
ex <,   for all .i  Also from (1)  , if Vx  then 

i

i
n

ex
1

,   for some i  and so 1,>  ii exnt . It follows that 1)( xV . Equivalently if 1<)(xV  then Vx . 

Hence  .1<)(:= xXxV V    

Many authors have described open set in a linear 2-normed space in different ways. Here by using theorem [2.1.2], we 
define open and closed sets in a linear 2-normed space as follows : 

Definition [2.1.5]:  A subset A  of a linear 2-normed space X  is said to be open if for any Ax  then there exist 

neee ,...,, 21  in X  and 0>,..., 21 nrrr  such that  

 ),(...),(),(=),(...),(),( 2
2

1
1

2
2

1
1

n
n

eeen
n

eee rxBrxBrxBrpVrpVrpVx   

 

   A  

where  .<,:=),( iii
i

e rezxXzrxB PP   

A subset B  of a linear 2-normed space X  is said to be closed if its compliment is open in X . 

Theorem [2.1.6]: Let X  be a linear 2-normed space. Then the ball  rexxrBe <,:=)(0,   is open in X . 

Proof: Let (0,1).eBx  Choose meem =  and ),(1=  exmrm   for nm 1,2,3,...,= . If ),(1= m
m

e

n

m rxBy   

then mrexy mm  ,<,   and  

  exexyey ,,,   

         ex
m

e
xy m ,,=   

         exexy
m

m ,,
1

=   
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        exr
m

m ,
1

<   

         1.=,),(1
1

=  exexm
m

  

   (0,1) .eBy  

 Hence (0,1)eB  is open in X .   

Corollary [2.1.7]: The ball  reaxxraBe <,:=),(    is open in a linear 2-normed space X  for all Xea ,  

and 0.>r   

Proof: Let ).,(=(0,1)= raBrBaryax ee  Since (0,1)eB  is open in X , there exist neee ,...,, 21  in X  

and 0>,...,, 21 nrrr  such that  

                (0,1) .),(1= em
m

e

n

m BryB   

 ).,(=(0,1)),(1= raBrBaryBra eem
m

e

n

m   

 ).,(),(=),( 1=1= raBRryaBRxB e
m

e

n

m
m

e

n

m   

 Hence ),( raBe  is open in X . W  

Example: Let 
2= X  be a linear 2-normed space with 2-norm defined by |,=|, 1221 yxyxyx   where 

),(= 21 xxx  and ),(= 21 yyy  and let ).,(= 21 eee  Then,  

  1<,:),(=(0,1) 21  exxxBe  

           1|<|:),(= 2121 xxxx   

            .1<<1:),(= 12121 Xinopenisxxxxx   

Definition [2.1.8]:  A sequence   xxn   in a linear 2-normed space X  if for any open set V  containing 0  there 

exist a positive integer N  such that Vxxn   for all .Nn   

Theorem [2.1.9]: A sequence   xxn   in a 2-normed space X  if and only 0,=,lim  exxnn   for all Xe
. 

Proof: Consider the open set 








n
BV e

1
0,=  containing 0  and for any Xe . If the sequence }{ nx  converges to 

x  then we can find some positive integer N  such that 









n
Bxx en

1
0,  for all .Nn   Then  

                          .,
1

<, XeandNn
n

exxn    

Letting N , we get 0,=,lim  exxnn   for all Xe . 

Conversely, suppose that 0,=,lim  exxnn   for all Xe  and V  is any open set containing 0.  Then there 

exist neee ..., 21  in X  and nrrr ...,, 21  such that  

 .)(0,...)(0,)(0, 2
2

1
1

VrBrBrB n
n

eee   
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But then by our assumption corresponding to each 0,>ir  there exist a positive integer iN  such that  

 .=,<, iiin eeallforandNnrexx    

In otherwords, iandNNnrBxx iii
i

en  )(max=),(0,  . It follows that ., NnVxxn   Hence 

  .xxn     

Definition [2.1.10]: A sequence }{ nx  in a linear 2-normed space X  is said to be Cauchy sequence if there exist two 

linearly independent elements y  and z  such that 0=,lim ,  yxx mnnm   and 0.=,lim ,  zxx mnnm   

Definition [2.1.11]: Let X  be a linear 2-normed space and XA . Then a point Xx  is called limit point of A  

in X  if for any open set U  containing x ,   .}{  xUA  

Theorem [2.1.12]: Let X  be a linear 2-normed space and .XA  If x  is a limit point of A  then corresponding to 

each Xe  there exist a sequence }{ nx  in A  such that 0.=,lim  exxnn   

Proof: If x  is a limit point of A  then corresponding to each open ball 








n
xBe

1
,  we can choose 

.}{
1

, 















 x

n
xBAx en  Then Axn   and 

n
exxn

1
<,    for all .n  Thus for any ,Xe  there exist }{ nx  

in A  such that 0.=,lim  exxnn   

Definition [2.1.13]: Let X  be a linear 2-normed space and .XA  A point Xx  is called a closure point of A  

if every open set containing x  intersects A . The set of all closure points of A , denoted by A  is called closure of .A  

Definition [2.1.14]: Let X  be a linear 2-normed space and .XA  Then A  is said to be dense in X  if every 

open set U  in X  intersects A . 

Definition [2.1.15]: A linear 2-normed space in which every Cauchy sequence is convergent, is called a 2-Banach space 

or a complete space. 

We now prove the main objective of this section : 

Theorem [2.1.12][Analogue of Baire’s Theorem in Linear 2-normed space]: Let X  be a 2-Banach space. 

Then intersection of a countable number of dense open subsets of X  is dense in .X  

Proof: Let ,..., 21 VV  be dense open subsets of .X  For ,0 Xx   consider an arbitrary non-empty open subset 0B  of 

X  containing .0x  Then there exist ifff ,...,, 21  in X  and 0>,...,, 21 ippp  such that  

 .),(...),(),( 0020
2

10
1

BpxBpxBpxB i
i

fff   

Since 1V  is dense in X  and ),( 01= k
k

f

i

k pxB  is open,   .),( 01=1  k
k

f

i

k pxBV  Choose an element 

 .),( 01=11 k
k

f

i

k pxBVx   Then as  ),( 01=1 k
k

f

i

k pxBV   is open in X , we can find an open set 1B  

containing 1x  such that   .),( 0101=11 BVpxBVB k
k

f

i

k   1B  being an open set containing 1x , there exist 

jggg ,...,, 21  in X  and 0>,...,, 21 jqqq  such that  

 .),(...),(),( 1121
2

11
1

BqxBqxBqxB j
j

ggg   

Note that 2V  is dense in X  and ),( 11= k
k

g

j

k qxB  is open in .X  Consequently,   .),( 11=2  k
k

g

j

k qxBV  

Let  .),( 11=22 k
k

g

j

k qxBVx   Then as above, we can choose an open set 2B  containing 2x  such that 
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  .),( 1211=22 BVqxBVB k
k

g

j

k   Thus proceeding inductively we can find a sequence }{ nx  such that 

 ),(1=1 im
i

e

k

imn rxBVx    for all mn >  and a decreasing sequence }{ nR  of positive real numbers such that 

.
1

<
n

Rn  where },,...,,{= 211 ipppmaxR  },,...,,{= 212 jqqqmaxR  . . . , }.,...,,{= 21 km rrrmaxR   

 iandmn
m

Rexx mimn  >,
1

<<,   

       irmimnirn exxexxexx ,,,   

               .>,,
2

=
11

< iandmrn
mmm

  

 If we let ,m  we obtain }.,...,,{0,=,lim 21, krnrn eeespaneexx    This shows that }{ nx  is a 

Cauchy sequence in a 2-Banach space X  and hence there exist some Xx  such that xxn   in .X  Since 

,, mnBx mn   it follows that mBx  and as 0BVB mm   for 1,2,3...=m  we see that 

  .01= BVx mm  
 Hence 0B  intersects mm V 1=  and therefore dense in .X  W  

2.2   Banach Steinhaus Theorem in Linear 2-normed space 

In this section, we will consider linear operators defined on a linear 2-normed space into a linear 2-normed space. We will 
formulate Banach Steinhauss Theorem for a family of continuous linear operators. 

Definition [2.2.1]: Let X  and Y  be linear 2-normed spaces over .  Then a linear map YXT :  is continuous 

at x  if for any open ball  RxTBd ),(  in Y  there exist an open ball ),( rxBe  in X  such that 

   .),(),( RxTBrxBT de   In otherwords for any 0,>RandYd  there exist some Xe  and 0>r  such 

that RdxTyT <),()(    whenever rexy <,    and Xxy  ,  

Theorem [2.2.2]: Let X  and Y  be linear 2-normed spaces over  . If a linear operator YXT :  is continuous 

at 0  then it is continuous on .X   

Proof: Assume that the linear operator YXT :  is continuous at 0. For any open ball )(0, RBd  in Y  , we can find 

an open ball )(0,rBe  such that  

   )(0,)(0, RBrBT de   

Then by linearity, )(0,)()( RBxTyT d  whenever ).(0,rBxy e  Thus if ),(=)(0, rxBrBxy ee  then 

).),((=)(0,)()( RxTBRBxTyT dd  Hence  

   )),((),( RxTBrxBT de   

implying that T  is continuous on .X   

Definition [2.2.3]:  Let X  and Y  be linear 2-normed spaces over   and YXT :  be a linear operator. The 

operator T  is said to be sequentially continuous at Xx  if for any sequence }{ nx  of X  converging to x  we have 

).()( xTxT n   

Theorem [2.2.4]: Every continuous linear map T  from a linear 2-normed space X  into a linear 2- normed space Y  

is sequentially continuous on .X   

Proof: Let YXT :  be continuous at .Xx  If  RxTBd ),(  is any open ball in Y ,then by the continuity of T , 

there exist some open ball ),( rxBe  in .X  such that  
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   )),((),( RxTBrxBT de   (1) 

 Let }{ nx  be any sequence in X  such that xxn   in .X  Then corresponding to the open ball ),,( rxBe  there 

exist some 0>K  such that  

 KnrxBx en  ),,(  (2) 

 Knrexxn  ,<,.   

(1)  and (2)  shows that KnRxTBxT dn  ),),(()(   

 KnRdxTxT n  ,<),()(   

Since )),(( RxTBd  is arbitrary, it follows that ).()( xTxT n   Hence T  is sequentially continuous on .X  

Theorem [2.2.5]: Let X  and Y  be linear 2-normed spaces over .  If X  is finite dimensional, then every linear 

map from X  into Y  is sequentially continuous.  

Proof :   Let X  be finite dimensional and YXT :  be linear. If {0}=X  then there is nothing to prove. Let now 

{0}X  and },...,,{ 21 meee  be a basis for .X  For a sequence }{ nx  in X , let 

mmnnnn eaeaeax ,2,21,1 ...=   where .nja  If mmn eaeaeaxx  ...= 2211  in X , then  

  jmmmnnnjn eeaaeaaeaaexx ,)(...)()(=, ,22,211,1   

               j
j

jjjn eyeaa ,)(= ,   

 }1,2,...=:{= jiandmiespanYywhere ij

j   

              
j

jjn

jjjjjjn y
aa

ywh ereeyeaa
||

1
=,,|=|

,

,


   

              ),,(|| , jjjjn Yedistaa   

 }:,{inf=),( jjjj YyeyYedistwhere   

 .0
),(

,
|| , jandnas

Yedist

exx
aa

jj

jn

jjn 





 

 ., jaa jjn   

 By the linearity of T , it then follows that  

 )...(=)( ,2,21,1 mmnnnn eaeaeaTxT   

        )(...)()(= ,2,21,1 mmnnn eTaeTaeTa   

        )(...)()( 2211 mm eTaeTaeTa   

        )...(= 2211 mmeaeaeaT   

        )(= xT  

 Thus every linear map T  from X  to Y  is sequentially continuous.   

Definition [2.2.6]: Let X  and Y  be two real linear 2-normed spaces, }{T  a family of linear operator from X  

to .Y  We say that }{T  is equi-continuous if for any neighbourhood )(0, RBd  in Y  there exist some )(0,rBe  in 
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X  such that  

   .),(0,)(0,   RBrBT de  

In otherwords if for any Yd  and 0>R , there exist Xe  and 0>r  such that ,<),( RdxT   whenever 

rex <,   and .  

Definition [2.2.7]: A subset E  of a linear 2-normed space X  is said to be locally bounded if there exist some 

{0}Xe  and 0>r  such that ).(0,rBE e  

A subset E  of a linear 2-normed space X  is bounded if for any open ball )(0,rBe  there exist some 0>t  such that 

).(0,)(0, RBrtBE ee   

A linear map YXT :  is bounded if it maps bounded set into bounded set. 

Theorem [2.2.8]: Suppose X  and Y  are linear 2-normed spaces over .  Let }{T  be an equi-continuous 

collection of linear mappings from X  into Y  and B  be a bounded subset of X . Then )(BT  is a bounded subset of 

Y  for all .  , that is, }{T  is equi-bounded.  

Proof :  Let }{T  be an equi-continuous collection of linear mappings from X  into .Y  For any open ball 

)(0, RBd  in Y , we can find an open ball )(0,rBe  in X  such that   .)(0,)(0,   RBrBT de   

 ..(1)..........<,,<),(   andrexwheneverRdxT   

Since B  is bounded, corresponding to the open ball )(0,rBe  there exist some 0>t  such that  

 ......(2)).........(0,rtBB e  

If Bx  then .<, re
t

x
  But then from (1) , we obtain  

 .,,=<),( 1 BxandYdRtRdxT    

This shows that )(BT  is a bounded subset of Y  for all . , that is, }{T  is equi-bounded. 

Theorem [2.2.9] [Banach Steinhauss Theorem in Linear 2-normed space]:    

Let X  and Y  be linear 2-normed spaces over .  If X  is a 2-Banach space and }{T  is a family of continuous 

linear operator from X  to Y  such that for any Xx , there exist 0>xc  such that  

 ..(1)..........}{,,,<),( xspaneandYyexcyxT x    

then the family }{T  is equi-continuous.    

Proof:  Let )(0, RBd  be any open ball in Y . Note that )(0, RBd  is absorbing in .Y  choose a positive real number 

r  such that ).(0,)(0,)(0, RBrBrB ddd    

     
   ,)(0,)(:= rBnxTXxADefine dn  

    








   ,)(0 ,:= 1 rBT
n

x
Xx d  

        ,)(0,:= 1 rBnTxXx d  

      .)(0,= 1 rBnT d



   
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 Then nA  is closed for all n  and by using the given condition (1) , we obtain .= nn AX N  Since X  is a 2-Banach 

space, Baire’s theorem shows that atleast one of nA  has non-empty interior. Let 0x  be an interior point of 
0

nA . Then 

there exist an open ball )(0,tBe  such that  

 
0

),()(0, nee AtxBtBx   

       )()()(0,
0

xTATtBT ne    

               )(0,)(0, 00 rBnrBn dd   

                )(0,)(0,= 0 rBrBn dd   

               .),(0,0  RBn d  

  .),(0,)(0, 







  RB

n

t
BT de  

 This shows that }{T  is equi-continuous and hence equi-bounded.  
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