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Let Q is a bounded open set in R" and Q; ZQX(O,T),T > (0. We consider following initial boundary value
problems

n

U & 0 ou o%u ou
= a”(x’t)GT —‘P(x,t)¥+ lbi(x,t)&+c(t,x)u=0, (t,x)e Q;

ot i,j=la_xi j i= i @
u(t,x)= f(t,x), (t,x)er=(0,T)xoQ @
u(0,x)=h(x), xeQ -

Problems of the form (1)-(3) arise as mathematical models of various applied problems, for instance reaction-drift-diffusion
processes of electrically charged species phase transition processes and transport processes in porous media.
Investigations of boundary value problems for second order degenerate elliptic-parabolic equations ascend to the work by
Keldysh [1], where correct statements for boundary value problems were considered for the case of one space variable as
well as existence and uniqueness of solutions. In the work by Fichera [2] boundary value problems were given for
multidimentional case. He proved existence of generalized solutions to these boundary value problems.

The equation (1) is degenerate because the function ‘I’(X,t) and coefficient aij (X)t can tend to zero. Initial boundary

problems for degenerate parabolic equations have been studied by many authors (see for example [3], [4], [5], [6]). But the
structure of the equation (1) is different from that one considered in these papers. Boundary value problems for the
degenerate equation also were studied in the stationary case in [7] and in the nonstationary case in [8].

We consider problem (1)-(3) under standard conditions for the functions aij (X,t) and some conditions for the function
a(t,x).

We formulate on assumptions in section 2. First a priori estimations for solutions you are given in Section 3. We assume
following regularity condition on the boundary 0C) of the set €. There exist positive numbers X Ro' such that for an

arbitrary point X € 02 the inequality means {B(X, R)\Q}Z JR" holds, where 0< R<R, and B(X, R) is a ball
of radius R with center X.
Let the coefficients from (1)-(3) satisfy following assumptions. Haij (X,tX‘ a real symmetrical matrix and for any
(X,t)e Q; and £ €R" the following inequality are true
2 ) 2
7“’(X]§| < Zaij (X’t)gigj = /4 10)(X)§|
"N ()

where 7 €(0,1] aij(x,t), C(X,t) bi(X,t),i, J=1,n are measurable functions with respect to t,X for every

(t,X)eQT. Also
c(x,1)<0,c(xt)e L, (Q)

®)
b(x,t) e L,,(Q ) [p(xt)* +Ke(xt)<0 ©
Assume that the following conditions are true for the weighted functions
¥(x,t)= &(x)A(t)p(T —t)
where a)(X) € A, satisfy Muckenhoupt condition (see [9]) /?,(t) >0
At)ec [0, T} p(z)=0,0 (2)=0,¢(z)eC0,T] -

o(0)= 9 (0)=0,0(2)= fz9 (2)

where [3 — positive constants.
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We consider problem (1)-(3) which data such that
f(t,x)e L*(Q )~ L2 (0, T WH(Q)) A L, (0,7, Wi ()

of
C eL0T,L (@
T LT @) .

h(x)e L, (Q) o

We introduce some space of functions in QT with finite norm

1
) 2
||u||W (I co(x)(u2 +>ul jdxdt]
2w QT i=1 :

1
n n E
||U||W22(QT) = { .[ (uz —I—;Ufi +;ufixj ]dth\]

Qr

iz, ) = Mhizier) + Ml

||U||W§v3u(QT)-([Q{ X)(U +ZU +I;UXXJ

1

+uZ + P2 (x,tu? + P(x, t)i uifjdxdtj2
i=1

1
2
||u||W21’¢(Q)=[[J‘ )( +Zu j+u +¥°( xt)un}dxdtJ
&
011

W z,\y( . )-subspace of space Wzll;( T ) is closure all functions from Cw(QT j , vanishing to zero on F( I )

Afunction U € L2 (O,T ’Wzl,%% (Q)) is called solution of problem (1)-(3) the integral identities

](gt—u odxdt +

0

'[[Zn; 3 (x,t)sx—u%+ Zn:bi (x, t{gx ]¢>+C(X t)Ugo:Idedt +
(10)
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hold for arbitrary functions @ € Cw(QT] vanishing near I" and almost every

re(0.2hu-fx)e LZ(O,T,V(\)/lz,m(Q)]

Remark 1. Let U be a solution of problem (1)-(3). Since the set of functions from Cw(QTj vanishing near I is dense

oLl

o 11
in L2 (O,T Wy (Q)} the integral identity (10) holds for all @ € L, [0, Wy (Q)j such that

2
I a)(xf—h dxdt < co.
OX

Q

2
dxdt + I ‘P(x,t)‘a—u
& ot

Besides of (1) use consider the regularized equation, where instead a)(x) =) (X), ‘P(X,t) =Y, (X,t),

&

o, (1,1)= max{a)(x), a)(— 5}

for

£ €(0,1], @, (x) = w(x) (11)
Y, (X,t) is defined so: for any fixed & € (0, T)

5 -l (‘9)5 ¥ (5) m
v, ()= (o) Lk ¥ ),
at 2¢(0,¢), LI’g(z): lI’(Z) at
zele,zlm==
(12)

Everywhere further we consider the case when ‘{’(Z) >0 at z>0. hE) lI’(Z) =0 then the equation (1)-parabolic.

We understand solution of the auxiliary problem (1)-(3) with weight @, (X), ‘Pg (X,t) in the sense of definition
solution after replacing a)(X) and ‘P(X,t) by a)g(x), ‘PS(X,I).
In what follows we understand as known parameters all numbers from the conditions, norm of functions f,(o(X) in
respective spaces and numbers that depend only on N, ¥, Ro ,Q, a)(X )‘P(X, t).

Theorem 1. Let the conditions (4)-(9) be satisfied. Then there exists a constant M , depending only on known parameters

and independent of & € (0,1] such that each solution U of problem (1)-(3) with weight a)g(x), lI"Q(X,t) satisfies

esssup I {A,(u(t, x))+ A, (u(t, x))kdx + ja) (xﬁ—u 2 dxdt +

te(0,T)Q X
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+J"P X, tfu dxdt <M,
a 13)
where
A, (u)= Isw(s)ds, A,(u)= Is‘P(s)ds
0 0 (14)

Proof of Theorem 1. Let u(t, X) be the solution regularized problem (1)-(3). We extend function u(t, X) by setting
U(t, X) = (D(X) for t<0,XeQ. Denote

126

u (t,x)=u(t,x)— f(t,x)

Testing (10) with (p(X) = llzje(t +5, X)—llje(t, X), we obtain for 7 € (O,T), Se (O,T — 2’)

126
2 126 126
_”{ [ u(t+S,x)- } Za”xt
sQ

i,j=1

126

ai[lﬁﬁ(us,x)_ i (t,x)}ibi(x,t)gx_“[ﬁﬁ(us,x)_lff(t,x)}

Xi i=1 i

[+ c(t,x)lljj ) —166(t, X):|}dth+

I I‘P(Xt)gt_ugﬁj(t +5, x)—llje(t, xﬂdxdt =0

-sQ

Hence we get by simple calculation

T+S

I j [126t+s X t x)}dxdtJrrJtS a; (X, t)‘

By, ™
_sjaij(x,t%% dxdt ”

Q —sQ i=l

dxdt —

n

b, (x,t)% [u(t+s,x)-ul(t, x)]dxjdt +

+ ]. jc(t, x{lljs(t +5, x)—lle(t, x)}dxdt n

-sQ

j I‘P(X t)%ug[lljs(t +5, x)—llj6(x, t)}dxdt =0

-sQ

where denote by V,(X) the solution of problem (1)-(3) for t =0 with U(0, X) defined by (3).

Dividing this equality by S and passing to the limit S—> 0, we obtain for aimost every 7 € (O,T) and doing some
calculations
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1> b, (x,£) 202 gt <
i OX
0Qi=1

2
dxdt

< J' Ic(t, xf—u
00 OX
(15)

Using (10) we can write in (15)

o5

2

—

dx <

dx J'—ltzjatxdtJrJ"P xtf( X
ot

< cl{1+l i dedt}
(16)

Here and in what follows Ci denote constants depending only on known parameters. The conditions (8), (9) and Remark 1

126
allow us to substitute @ = U in the regularized identity (10).

By (16) this gives

j%“(u(x,t)_ f(x,t))dt +

Ii{zn:aij(t,x)gx—ug—;+c X,t u+Zb X,t sx—u}dxdt<

i=1 i i i

S‘”{Zn:aij(x,t)a_ui—c xt)u}+c { “-—‘ }dxdt
e ] OX; OX % i
We write the first integral from (17) in the form

ou ou( m tou m
!; = (u— f(xt))dx !EQuLm = f(x,t))dt +£E(u —|ul” )dt -

with m>| f(x,t)|, o) uf” = max{min[u,m}-m}

Then we can evolute the first and the second integral of the right hand side of (18) by using Lemmas 2,1 respectively [9]. So

we obtain
£ 7 (u(x,7) h(x)
J'— (u—f(xt)) :I I sw(s)ds — I sw(s)ds pdx +
0 at 0 0

0

C

T S¥(s f ds}dx+”|u h( X]—dxdt—
-~ I[U(T’ x)—h(X)]f (z, x)dx

e (19)
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Immediately from the definition of Al(u), A, (U) We deduce

u<e (A U)+A,W)+e,
(20)

for U>0 with arbitrary positive number & and a constant C, depending only on &, and the functions a)(X), ‘P(X,t).

Using the condition (4)-(6), (8)-(9) and the conditions on a)(X), ‘P(X,t) and the inequality (20), we obtain with arbitrary

positive number &, and some function (t)e L1(0 T)

o (xt) oul’| of
” )( x,. dxdlt| + M (xt)(at dexdtg
: au au
s(gl“wﬁ(* dxdt+gl”‘lf xt)(at dxdt +
0Q

1 & [ (A, ()+ A, (u))u(t)dxat

00 (21)

iiu%dxdt £c2{1+;[£ (u))u ()dxdt}
J.u(r, x)f (z,x)dx <c, {slj(Al(U(T, X))+ A, (u(z, x))dx +c,, )}

We estimate terms in (17) involving the function & in standard way by using (4)-(6), (8)-(9). Now from (17), (19), (21) and
evident estimates for another terms in (19), we obtain
2
dxdt <

J.(Al(u (7, %))+ A, (u(z, x)))dx + j J'[% (x* Z_i:
(22)

2

+‘Ifg(x,t)1a—u
ot

Q

< cs{ +“1+ ()AL )+ A, (u)ldxdt

Now the last inequality and Gronwall’s lemma complete the proof of Theorem 1.

Theorem 2. Let the assumptions of Theorem 1 be satisfied. Then there exists a constant M 2, depending only on known

parameters and independent of & € [0,1], such that each solution of regularized problem (1)-(3) satisfies

oul’ oul’
I w,(X)—| +¥,(xt)=—| |dxdt<M,
o OX ot
(23)
In order to prove Theorem 2 we need auxiliary estimates.
Lemma 1. Assume that the conditions of Theorem 1 are satisfied and following inequality
esssupfuq(t, x)dx < K,
tE(O,r) Q (24)
B 2n
is fulfilled with some numbers Q € 5" 2 K depending only on known parameters. Then the estimate
n+
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2
esssup ﬂu(t, x)|£ dx+'|'|u(t, x)"* At gyl < K,
te(0,7) 0 Q X
(25)
holds with a number P > 2 defined by the equality
n _ q
p—=(p-1)—
n-2 g-1 26)
and with a constant K2 depending only on known parameters.
Proof. Denote
m, = ” f (X’tme(QT) + ”h(xml_w(g) +1 @7

and use following notations for K € R" and arbitrary function /S defined on Q;

B.(t.x)=[B(t,x)} = min{A(t, x) k}
B.(t,x)=[B(t. )], = max{a(t, x)0}

. -1
We test the integral identity (10) with @(X,t)= 5|gnuﬂu|k . mo]p with K > M. Using the condition (4)-(6), (8)-(9)
and Holder inequality we obtain

q-1
2 q 3
_|ou (p-1)— g
jﬂu|k —mo]p —& dx<C, j[}u|—m0] = dx
H 6)( R
y (28)
From this inequality and the embedding theorem we have
e -1
| pn n )4 q
{j [u], —m, |2 dx} < Cs{jM ~m, |’ )ﬁdx}
Q Q (29)
Taking into account the restriction on ( and the choice of P we deduce (25) from (28), (29), (13) and the proof is
completed.
. tyIn- _
Proof of Theorem 2. We assume firstly that —. ltis simple to check [8] imply
1+y 2
lu<C, foru<o
(30)
For proving regularity properties of the function U we need following growth condition
u” +1)<u< +1)u>0, 0<y<
p, W +1l<u<pu”"+1ju>0, 0<y 2
n- (31)

7+l
n
with some positive constants ;. (31) implies U < pl[ 1+u for U >0 with y+1< —2 Remark that such
Y+ n—

2
type condition arised in [5] for N > 2 together with the stronger restriction y+1< —2

From (30) and (31) we find

u[* <C,[A,(u)+A,(u)+1]
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with
2+
Qo = 1—7
+y (32)
Using (32), (13) and Lemma 1, we obtain (25) with p, defined by the equality
POL = (po _1)(2"‘7)
n-2
This p, satisfies the inequality p, —2 > LZ > .
n J—
Consequently, (25), (31) imply
2
“ {a)s (xr—u +¥ (x )(au }dxdt <C,
N a 33

Here ﬂu| < 2|u|} = {(t, X) € QT " |U(t, XX < 2|U(t, X]} and analogous notations we shall use further.

We want to establish a estimate analogous to (33) with respect to set |U|>2U. Taking into account that

a, (U)S 1+ (0(0) for U <0, we can restrict ourselves to the set {[U| > 2u } We substitute the test function
e {[u —|uk|+]k +|u], + mo}signu

with K > mg, ]_/ > 0 in (10). After standard calculations we obtain

=[] Q] e m, 12

‘ dxdt <C,(1, +15)

{lul<k} 34)
where
ul, +my fu—Jul | +u +m“auauddt
[ el Lo, om0
uk<u

l, = ”{(u+ +1)H}(Ju|k +1)<{[u+|2k +|u], +1}; dxdt

o

The integral |, will be estimated is different ways for <1 andfor ¥ >1. For ¥ <1 we have

2
” Hu+m au —u}dxdté
X
” u+m u2+(ju|+m);a—u2dxdt<c
o) 0 X 0 8X — Y10
s (35)

Here we used (25) and the inequality
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u u
esssup'[uz*y t, X)dx + ” (1+u) [8 8 }dxdt <c,
te OT Q {U>0} aX (36)
that follows from (13), (31).
For ]_/ > 1 we estimate |2 by using the evident inequality
”“u —|u|kJ’LJ+|u|k +m, < 2)u|, +m,
on the set ﬂu| > k}. Then we have
_ 2
ou 1 ou
I, <gl,+C u+m,)|— + uf+m dxdt
e [ Hoeny B o lm 2]
(37)
where the last integral can be estimated analogously to (35).
Using Holders inequality and the embedding theorem we obtain for ¢ >0
(2+y)g+2+6 J 2y n
_[ [u = £, (xt) 77 dxat SI u. ] = f.(xt] "dxp -
Qr 0 lQ
n-2
2n n
AT
[T e
Q
2
2+y n
13{( o= () d}‘
s| 0 ;
[l 106 | 1 -1 ) e
OX
! (38)
Choosing 0 =0, the inequalities (13), (34) and condition (8) imply
(2+ )E+2
I u, " dxdt K C,,
(39)
We estimate |3 by Young'’s inequality and condition (8), obtain
I <c15{1+ [uzr2dxdt + [ | dxdt}
Qr Qr (40)

The integral with U can be estimated by a constant in virtue of the inequality (25) in the case that ¥ € [0, }/]. If y is
such that

27+2<(2+7/)2+2
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the integral with U, and = ¥ in(40) can be also estimated by a constant because of the inequality (39). In the opposite

case we choose J satisfying the condition

y+];+2é(2+y)-g+2
n

— — 2 —
For example we can take = y, = —. For such choice of we get from (34), (36), (37), (40) |, <C,,, which
y="n v 1 10
n

implies
_ 2
I u—|u| Nyt <C,
) ox
and consequently
j [u(t, x)]i a—u dxdt < C,,
‘u‘>2{u} A (41)

From (13), (33), (41) we obtain

I|u| dxdt <C,,, _[|u| dxdt <C,,
Qr Qr (42)
. . 2¢y N
and this ends the proof of Theorem 2 in the case <=7
1+y 2

If ¥ =y, <y,we can iterate our discussions with respect to . Using (42) we obtain from (38)

2+ n+2+_
I ui (B yldxdtsCZO,

o

= i 1 e
that allows us to choose y, = mln{}/,— . Repeating this argument, if necessary, we can chose y; =y and we
n

ety _n
proved the Theorem if <—.
1+y 2
2+y _ . | .
If 1— = — we can use Lemma 1 with q <( instead of (. We can choose such ( that the corresponding
Ty

- 2+ n
p satisfies P —2 > ¥ and then we keep all discussions of the previous proof. If 1 /4 > E, then the boundedness
Ty

of solutions of the equation (1) and the assumption formulated above is will known [5]. Theorem 2 is proved.
Lemma 2. Assume that the conditions of Theorems are satisfied and

q-2|0U 2
esssupju t, X)dx + ” =

te( OT O u>1
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2
u
W2 (x,tut? (x,t*% dxdt < K,
(43)
_ 2+y n _ _ .
holds with numbers ( € 1 ,E , K3 depending only on known parameters. Then there exist positive constants
+y
oul’ oul’
I @? (XU = + PR (x, U = |dxdt < K,
{us1) OX ot
(44)

2+
Proof. By Theorem 2 follows that (43) holds for 4 = (, = 1—7/ We shall prove (44) for this value of (. The proof of
T

n 2+y _ 2+y _
the lemma for <( < — isthesameasfor = ——. From Lemma 1 with = ——— we obtain analogously
1+y 2 1+y 1+y
to (33)
aul’ aul’
@2 (U A= w2 (x tu ] ldxdt < C,,,
ful<2l 8)‘ (45)
5 = 2-(n-2)y
' (+y)fn-2)

For the proof of (44) it is sufficient to check that the integral |l in (34) can be estimated by a constant for

}_/=}/+(1+]/)ﬂ2 with positive :Bz depending only on y, U. This estimation of |l runs analogously to the
corresponding estimation in the proof of Theorem 2. Hence we make only some remarks.

We change the inequality (35) for }_/ <1, }_/ < 7/‘"%(,00 = 2—7), o Y (n2_ 2) >2+ 2 > , in the following way
-2q, i
2 au 2
l,<3 I U+mg Y[ +(u[+m,)o*|=]| tdxdt <C,,
{u>0} (46)

after using Theorem 2 and Lemma 1. Analogously we change (37) for ]_/ >1. In order to estimate |3 we remark that (38)
and Theorem 2 imply

2
I uizm[k”)dxdt < Chapg
or (47)

From (40), (47), (25) we see that the integral |3 can be estimated by a constant, provided

y+7_/+2£(2+7/{1+gj, 7+7_/+2£er]2
n n—

But both of these restrictions can be satisfied with 7_/ =y+ (1+ }/)ﬂs and some positive ,33 dependingonlyon n, y.

Therefore we can chose positive ,32 such that the integral | . with = )_/+l(l+ }/),32 is estimated by a constant
depending only on known parameters. From this estimate and (45) we obtain the inequality (44).
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Lemma 3. Assume that the conditions of Theorem 2 are satisfied. Then there exist numbers E{, K3 depending only on

- N
known parameters, such that ¢ > E and

2
esssupju txdx+”[ x)uqz oul’ Y2 (x,tu (;t }dxdtsK3
Q u>1 (48)
Proof. We substitute the function
o+ lu, —m P+ [u, —m PV, re[_z,wj
3 19 (49)

in the integral identity (10). Then using Lemma 1 from [5], we can evaluate the first summand of (49) to obtain

tou
—odt = AR
[l -
A(u)= [(ols)+ #(s.0))(s, 0]2){ 5, —m] }dsz
1 1 ! r+1
—M{E—i_[uk —m ] } po

for U>M,. Here S, = min[s,k] and the value of U is analogous. We write the derivative of ¢ in the form

(r)
%cﬁomﬂ%m<mm
oX; oX; (52)

126"
where ;((mo <u< k) is the characteristic function of the set {mo <uc< k} and the function @ (u) satisfies for

2
r> —§ the estimate

126"

Coak (N0 (U)a(x) < @ (U) < ey(r + 1)) (u)eo(x) (53)
with k(r)=min(1,2+3r),
®00)=fu-m] {2 +fa-mJ}

Using (50)-(53) and conditions (4)-(6), (8) we obtain from (10) with the function ¢ defined by (49)

J-{%Jr[uk(r,X)—mo]i}”ldxjtig[a;j(x)q)(r)(uk) (m, <u <kﬁ

Q

(54)

dxdt +

dxdt +

[0 e, < <k

0Q
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+ r—Jrl”(1+ ulfu, —m, Jo(u, Jdxdt
k(r) 0Q (55)

2+y
1+y

n
Let us assume now that for some ( € { ,E} the inequality (43) is fulfilled. Then we obtain from Lemma 2 that the

1
first integral of the right hand side of (55) can be estimated by a constant independent on K for r= E [q -3+ ,B]. We

1 ' '
shall check now that the second integral of the right hand site of (55) for I = 5 q —3+,B and some positive ﬂ

depending only on ¥ can be also estimated by a constant independent on K. Analogously to inequalities (38), (39) we
obtain from (43)

I uq(1+7)(l+%)dxdt <C,,

n
o (56)
From (43) and Lemma 1 we have

ess sup_ﬂu(t, x)|n%q dx < C,,
te(O,r) Q

(57)
(56), (57) imply the needed estimate for the last integral in (55) provided
' 1 2 ' 1 n
<t fatorf1e2)or)oa a s L) g
1+y n 1+y |n—-2q
For that purpose it is sufficient to chose ,3 = 1L We proved that for B = min(ﬂ, ,B ) the left hand side of (55) is
+

1 -
estimated by constant depending only on known parameters if I = é q—3+ ﬂ . This estimate implies that the

inequality (43) is fulfilled with Q +,Z3 instead of (. We can guarantee also by small change of B that the number

1in 2+
—| -7 is not integer, and denote by N its integer part. Recalling that the estimate (43) is fulfilled with
pl2 1l+y

2+ : - . e .
q=0q,= and choosing the sequence (; = (|, +1 ,B We obtain after N +1 iterations our previous discussing

n -
that the inequality (43) is fulfilled with Q = Q4 > E onsequently the inequality (48) is satisfied with (,_; and this ends

the proof of Lemma 3.

Theorem 3. Let the assumptions of Theorem 2 be satisfied. Then the estimates
u(t,x )—u(t,x )s M,

hold for arbitrary t € [0,1‘], X, X €Q with n 6(0,1) and constants M;, M,, ¢ depending only on known
parameters and independent of &.

- w |
X —X

Jubet], o)< Ms, o

Proof. The result of Theorems follows immediately from the estimates (30), (48), the conditions (4)-(6), (8) and the

assumption on the set €. Itis necessary to apply only well known results on regularity of solutions of elliptic equations to
equation (1) (see, for example, [5]).
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o (2)< p,a(z), p, > 0—constant (59)

Theorem 4. let the conditions (4)-(6), (7), (8)-(9), (31), (59) be satisfied. Then there exists a constant M 5, depending only

1
on known parameters and independent of & € [0, —— |, such that each solution of problem (1)-(3) satisfies
5

esssup{ut, x) : (t,x) e Q; < M, )
Theorem 5. Let the conditions (4)-(6), (7), (8)-(9), (31) (59) be satisfied. Then the initial-boundary value problem (1)-(3) has
at least one solution in the sense of (10).

Theorem 6. Let the conditions (4)-(6), (7), (8)-(9), (31), (59) be satisfied and assume additionally that the functions
aij (X,t), b(X,t), C(X, t) are locally Lipschitzian with respect to  X. Then the initial-boundary value problem (1)-(3) has a
unigque solution.

For proof we use. Proof of existance of solutions.

1
Theorem 4. We consider for & = {— the initial boundary value problem (10). By Theorem 4 arbitrary solutions U of
5

modify problem (10) satisfy the a priori estimate (60). We see that a solution of modify problem with & = — is

5
automatically a solution of problem (1)-(3).

Proof of uniqueness.
For proving the uniqueness of the solution for problem (1)-(3) we assume that there exists two solutions U;,U,. By
Theorem 2, 3, we have for | =1,2

2 2

ou i
OX

HUJ'HLOO(QT) i

L2,a)(QT ) Loy (er) (61

with some constant M.

The proof of Theorem 6 will be given in four steps corresponding to four different choices of test functions in the integral
identities (10)

First step. We test (10) for U = U,

o= — el )]
() P(xt)
andfor U =Uu, with @, =U; —U,.

The result we obtain

2 2
I|ul(r,x)—u2(r,x)|2dx+j olu,—u,) +|6(u1—u2)| dxdt <
o all o 11 et |

el §

ou
< Cyg (1+ 8x
Qr

Second step. We test the integral identity (10) for U =U;, 1=1,2 with @, = U, —U,.Taking the difference of the
obtained equalities, applying condition (4)-(6) and the inequalities of Cauchy and Poincare, we get

J+1+ aft, x) |u, —u,|* dxdt
(62)
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)

2
ja(ul—_UZ) <C,, [(u, —u, )’ dx
X
ol 0 (63)
Third step. We test the integral identity (10) for U = U, with
1
¢y = —— ¥ (x,t)exp (Nu, ) - exp (Nu, )]
(x) (64)
and for U = U, with
€04 = N [ul - u2]+ exp(NUZ) (65)
where N is a positive number depending only on known parameters and satisfying
N@?(s)+2a (s)+ N¥2(s,t)+2%(s,t)>1
for
ls|<M
with the constant M from (61). Finally we obtain
£|U1(T, x)—u, (7, x) " dx + I|ul U, | ( Z)L: Z;J( ]dxdt <
<C,, Im—a(ul —uy)f° Joul’ L |9Uz 2}
o OX X OX
lu, —u,|° +(1+y(t,x))ul—u2|2dxdt} )
Fourth step. Let ?; (X) j =1,...J be a partition satisfying the conditions
- 99| _ K,
‘ =, < —
;(ﬂ, (x)=1, =4 <2
for XeQ
0,(x)cC*(R"), supg, <B(x,,R) I< e R<1,
R” (67)

where B(X i R) is a ball of radius R with to be fixed chosen later on. We the integral identity (10) for U = U, with

J
9= ¢, —u,
i=1

]dxdt <C,, {R{
Qr

(68)

After some calculations imply immediately

[ of [

2
ou, —u,
OX

ou,
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Proof of Theorem 6. Applying Cauchy’s inequality to the term in (62) involving the derivative of U; and choosing a suitable
value of R, we obtain from (69), (66), (62), (63)

a(ul — Uz)
ot

+

(69)

ﬂu (z.x)-u,(z, x)|2dx+j |8(ul—u2)|2+|a(ul—u2)|2 dxdt <
5 2 gl o [ o |

<Cs, (1+|oz|)ul —u,|” dxdt

(70)
We estimate the integral on the right hand site of (70) by Holders inequality and use condition on ¢, to get
2 2
olu, —u
esssup'ﬂul 7,X)—u, (7, x)’ dx+I —Uy) +| U -u,) dxdt <
<00) OX | | ot |
=Y 1
2p P 2p p
<Cyyd [Ju,—u !l A", {ﬂu de} 2 dt

= (72)

for an arbitrary 0e (O,T). Estimating the first integral on the right hand site of (71) by Holders inequality, using the
2(n+2)
embedding V?(Q; )<L " (Q;) (comp.[5]) and setting G, = N+2— pln we find for arbitrary & € (0,1) and a

constant C,, depending only on N

1/p1

“ul —u,|Mdxdt ;<
Qg
3, 1a
I|u1—u2| dxt | '[|u1 dxdt e
Q
Zpi 2pi
<e 9 I|ul—u2| dxdt + Cyue*™ ql{esssup.ﬂu1 7,X) U, (7, x) dx +
% (0,6) o
2
+ I M dxdt
OX

o (72)

In analogous way we estimate the last integral in (71). We define y to be solution of the equation

2—y _11'1 n-2

2p, -y 2 P n
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We find

' Zp
1 1
0 — 2p1 ;

2 ' T 2 2p, —
I _[|ul—u2| 2dx P dt <Cyde 7 I|u1—u2| dxdt + &7
0lQ Qp

| 2

2 lu, —u,
— d ———=| dxdt
eff(gzj)p£|u1 U, | x+j ™ X
(73)
The inequalities (71)-(73) imply with suitable &
j|ul(0, x)—U, (6, x)"dx < Cy J.|ul —u,|* dxdt
3 i (74)

for arbitrary 6 € (0, T). Finally, Gronwall’s lemma yields U; = U,.
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