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ABSTRACT

Using the fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms and derivations of
additive functional equation of n-Apollonius type

n l 1 n
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for a fixed positive Nwith N > 2 on induced fuzzy C*-algebras and induced fuzzy Lie C*-algebras.
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generalization of the Kolmogoroff normalized theorem for fuzzy topological vector spaces. In 1992, Felbin [6] introduced
an alternative definition of a fuzzy norm on a vector space with an associated metric of Kaleva and Seikkala type [12].
Some mathematics have define fuzzy normed on a vector form various point of view [15, 20, 25]. In particular, Bang and
Samanta [2] following Cheng and Mordeson [4], gave an idea of fuzzy norm in such a manner that the corresponding
fuzzy metric of Kramosil and Michalek type [13]. They established a decomposition theorem of fuzzy norm into a family of
crisp norms and investigated some properties of fuzzy normed spaces [3].

A classical equation in the theory of functional equations is the following: "when is it true that a function which
approximately satisfies a functional equation must be close to an exact solution of the equation?”. If the problem accepts a
solution, we say that the equation is stable. The first problem concerning group homomorphisms was raised by Ulam [23]
in 1940. In the next year Hyers [8] gave a first affirmative answer to the question of Ulam in context of Banach spaces. In
1978, Rassias [22] proved a generalization of the Hayers’ theorem for additive mappings. The result of Rassias has
provided a lot of influence during the last three decades in the development of generalization of Hyers-Ulam stability
concept. Furthermore, in 1994, G avrut,a [7] provided a further generalization of Rassias’ theorem in which he replaced

the bound g(Hpr +Hpr)in by a general control function (p(X, y). Recently several stability results have been

obtained for various equations and mappings with more general domains and ranges have been investigated by a number
of authors and there are many interesting results concerning this problem [1, 9, 10, 11].

In the following, we will given some notations that are needed in this paper.

Let X is a Banach algebra, then an involution on X is a mapping X — X" from X into X

which satisfies

@) (X*)" =X forall Xe X;

@ (ax+By) =ax” + By foral X,y € X and &, B C;
@) (xy)" =y'X forall X,y € X;

. . * 2 ]
If, in addition, HXX H = ||X|| forall X € X ,then X isa C*-algebra.

Definition 1.1. Let X be areal vector space. A function N : X xR —>[0,1] is said to be a
fuzzynormon X ifforall X,y € X andall t,s e R

(NI N(x,t)=0 fort <0;

(N2) N (x,t)=1 forall t >0 ifandonlyif X =0;

(N3) N (cx,t)=N (X,|::—|) foreach C = 0;

(N4 N(x+y,s+t)=min{N (x,t),N (y.s)};
(N'5) N (x,.) is a non-decreasing function on R and tlim N (x,t)=1
(N 6) for x #0, N (x,.) is continuous on R .

The pair (X N ) is called a fuzzy normed linear space.

on may regard N (X ,1) as the truth value of the statement ” the norm of X is less than or equal to the real number t .

Example 1.2. Let (X,””) be a normed linear space and ¢, # > 0. Then
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50, xeX,
N(xt) =1 B+
0, t<0, Xe X
is a fuzzy normon X.
Example 1.2. Let (X ,||||) be a normed linear space. Then
0, t <0,
N(xt) =4t 0<t<|x] xeX,
]
0, t> ], xe X

is a fuzzy normon X.

Let (X, N) be a fuzzy normed vector space. A sequence {Xn} in X is said to be convergent if there exists

X € X such that lim N(X,, — X,t) =1for allt > 0. In that case, Xis called the limit of the sequence {X,}and we
n—o

denote itby N —lim x, = X.

N—o0

A sequence {X,}in X is called Cauchy if for each &> 0and each t > Othere exists an N, € N such that for all
N>nyandall p>0,wehave N(X,,, —X;,t)>1-¢.

It is well-known that every convergent sequence in fuzzy normed vector space is Cauchy. If each Cauchy sequence is
convergent, then the fuzzy normed is said to be complete and the fuzzy normed vector space is called a fuzzy Banach

space.
We say that a mapping f : X — Y between fuzzy normed vector space X, Y is continuous at point X, € X if for
each sequence {X,}converging to X,in X, then the sequence {f(X,)} converges to f(X,)If f:X —>Yis

continuous at each X € X , then f is said to be continuous on X [3].

Definition 1.4. Let X be a *-algebraand (X, N) be a fuzzy normed space.

(1) The fuzzy normed space (X . N) is called a fuzzy normed * -algebra if

N (xy,st) > N(x,t).N(y,s),
N(x",t) = N(x,t)

for all X,y e X and all positive real numberst.

(2) A complete fuzzy normed *-algebra is called a fuzzy Banach *-algebra.

Example 1.5. Let (X, || ) be anormed +-aigebra. Let

t
N(x,t) =1 t+]x|’
0, 1 <0, Xxe X.

Then (X, N) is a fuzzy normed *-algebra.
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Definition 1.6. Let (X , |||| )be a normed C*-algebra and N be a fuzzy normon X..

(1)The fuzzy normed #*-algebra (X , N) is called an induced fuzzy normed *-algebra.

(2)The fuzzy Banach *-algebra (X, N) is called an induced fuzzy C*-algebra.

Let (X,N)and (Y, N)be induced fuzzy normed *-algebras. Then a C -linear mapping f : (X,N) — (Y,N)is
called a fuzzy *-homomorphism if f(xy)=f(x)f(y), f(x’)=f(x)" and a C-linear mapping

f:(X,N)—(X,N)is called a fuzzy *-derivation if f(xy)=f(X)y+xf(y), f(x*)=f(X)*for all
X,y e X.

Let X be a nonempty set. A function d : X x X — [0, 0] is called a generalized metric on
X if d satisfies
@) d(x,y) =0ifandonlyif X=1Y for X,y € X;
@ d(x,y)=d(y,X)forall X,y € X;
@) d(x,2) <d(x,y)+d(y,z)forall X,y,z e X.

Let be (X,d)a generalized metric space. An operator T : X — X satisfies a Lipschitz condition with Lipschitz
constant L, if there exists a constant L >0 such that d(Tx,Ty) < Ld(X,y)for all X,y € X . If the Lipschitz

constant L is less thanl, then the operator T is called a strictly contractive operator. Note that the distinction between
the generalized metric and the usual metric is that the range of the former is permitted to include the infinity. We recall the
following theorem by Diaz and Margolis.

Theorem 1.7. (see.[16, 21]) Let (X,d)be a complete generalized metric space and J:X — X be a strictly

contractive mapping with Lipshitz constant L < 1. Then, for each given X € X , either
d(d"x,d"X) =00 foral N >0

or there exists a natural number n, such that

@) d(JI"%,J "X) <o foralln > ny;

(2) the sequence {J nX}converges to a fixed point y* of J;

(3) Y is the unique fixed pointof J intheset Y ={y e X :d(J™,y) <oo};

@ d(y, y*)sﬁd(y,Jy) forall yeY.

In 1996, Isac and Rassias [10] were the first to provide applications of stability theory of functional equations for the
proof of new fixed-point theorems with applications. By using fixed point methods, the stability problems of several
functional equations have been extensively investigated by a number of authors [5, 19].

In this paper we consider a mapping f: XY satisfying the following of additive functional equation of n-Apollonius
type

if (Z-x)=-= 3 f(x, +x,)=nf (z—n—lzixi) (L)

N 1« S<n

for all Z,X;,X,,...., X, € X, which Nis fixed positive integer with N = 2and establish the homomorphisms and

derivations of functional equation (1.1) on induced fuzzy C*-algebras and induced fuzzy Lie C*-algebras. Throughout this
article, assume that (X, N) is a fuzzy Banach *-algebra and that (Y, N) is an induced fuzzy C*-algebra.
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2. Approximate fuzzy -homomorphisms in fuzzy Banach C*-algebras
In this section, we prove the Hyers- Ulam stability of homomorphisms on fuzzy Banach *-algebra s related to additive

functional equation of n-Apollonius type.

2

Theorem 2.1. Let ¢ : X ™™ —[0,0) be a function such that there exists an L < n 2_ with
n
n-1_n’-1_ n®-1 n® -1 n* -1
(o( p Z, - X, - Xy erer - ans - Lo(z, X, Xy 00 X, (2.1)
forall Z,X;,X,,... X, € X.Let T :X —Y be amapping satisfying f (0) =0 such that
N(iﬂf @-x)+ 3 F (ux, +px,)-nf (uz—%iuxi),t} t
i-1 N1 Sen n° i3 t+o(z,X,X,,00X,)
(2.2)
t
N (f (xy)-—f (x)f 1) > 2.3
t
N (f(x)-f(x) ,t)= 2.4
(F&)=f 00 1) t +o(x,0,0,...,0) (24)

forall X, Y,Z,X;, X, .0, X, € X, all peT i={u C :|u|=1} andall t > 0.

2 2
. n 1

Then H(X)=N —I!Im( 5 1)kf (= YX) exists for eachX € X, and defines a unique fuzzy *-
Sen? - n

homomorphism H : X — Y such that

(n*-D@A-L)t (25)
(n>-1(A-L)t +n¢(x,0,0,...,x,,0,0,...0) '

jth

N (f (x)=H (x),t) >

forall Xe X andall t > 0.

Proof. Consider the set QQ:={g : X — Y, g(0) = 0} and introduce the generalized metric

t
t+¢(x,0,0,..,x,0,0,...0)

jth

d(g.h)=inf{n eR™:N (g (x)-h(x),7t) =

where INf ¢ = +00.. The proof of the fact (€2, d) is a complete generalized metric space can befound in [5].

2 2
? g(n—?_lx) forallg € Q and Xe X.
n°-1 n

Now we consider the mapping J : Q — Qdefined by Jg(X) =
Let £>0and f,g e Q be given such that d(g, f) = &. Then

t
t+¢(x,0,0,..,x,0,0,..0)

jth

N (g (x)-h(x),et) =

forall Xe X andall t > 0. Hence
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)

2

N(Jg(X)—Jh(X),Lgt)zN(n?_lg(n -1 n n2 -1

n2

-1 n>-1 . n°-1
X) — h( " X), " Let)

nZ
=N(9(—
n

2_
"L
an—l n?-1 n

o Ltre(" 7x,00,..

x,0,0,...,0)
jth
n?-1
2

> n
- n°-1
;- Lt+—— Lgo(x,0,0,...,;&,0,0,...,0)

n n jth

Lt

T t+9(x,0,0,..,X ,0,0,..,0)°

jth
So d(g,h)=¢ implies that d(Jg,Jh)=Le,for allg,he Q. Letting x=1and z=x; =xfor each
1<k <nwith k # J,x, =0in (2.2), we have

2 3 n®—1 t
f (x)—nf X),t)=> 2.6
n ) ( n? )t t +9(x,0,0,..,%,0,0,..,0) (2:6)

jth

n

N (

for all X€ X and all t>0. It follows from (2.6) that d(f,Jf) = . By Theorem 1.7 there exists a

2
n°- -1
mapping H : X — Y such that the following holds:
(1) H is a fixed point of J , that is,
2 g
n° -1 n° -1
H (= 77x) === H (x) (27)

forall X € X . The mapping H is a unique fixed point of J in the set A ={h € Q:d(g,h) < oc}. This implies that
H is a unique mapping satisfying (2.7) such that there exists 77 € (0,0) satisfying

t
t+¢(x,0,0,...X,0,0,..0)’

jth

N (F (x)=H (x),7t) >

forall Xe X andall t > 0.
@d(J*f,H) — 0 as k — 0. This implies the equality

. n* n?-1
N —lim (¢ "

k—w (n2-1)

)“x)=H(x)

exists for each X € X,
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)

@ d(f,H)< ﬁd(f,.]f), which implies inequality

1
n2 -1 n?-1
n n

d(f, H)<

L

and so

(N =)(1-L)t
(n?-)@A-L)t +ne(x,0,0,...,x.,0,0,..0)'

jth

N (x)-H(x),¢t)>

It follows from (2.1) and (2.2)that

N (Zn:,uH (z —xi)+i D> H(ux; +px;)—nH (uz —n—lzzn:yxi) ,tj

i=1 1<i<j<n i1

. n®
=N _'!I—TO[(I‘\Z—]_) IZ;, —X;))
+_ S (" )kf(( ZZx ))tj
:I_|<J<n
n®-1,
t
> lim —; ] : 1( n’ Z N
koo N — n<— n‘—
) () 2, () Xy
p2=id
t
lem 2 2 1( n2 z 1 2 1
k —o0 n n<— n‘— n<—
t+(n2_1)k¢(( n2 )kz1( n2 )kxl,-.-,(T)an)
> lim L -1

oA+ ¥ P(Z,X,.0 X )

for all Z, Xy, X ey X, € X, >0 and g€ T Thus

ZyH(z —X, )__H D> H(ux; +px;)+nH (uz —n—Zyx ) (2.8)
Ki<j<n =1
for all Z,X,,Xp,..., X, € X, all t>0 and all geT". By [18] H:X —Y is Cauchy additive, that is,
H(X+y)=H(x)+H(y) forallx,y €X . By a Similar method to the proof of [16], one can show that the mapping
is C -linear.

By (2.3) we have

N ((— 7 )Zkf(( )ZkXY) (5 T )f(( ) X)(=p T )f(( " )0
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)

n’-1
N ( n2 )Zkt
-1 n’-1, n*-1
O )t +o(( > )X, ( - )¥y,0,...,0)

n?-1

( . )Zkt
n

2

n?-1 n?-1
( nz )Zkt +(T)k Lk(p(X,y,O,...,O)

forallx,y eX and all t > 0. Since

2
(n 2_1)2kt
lim 1 n2”1 =1
( n2 )Zkt+(T)kLk¢(xlyiol"'10)

forallx,y eX and t >0, hence

H(xy)=H(X)H(y)
By (2.4), we have

W o, n’-1.4. n® ..,n"-| .
N (M D) - (0
(n22—1)kt
2 2 n2
e 4o x,0,0,...,0)
n n

t
>
t+L*p(x,y,0,...,0)

forallx,y €X and t > 0. Since
. t
lim -
ko=t + L 9(X,0,0,...,0)

forallX,y €eX andall t >0, hence
HX)=H(Xx)"

Corollary 2.2. Let X be a normed vector space with norm ||.||,520 and P be a real number with p >1. Let

f :X —Y be amapping satisfying

N (Zn:,uf (z —xi)+% D (ux; +pux;)-nf (uz —%Zn:,uxi) ,t]

I<i<j<n

t
>
t+(2 [+ 2% )
i=1
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)

t

N (f (xy)-f (xX)f (y).,t)=> . 5
( > o <y )

(2.10)

t

Fx)—fF(x) t)2—
MO )

(212

for all Z,X;,X,,..., X, € X, al t>0 and aII,ue']I'l. Then there exists a unique fuzzy *-—homomorphism
H : X —Y suchthat

(n? =P —n*trt
(N> -1 —n**Pt +2n5(n”> -1)° x|

N@{F Xx)-H(x),t)>

forallx eX andallt >0,

Proof. The proof follows from Theorem 2.1 by taking
n
G2 Xy, X5 X)) =0(2 P+ D% )
i=1

for all Z,X;, X,y X, € X, all t>0 and all €T . It follows from (2.9) that f (0)=0, we can choose
2

n
L =
(nz—l

)P to get the desired result.

Theorem 2.3. Let @: X "™ — [0, 0) be a function such that there exists an L <1 such that

2 2 2 2 2
n n n n n
1) zZ, Xy, X,, 88 X, | < Lo(Z,X,X,,.0X 212
(nz—l 1 e -1 k-1 " )F h2-1 (2%0 %1%, (2.12)
for all Z,X;,X,,..., X, € X. Let f:X —Y be a mapping satisfying f(0)=0 and (2.2), (2.3), (2.4). Then
. n?-1 n?
H(x)=N —!Im( — YF (( 5 l)k X ) exists for each X € X , and defines a unique fuzzy * - homomorphism
—>00 n —

H : X =Y such that

(n? —1)(1-L)t
(n*-1)(1-L)t +ne(x,0,0,..., x.,0,0...0)

jth

N (x)-H(x)t)> (2.13)
forall Xe X andall t > 0.

Proof. Let(Q2,d) be the generalized metric space in the proof of Theorem 2.1. Consider the mapping
n-1 , n?
J:Q — Qdefined by Jg(X)=——-—-09(——X) foralg €Q and X e X . We can conclude that J is a
n n°-1

2

strictly contractive self mapping of with the Lipschitz constant L . Replacing X by

X in (2.6), we obtain
n®-1

n-1 n? nt
—2f (z—x)—f (x),t)> 5 5
n n--1 n
" 1x,O,O,...,mx ,0,0,...,0)
jth

N (

nt +¢o(
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)

> nt (2.14)

2
nt + Lo(x,0,0,..,%,,0,0,...,0)

n

2
n - 1 Jth

nL

n%—

It follows that d (f ,Jf ) <

By Theorem 2.1, there exists a mapping H : X — Y satisfying

(1) H is a fixed point of J , that is,

2 2

n
2 )=z HK) (2.15)

forall X € X . The mapping H is a unique fixed point of J inthe set A ={h e Q:d(g,h) < oo}. This implies that

H is a unique mapping satisfying (2.15) such that there exists ne (O, oo) satisfying

t
t+¢(x,0,0,...,x,0,0,..0)

jth

N (f (x)—H (x),nt) =

forall Xe X andall t > 0.

@d(J*f,H) — 0 as k — 0. This implies the equality

A -1, né . P
N = m (4 (7 %) =H ()
exists for each X € X ,

@) d(f,H)< ﬁd (f,Jf), which implies inequality

nL
(n*-1D)—(n*-1L

d(f H)<

The rest the proof is similar to the Theorem 2.1.

Corollary 2.4. Let X be a normed vector space with norm ||.||,520 and P be a real number with p <1. Let

f :X —Y be a mapping satisfying (2.9), (2.10) and (2.11). Then there exists a unique fuzzy *—homomorphism
H : X —Y such that

(n? =1t —n?PHt

N (f (x)—H (x),t)>
(n* =" —n**Pt + 2n>*5(n* -1 x|’

forallx eX andallt >0,

Proof. The proof follows from Theorem 2.3 by taking
n

Pz X, %50 X ) =82+ D% )
i=1

for all Z,X;,X,,.., X, € X, all t>0 and all ,ueTl. It follows from (2.9) that f (0)=0, we can choose
2

n _
L =(———)"" to get the desired result.
n’-1
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From now on, assume that X is a unital C*-algebra with unite e and a unitary group
UX)={ueX:uu=uu"=e}andthat Y isa unital C*-algebra.

2

n
Theorem 2.5. Let @: X s [O, oo) be a function such that there exists an L < satisfying (2.1) and let

2

n
f : X =Y be amapping satisfying f(0) =0, (2.2) and such that
t

N (f uv)-f Wf V),t)=> 2.16

( )=f W) ) t+¢o(U,V,0,..,0) ( )
t

N(fu”)-f@u).,t)= 2.17

( -t ) t+¢@,0,0,...,0) ( )

forall U,V €U (X ) and all t > 0. Then there exists a unique fuzzy * - homomorphism H : X —Y satisfying (2.5).

2 2
. n n“-1
proof. By Theorem 2.1 there is a C -linear mapping (N — I!Im( > 1)k f ((—55)x) =H(x)) satisfying (2.5).
Son? - n

By (2.1) and (2.16)

N (Rt w0 =0 (T H ) (D))
n°-1 n n—1 n n2_1 A
(nnz_l)Zkt
> . =
O oD 0,0
(nzz_l)Zkt
> n

2 3 2 _
(nn2 1)zkt +(nnzl)k L o(u.v,0,....0)

forallx,y €eX and t > 0. Since

i
- ( 5 )Zkt
lim ) n2” 7 =1
( A )Zkt+(T)kLk(0(U,V,O,...,O)

forall Uy eU (X )and t >0, hence
Huv)=Hu)H V). (2.18)
n
Since H is C-linear and each X € X is a finite linear combination of unitary elements, that is, X :Zaiui for

i=1
o, €C and u; €U (X ). It follows from (2.18) that

H o) =H (Y auy) =3 H (euy) = Y H (@u)H ) =H (Xau H ¢) = HX HY)

forallv €U (X ). Similarly, one can obtain that H (xy ) =H (X)H (y) forall x,y e X..

By (2.1) and (2.17)

211 | Page Oct28,2013



Nyt () -y (D uyy
n--1 n n--1 n

n?-1
2

()t
> n
n-1 n

( 2 ) t+o((

2_lk
2°4,0,0,..,0)

t
>
t+L*p,0,0,...,0)

forall UeU(X) and t > 0. Since

lim——
ko=t +1L%p(U,0,...,0)

forallueU (X )andall t >0, hence

HUu’)=H(@). (2.19)

n
Since H is C-linear and each X € X is a finite linear combination of unitary elements, that is, X = Z“ociui
i=1

for o, €C and u; €U (X ). It follows from (2.19) that

&) =H Y@y ) =Y aH ) =Y aHu) =HYau,) =H ()

for all x € X . Therefore the mapping H : X — Y s a *- homomorphism. Similarly, we have the following.
We will omit the proof.

Theorem 2.6. Let @: X" —[0,00)be a function such that there exists an L <1 satisfying (2.1) and let
f:X —>Y be a mapping satisfying f(0) =0, (2.2) ,(2.16) and (2.17). Then there exists a unique fuzzy *-
homomorphism H : X —Y satisfying (2.13).

3. Approximate fuzzy *-derivations in fuzzy Banach C*-algebras

In this section, we prove the Hyers- Ulam stability of derivations on fuzzy Banach * —algebras related to additive
functional equation of n-Apollonius type.
2

Theorem 3.1. Let ¢: X" —[0,00) be a function such that there exists an L < >— with
n
2 2 2 2 2
n“-1_ n°-1 n°-1 n--1 n°-1
zZ, X, X yeeny X | < Lo(Z,X,,X,,...,X 3.1
¢’[ 2 n2 vz e >y nJ 2 o(z.X1.X, ") (31)
forall Z,X;,X,,...X, € X.Let f :X — X be amapping satisfying f(0) =0 such that
t

N nuf(z—x.)+l f(,uX-+,uX-)—nf(,uZ—in/JX-),I >
St @ -x) e 3 (ux, +ax, 3

i 1<i<j<n Ttz X, X X))
(3.2)
t

N (f (xy)—f (x)y —xf (y) .t) Zt Ay 00) (3.3)
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t
t+¢(x,0,0,...,0) (34)

N (f (x)=f (x)".t) 2
forall X,Y,Z,X;,X,,.... X, € X ,all geT ={ueC:|u/=1} andall t >0.

2 2
. N n“-1
Then D(x)=N —Ilim Tk f((— )“X) exists for each X € X, and defines a unique fuzzy * -derivation
- n

kK —o0

D : X —Y such that

(n? —1)(1-L)t
(N =1)(1-L)t +ne(x,0,0,..., x,,0,0....0)

jth

N (f (x)-D(x),t)>

(35)

forall Xe X andall t >0.
Proof. The proof is similar to the proof of Theorem 2.1.

Theorem 3.2. Let ¢: X" —[0,00) be a function such that there exists an L <1 such that

2 2 2 2 2
n n n n n
1) zZ, Xy, Xoyeeey X, | £—=—Lo(Z,X,X,,.,X 3.6
(nz—l n S8 nE1 2" n2 4 ") Thi-1 (2% Xz, ) (36)
for all Z,X;,X5,...,X, € X. Let f:X —Y be a mapping satisfying f(0)=0 and (3.2), (3.3), (3.4). Then
il n’-1
D(x)=N —l!im P f (= YX) exists for eachX € X, and defines a unique fuzzy * -derivation
—>0 T n

D : X —Y such that

(n” -D@A-L)t (37)
mz—Da—Lﬁ+nL¢@,Q0w”§HQQ“D) '

jth

N (f (x)=D(x),t)>

forall X X andall t > 0.
4. Approximate of homomorphisms and derivations in induced fuzzy Lie C*-algebras
A induced fuzzy C*-algebra 3 endowed with the Lie product

Xy —yX
2

[x.y]=

~

on 3, is called a induced fuzzy Lie C*-algebra.

Definition 4.1. Let (X ,N) and (Y ,N ) be induced fuzzy Lie C*-algebras. A C-linear mapping H : X — Y is
called a Lie C*-algebra homomorphism if H ([X,y])=[H (X),H (y)] forall X,y € X .

Throughout this section, we assume that (X ,N )and (Y ,N )are induced fuzzy Lie C*-algebras. We prove the
generalized Hyers-Ulam stability of homomorphisms in induced fuzzy Lie C*-algebras for the functional equation (1.1).

2

Theorem 4.2. Let ¢: X" —[0,00) be a function such that there exists an L < with condition (2.1).

n2

Let T :X —Y be amapping satisfying f (0) =0 such that (2.2) and (2.4) hold, and

t
t+o(x,y,0,..,0)

N (f (x,yD-If (x).f (y)L.t) > (4.1)
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)

forall X,y € X and all t > 0.
Then exists a unique homomorphism H : X —Y such that

(n® =1)(1-L)t (4.2)
(n*-1)A-L)t +n¢(x,0,0,...,x,,0,0,...0) '

jth

N (f (x)=H (x),t) >

forall Xe X andall t >0.
Proof. By the same reasoning as in the proof of Theorem 2.1, we can fined the mapping

2 2
H(x)=N —!im( ? 1)kf ((n 5 1)k X ) exists for each X € X . It follows from (2.1) and (4.1) that
~on? n

N (H ([, yD~[H (X ). H (1)1 =N —gigg((n?—_l)zkf % 2yD)

n?-1
nZ

Sy (0 ( )ky)],tj
n°--1 n

2
n 21)Zkt

(

> lim L
ko n%—1 n®-1 1
( Y )t +o(( 2 )%, ( o2

1)k y,0,0,...,0)

n-1
- ( 5 )Zkt
Zgnn T n2n1
( n2 )Zkt+(T)k Lk¢(xly!01"'10)

forallX,y eX and t > 0. Since

n?-1

( . )2kt
lim —; n =
k—o N _l

M ™ Y (Y ,0,.00)
- = o(x,Y,0,...,

forallX,y eX andt >0, hence

H(x,yD=[Hx).H(y)

forallx,y eX andt >0. Thus H is a Lie homomorphism satisfying (4.2), as desired.

Corollary 4.3. Let X be a normed vector space with norm |||| ,020 and p be areal number with p >1. Let

f :X —Y be amapping satisfying

N LG:,uf (z —xi)+1 > (ux; +ux;)-nf (uz —izn:,uxi) ,t]

2
I<i<j<n n-i

t
>
t+o | + X[
i=1l
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)

t
(x| +y ")

N (f (xy)—f ()f (y).,t)>

t

Fx)—fF () t)2—
MO )

forall Z,X;,X,,..., X, € X,alt>0 and all HE Tl. Then there exists a unique Lie homomorphism
H : X —Y such that

(n® 1P —n*Pi
(N> =" —n**"t +2ns(n* 1) x|

N (F (x)=H (x),t)>

forallx eX andallt >0,

Proof. The proof follows from Theorem 4.2.

Definition 4.4. Let (X ,N) and (Y ,N ) be induced fuzzy Lie C*-algebras. A C -linear mapping D : X —Y is
called a Lie C*-algebra derivation if D ([X,y]) =[D (X),y ]+[X,D(y)] forall X,y € X .

2

Theorem 4.5. Let ¢ : X ™™ —[0,0) be a function such that there exists an L <

>— With condition (3.1).

n

Let f :X —Y be amapping satisfying f(0) =0 such that (2.2) and (2.4) hold, and

N (F @,y D—IF )y T+ xf It) = ——— (44)

t+o(x,y,0,..,0)
forall X,y € X and all t >0.
Then exists a unique Lie derivation D : X — X such that
2 i oS
N (F () ~D(X),t) > — s, ) (4.5)
(n"-HA-L)t +ne(x,0,0,..,x,,0,0,..0)

jth

forall Xe X andall t > 0.

Proof. By the same reasoning as in the proof of Theorem 3.1, we can fined the mapping
n n?-1
D(x)=N —l!im ey f (= )X ) exists for each X € X . It follows from (3.1) and (4.4) that
—>®0 — n

D yaer (X, ey
n--1 n n

N (f (. yD=[f () yI+Dxf (1) =N = lim((

n?—

" ey
n

“Dex w((
n

) I E 0 YD - o) I
(n22_1)2kt
plLu: 1 n’ 2 n’-1
C Y (") () ,00,..,0)
n n n
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2_
(n ; l)Zkt

n

2klim ] )
( nZ )Zkt+(T)k|—k(ﬂ(xyy,0,---,0)

forallx,y eX and t > 0. Since

n?-1
- ( 5 )Zkt
kI|m ) nznl -1
(e )2t +( > ) L“p(x,y,0,..,,0)

forallX,y eX andt >0, hence

D([x,yD)=[D(x),y1+[x,DW)]I
forallX,y € X . Thus D is a Lie derivation satisfying (4.5), as desired.
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