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ABSTRACT 

Using the fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms and derivations of 
additive functional equation of n-Apollonius type 
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for a fixed positive n with 2n on induced fuzzy C*-algebras and induced fuzzy Lie C*-algebras. 
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1. Introduction 

   In 1984, Katsaras [14] introduced an idea of a fuzzy norm on a vector space to construct afuzzy vector topological 
structure on the space. In the same year Wu and Fang [24] introduceda notion fuzzy normed apace to give a 
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generalization of the Kolmogoroff normalized theorem for fuzzy topological vector spaces. In 1992, Felbin [6] introduced 
an alternative definition of a fuzzy norm on a vector space with an associated metric of Kaleva and Seikkala type [12]. 
Some mathematics have define fuzzy normed on a vector form various point of view [15, 20, 25]. In particular, Bang and 
Samanta [2] following Cheng and Mordeson [4], gave an idea of fuzzy norm in such a manner that the corresponding 
fuzzy metric of Kramosil and Michalek type [13]. They established a decomposition theorem of fuzzy norm into a family of 
crisp norms and investigated some properties of fuzzy normed spaces [3]. 

    A classical equation in the theory of functional equations is the following: ”when is it true that a function which 
approximately satisfies a functional equation must be close to an exact solution of the equation?”. If the problem accepts a 
solution, we say that the equation is stable. The first problem concerning group homomorphisms was raised by Ulam [23] 
in 1940. In the next year Hyers [8] gave a first affirmative answer to the question of Ulam in context of Banach spaces. In 
1978, Rassias [22] proved a generalization of the Hayers’ theorem for additive mappings. The result of Rassias has 
provided a lot of influence during the last three decades in the development of generalization of Hyers-Ulam stability 
concept. Furthermore, in 1994, Gˇavrut¸a [7] provided a further generalization of Rassias’ theorem in which he replaced 

the bound )(
pp

yx  in by a general control function ),( yx . Recently several stability results have been 

obtained for various equations and mappings with more general domains and ranges have been investigated by a number 
of authors and there are many interesting results concerning this problem [1, 9, 10, 11]. 

In the following, we will given some notations that are needed in this paper. 

Let X is a Banach algebra, then an involution on x is a mapping 
 xx from X into X  

which satisfies 

(1) xx  )(  for all ;Xx  

(2) 
  yxyx  )(  for all Xyx , and , ;    

(3) 
  xyxy)(  for all ;, Xyx   

If, in addition, 
2

xxx 
for all Xx , then X  is a C*-algebra. 

Definition 1.1. Let X  be a real vector space. A function  : 0,1N X     is said to be a 

fuzzy norm on X  if for all Xyx , and all ,t s   

( 1) ( , ) 0N N x t  for 0;t    

( 2) ( , ) 1N N x t    for all  0t   if and only if  0;x   

( 3) (c , ) ( , )
t

N N x t N x
c

  for each 0;c    

( 4) ( , ) min{ ( , ), ( , )};N N x y s t N x t N y s    

( 5) ( ,.)N N x  is a non-decreasing function on and  lim ( , ) 1;
t

N x t


  

( 6)N  for  0,x   ( ,.)N x  is continuous on  . 

  The pair ( , )X N is called a fuzzy normed linear space. 

On may regard ( , )N x t as the truth value of the statement ” the norm of x is less than or equal to the real number  t ".  

Example 1.2.  Let   .,X  be a normed linear space and .0,   Then 
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is a fuzzy norm on .X  

Example 1.2.  Let   .,X  be a normed linear space. Then 
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 is a fuzzy norm on .X  

 Let ),( NX  be a fuzzy normed vector space. A sequence }{ nx  in X  is said to be convergent if there exists 

Xx such that 1),(lim 


txxN n
n

for all 0t . In that case, x is called the limit of the sequence }{ nx and we 

denote it by .lim xxN n
n




 

     A sequence }{ nx in X is called Cauchy if for each 0 and each 0t there exists an Nn 0 such that for all 

0nn  and all 0p , we have .1),(  txxN npn  

      It is well-known that every convergent sequence in fuzzy normed vector space is Cauchy. If each Cauchy sequence is 
convergent, then the fuzzy normed is said to be complete and the fuzzy normed vector space is called a fuzzy Banach 
space. 

      We say that a mapping YXf : between fuzzy normed vector space YX , is continuous at point Xx 0 if for 

each sequence }{ nx converging to 0x in X , then the sequence )}({ nxf  converges to )( 0xf If YXf : is 

continuous at each Xx , then f  is said to be continuous on X  [3]. 

Definition 1.4. Let X  be a   -algebra and ),( NX be a fuzzy normed space. 

(1) The fuzzy normed space ),( NX is called a fuzzy normed -algebra if 

),(),(

),,().,(),(

txNtxN

syNtxNstxyN






 

         for all Xyx , and all positive real numbers t . 

(2) A complete fuzzy normed  -algebra is called a fuzzy Banach  algebra. 

 

Example 1.5. Let  .,X  be a normed  algebra. Let 


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),(
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Then ),( NX is a fuzzy normed  algebra. 
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Definition 1.6. Let  .,X be a normed C*-algebra and N be a fuzzy norm on .X . 

(1)The fuzzy normed  algebra ),( NX is called an induced fuzzy normed  algebra. 

(2)The fuzzy Banach  algebra ),( NX is called an induced fuzzy  C*-algebra. 

 Let ),( NX and ),( NY be induced fuzzy normed  algebras. Then a  -linear mapping ),(),(: NYNXf  is 

called a fuzzy  -homomorphism if 
  )()(),()()( xfxfyfxfxyf  and a  -linear mapping 

),(),(: NXNXf  is called a fuzzy  -derivation if  
  )()(),()()( xfxfyxfyxfxyf for all 

., Xyx   

   Let X be a nonempty set. A function ],0[:  XXd is called a generalized metric on 

X  if d satisfies 

(1) 0),( yxd if and only if yx   for ;, Xyx   

(2) ),(),( xydyxd  for all ;, Xyx   

(3) ),(),(),( zydyxdzxd  for all .,, Xzyx   

    Let be ),( dX a generalized metric space. An operator XXT : satisfies a Lipschitz condition with Lipschitz 

constant L , if there exists a constant 0L  such that  ),(),( yxLdTyTxd  for all Xyx , . If the Lipschitz 

constant L  is less than1 , then the operator T is called a strictly contractive operator. Note that the distinction between 

the generalized metric and the usual metric is that the range of the former is permitted to include the infinity. We recall the 

following theorem by Diaz and Margolis. 

Theorem 1.7. (see.[16, 21])  Let ),( dX be a complete generalized metric space and XXJ :  be a strictly 

contractive mapping with Lipshitz constant 1L . Then, for each given Xx ,  either 

 ),( 1xJxJd nn
       for all 0n  

 or there exists a natural number 0n such that 

(1)  ),( 1xJxJd nn
 for all 0nn  ; 

(2)  the sequence  xJ n
converges to a fixed point 

y of J ; 

(3) 
y  is the unique fixed point of J  in the set };),(:{ 0  yJdXyY

n
 

(4)  ),(
1

1
),( Jyyd

L
yyd




 for all .Yy  

    In 1996, Isac and Rassias [10] were the first to provide applications of stability theory of functional equations for the 
proof of new fixed-point theorems with applications. By using fixed point methods, the stability problems of several 
functional equations have been extensively investigated by a number of authors [5, 19]. 

 

    In this paper we consider a mapping YXf : satisfying the following of additive functional equation of n-Apollonius 

type 

      2
1 1 1

1 1
( ) ( ) ( ) 1.1

n n

i i j i

i i j n i

f z x f x x nf z x
n n    

         

for all Xxxxz n ,...,,, 21 , which n is fixed positive integer with 2n and establish the homomorphisms and 

derivations of functional equation (1.1) on induced fuzzy C*-algebras and induced fuzzy Lie C*-algebras. Throughout this 

article, assume that ),( NX is a fuzzy Banach  algebra and that ),( NY is an induced fuzzy C*-algebra. 
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2. Approximate fuzzy -homomorphisms in fuzzy Banach C*-algebras 

In this section, we prove the Hyers- Ulam stability of homomorphisms on fuzzy Banach  algebra s related to additive  

functional equation of n-Apollonius type. 

Theorem 2.1.  Let ),0[: 1 nX be a function such that there exists an 
2

2 1

n

n
L


 with 

               1.2,...,,,
11

,...,
1

,
1

,
1

212

2

2

2

22

2

12

2

2

2

nn xxxzL
n

n
x

n

n
x

n

n
x

n

n
z

n

n











 
 

for all Xxxxz n ,...,,, 21 . Let  YXf :  be a mapping satisfying 0)0( f  such that 

 

2
1 1 1 1 2

1 1
( ) ( ) ( ) ,

( , , ,..., )

2.2

n n

i i j i

i i j n i n

t
N f z x f x x nf z x t

n n t z x x x
    

    

 
      

 
  

 

                                    ( ) ( ) ( ) , 2.3
( , ,0,...,0)

t
N f xy f x f y t

t x y
 


 

                                     ( ) ( ) , 2.4
( ,0,0,...,0)

t
N f x f x t

t x

  


 

for all Xxxxzyx n ,...,,,,, 21 , all 
1 : { : 1}u C u     and all .0t                      

Then 

2 2

2 2

1
( ) lim( ) (( ) )

1

k k

k

n n
H x N f x

n n


 


  exists for each Xx , and defines a unique fuzzy  - 

homomorphism YXH : such that 

                           


 

2

2

( 1)(1 )
( ( ) ( ), ) 2.5

( 1)(1 ) ( ,0,0,..., ,0,0,...0)
jth

n L t
N f x H x t

n L t n x x

 
 

  
 

for all Xx  and all .0t  

Proof. Consider the set  }0)0(,:{:  gYXg  and introduce the generalized metric 


( , ) inf{ : ( ( ) ( ), )

( ,0,0,..., ,0,0,....0)
jth

t
d g h R N g x h x t

t x x
 



   


 

where inf . The proof of the fact ),( d is a complete generalized metric space can befound in [5].  

    Now we consider the mapping :J defined by  

2 2

2 2

1
( ) ( )

1

n n
Jg x g x

n n





  for all g   and Xx . 

Let 0 and gf ,  be given such that .),( fgd Then 


( ( ) ( ), )

( ,0,0,..., ,0,0,...0)
jth

t
N g x h x t

t x x



 


 

for all Xx  and all .0t  Hence 
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So ),( hgd  implies that ,),( LJhJgd  for all hg, . Letting 1 and xxz j  for each 

nk 1 with 0,  kxjk in (2.2), we have 

               

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2 2

2

1 1
( ( ) ( ), ) 2.6

( ,0,0,..., ,0,0,...,0)
jth

n n t
N f x nf x t

n n t x x

 
 


 

for all Xx  and all .0t  It follows from (2.6) that 
1

),(
2 


n

n
Jffd . By Theorem 1.7 there exists a 

mapping YXH :  such that the following holds: 

(1) H is a fixed point of J , that is, 

 
2 2

2 2

1 1
( ) ( ) 2.7
n n

H x H x
n n

 
  

for all Xx . The mapping H  is a unique fixed point of J  in the set }.),(:{  hgdh  This implies that 

H  is a unique mapping satisfying (2.7) such that there exists ),0(   satisfying 


( ( ) ( ), ) ,

( ,0,0,..., ,0,0,...0)
jth

t
N f x H x t

t x x



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for all Xx  and all .0t  

(2) 0),( HfJd k
 as k . This implies the equality 

)())
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2
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)1(
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xHx
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exists for each Xx , 
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It follows from (2.1) and (2.2)that  
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for all Xxxxz n ,...,,, 21 , 0t   and 
1 . Thus 
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for all Xxxxz n ,...,,, 21 , all 0t   and all 
1 . By [18] :H X Y is Cauchy additive, that is, 

( ) ( ) ( )H x y H x H y    for all ,x y X . By a Similar method to the proof of [16], one can show that the mapping 

is  -linear. 

  By (2.3) we have 
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k k

n
t

n

n n
t x

n n





 



 

                                                           
( , ,0,...,0)k

t

t L x y



 

for all ,x y X and 0t  . Since 

lim 1
( ,0,0,...,0)kk

t

t L x



 

for all ,x y X and all 0t  ,  hence 

*(x ) (x)H H  . 

Corollary 2.2. Let X be a normed vector space with norm . , 0   and p  be a real number with 1p  . Let 

:f X Y  be a mapping satisfying  

           

 

2
1 1 1

1

1 1
( ) ( ) ( ) ,

2.9

( )

n n

i i j i

i i j n i

n
p p

i

i

N f z x f x x nf z x t
n n

t

t z x

    



    



 
     

 



 

  


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                          ( ) ( ) ( ) , 2.10
( )

p p

t
N f xy f x f y t

t x y
 

 
 

                          ( ) ( ) , 2.11
p

t
N f x f x t

t x

  


 

for all Xxxxz n ,...,,, 21 , all 0t   and  all
1 . Then there exists a unique fuzzy homomorphism 

:H X Y such that 

     

2 1 2(1 )

2 1 2(1 ) 2

( 1)
( ( ) ( ), )

( 1) 2 ( 1)

p p

pp p p

n n t
N f x H x t

n n t n n x

 

  

 
 

   
 

for all x X  and all 0t  ,   

Proof. The proof follows from Theorem 2.1 by taking 

1 2

1

( , , ,..., ) : ( )
n

p p

n i

i

z x x x z x 


   

for all Xxxxz n ,...,,, 21 , all 0t   and all 
1 . It follows from (2.9) that (0) 0f  , we can choose 

2
1

2
( )

1

pn
L

n




 to get the desired result. 

Theorem 2.3.  Let ),0[: 1 nX be a function such that there exists an 1L   such that 

         
2 2 2 2 2

1 2 1 22 2 2 2 2
, , ,..., , , ,..., 2.12

1 1 1 1 1
n n

n n n n n
z x x x L z x x x

n n n n n
 
 

 
     

 

for all Xxxxz n ,...,,, 21 . Let  YXf :  be a mapping satisfying 0)0( f  and (2.2), (2.3), (2.4). Then 

2

2 2

2

1
( ) lim( ) (( ) )

1

k k

nk

n n
H x N f x

n


 


 exists for each Xx , and defines a unique fuzzy  - homomorphism 

YXH : such that 

     


 

2

2

( 1)(1 )
( ( ) ( ), ) 2.13

( 1)(1 ) ( ,0,0,..., ,0,0,...0)
jth

n L t
N f x H x t

n L t n x x

 
 

  
 

for all Xx  and all .0t  

Proof. Let ),( d  be the generalized metric space in the proof of Theorem 2.1. Consider the mapping 

:J defined by  

2 2

2 2

1
( ) ( )

1

n n
Jg x g x

n n





 for all g   and Xx . We can conclude that J  is a 

strictly contractive self mapping of  with the Lipschitz constant L .  Replacing x by  

2

2 1

n
x

n 
 in (2.6),  we obtain 

2 2

2 22 2

2 2

1
( ( ) ( ), )

1
( ,0,0,..., ,0,0,...,0)

1 1
jth

n n nt
N f x f x t

n nn n
nt x x

n n



 




 
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

 2

2

2.14

( ,0,0,..., ,0,0,...,0)
1 jth

nt

n
nt L x x

n







 

It follows that 
2

( , ) .
1

nL
d f Jf

n



  

By Theorem 2.1, there exists a mapping YXH : satisfying 

(1) H is a fixed point of J , that is, 

                                                                 
2 2

2 2
( ) ( ) 2.15

1 1

n n
H x H x

n n


 
 

for all Xx . The mapping H  is a unique fixed point of J  in the set }.),(:{  hgdh  This implies that 

H  is a unique mapping satisfying (2.15) such that there exists ),0(   satisfying 


( ( ) ( ), )

( ,0,0,..., ,0,0,...0)
jth

t
N f x H x t

t x x



 


 

for all Xx  and all .0t  

(2) 0),( HfJd k
 as k . This implies the equality 

2 2

2 2

1
lim( ) (( ) ) ( )

1

k k

k

n n
N f x H x

n n


 


 

exists for each Xx , 

(3)  ),,(
1

1
),( Jffd

L
Hfd


  which implies inequality 

2 2
( , )

( 1) ( 1)

nL
d f H

n n L


  
 

 The rest the proof is similar to the Theorem 2.1. 

Corollary 2.4. Let X be a normed vector space with norm . , 0   and p  be a real number with 1p  . Let 

:f X Y  be a mapping satisfying (2.9), (2.10) and (2.11).  Then there exists a unique fuzzy homomorphism 

:H X Y such that      

        

2 1 2( 1)

2 1 2( 1) 2 1 2 1

( 1)
( ( ) ( ), )

( 1) 2 ( 1)

p p

pp p p

n n t
N f x H x t

n n t n n x

 

   

 
 

   
 

for all x X  and all 0t  ,   

Proof. The proof follows from Theorem 2.3 by taking 

1 2

1

( , , ,..., ) : ( )
n

p p

n i

i

z x x x z x 


   

for all Xxxxz n ,...,,, 21 , all 0t   and all 
1 . It follows from (2.9) that (0) 0f  , we can choose 

2
1

2
( )

1

pn
L

n




 to get the desired result. 
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      From now on, assume that X is a unital C*-algebra with unite e and a unitary group 

( ) : { X : }U X u u u uu e      and that  Y is a unital C*-algebra. 

Theorem 2.5.  Let ),0[: 1 nX be a function such that there exists an 
2

2 1

n

n
L


  satisfying  (2.1) and let  

YXf :  be a mapping satisfying 0)0( f , (2.2) and such that 

                      ( ) ( ) ( ) , 2.16
( , ,0,...,0)

t
N f uv f u f v t

t u v
 


 

                    ( ) ( ) , 2.17
( ,0,0,...,0)

t
N f u f u t

t u

  


 

for all , ( )u v U X  and all .0t  Then there exists a unique fuzzy  - homomorphism YXH : satisfying (2.5). 

proof. By Theorem 2.1 there is a  -linear mapping (

2 2

2 2

1
lim( ) (( ) ) H( ))

1

k k

k

n n
N f x x

n n


 


satisfying (2.5).  

  By (2.1) and (2.16) 

2 2 2 2 2 2
2 2

2 2 2 2 2 2

1 1 1
(( ) (( ) ) ( ) (( ) )( ) (( ) ), )

1 1 1

k k k k k kn n n n n n
N f uv f u f y t

n n n n n n

  


  
 

                                                         

2
2

2

2 2 2
2

2 2 2

1
( )

1 1 1
( ) (( ) , ( ) ,0,...,0)

k

k k k

n
t

n

n n n
t u v

n n n





  



 

                                                        

2
2

2

2 2
2

2 2

1
( )

1 1
( ) ( ) ( , ,0,...,0)

k

k k k

n
t

n

n n
t L u v

n n





 



 

for all ,x y X and 0t  . Since 

2
2

2

2 2
2

2 2

1
( )

lim 1
1 1

( ) ( ) ( , ,0,...,0)

k

k
k k k

n
t

n

n n
t L u v

n n







 



 

for all , ( )u v U X and 0t  ,  hence 

                                                              ( ) ( ) ( ). (2.18)H uv H u H v  

Since H is  -linear and each x X is a finite linear combination of unitary elements, that is, 

1

n

i i

i

x u


  for 

i   and ( )iu U X . It follows from (2.18) that  

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) H(x)H( )
n n n n

i i i i i i i i

i i i i

H xv H u v H u v H u H v H u H v v   
   

         

for all ( )v U X .  Similarly, one can obtain that ( ) ( ) ( )H xy H x H y  for all  , .x y X  

   By (2.1) and (2.17)  
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2 2 2 2

2 2 2 2

1 1
(( ) (( ) ) ( ) (( ) ) , )

1 1

k k k kn n n n
N f u f u t

n n n n

  


 
 

                                                              

2

2

2 2

2 2

1
( )

1 1
( ) (( ) ,0,0,...,0)

k

k k

n
t

n

n n
t u

n n





 



 

                                                               
( ,0,0,...,0)k

t

t L u



 

for all  ( )u U X  and 0t  . Since 

lim 1
( ,0,...,0)kk

t

t L u



 

for all ( )u U X and all 0t  ,  hence 

                                                                       
*( ) ( ) . (2.19)H u H u   

Since H is  -linear and each x X is a finite linear combination of unitary elements, that is, 
1

n

i i

i

x u


  

for i   and ( )iu U X . It follows from (2.19) that 

1 1 1 1

( ) ( ) ( ) ( ) ( ) (x)
n n n n

i i i i i i i i

i i i i

H x H u H u H u H u H        

   

         

for all  .x X Therefore the mapping YXH :  is a  - homomorphism. Similarly, we have the following. 

We will omit the proof. 

Theorem 2.6.  Let ),0[: 1 nX be a function such that there exists an 1L   satisfying  (2.1) and let  

YXf :  be a mapping satisfying 0)0( f , (2.2) ,(2.16) and (2.17). Then there exists a unique fuzzy  - 

homomorphism YXH : satisfying (2.13). 

3. Approximate fuzzy  -derivations in fuzzy Banach C*-algebras 

In this section, we prove the Hyers- Ulam stability of derivations on fuzzy Banach  −algebras related to additive 
functional equation of n-Apollonius type. 

Theorem 3.1.  Let ),0[: 1 nX be a function such that there exists an 
2

2 1

n

n
L


 with 

   
2 2 2 2 2

1 2 1 22 2 2 2 2

1 1 1 1 1
, , ,..., , , ,..., 3.1n n

n n n n n
z x x x L z x x x

n n n n n
 
     

 
 

 

for all Xxxxz n ,...,,, 21 . Let  :f X X  be a mapping satisfying 0)0( f  such that 

    

 

2
1 1 1 1 2

1 1
( ) ( ) ( ) ,

( , , ,..., )

3.2

n n

i i j i

i i j n i n

t
N f z x f x x nf z x t

n n t z x x x
    

    

 
      

 
  

 

      ( ) ( ) ( ) , 3.3
( , ,0,...,0)

t
N f xy f x y xf y t

t x y
  


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             ( ) ( ) , 3.4
( ,0,0,...,0)

t
N f x f x t

t x

  


 

for all Xxxxzyx n ,...,,,,, 21 , all }1:{:1  uCu  and all .0t  

Then 
2

2 2

2( 1)

1
( ) lim (( ) )

k
k

n kk

n n
D x N f x

n


   exists for each Xx , and defines a unique fuzzy  -derivation 

:D X Y such that 

 


 

2

2

( 1)(1 )
( ( ) ( ), ) 3.5

( 1)(1 ) ( ,0,0,..., ,0,0,...0)
jth

n L t
N f x D x t

n L t n x x

 
 

  
 

for all Xx  and all .0t  

Proof. The proof is similar to the proof of Theorem 2.1. 

Theorem 3.2.  Let ),0[: 1 nX be a function such that there exists an 1L   such that 

   
2 2 2 2 2

1 2 1 22 2 2 2 2
, , ,..., , , ,..., 3.6

1 1 1 1 1
n n

n n n n n
z x x x L z x x x

n n n n n
 
 

 
     

 

for all Xxxxz n ,...,,, 21 . Let  YXf :  be a mapping satisfying 0)0( f  and (3.2), (3.3), (3.4). Then 

2

2 2

2( 1)

1
( ) lim (( ) )

k
k

n kk

n n
D x N f x

n


   exists for each Xx , and defines a unique fuzzy  -derivation 

:D X Y such that 


 

2

2

( 1)(1 )
( ( ) ( ), ) 3.7

( 1)(1 ) ( ,0,0,..., ,0,0,...0)
jth

n L t
N f x D x t

n L t nL x x

 
 

  
 

for all Xx  and all .0t  

4. Approximate of homomorphisms and derivations in induced fuzzy Lie C*-algebras 

A induced fuzzy C*-algebra   endowed with the Lie product 

 ,
2

xy yx
x y


  

on  , is called a induced fuzzy Lie C*-algebra. 

Definition 4.1. Let ( , )X N  and ( , )Y N  be induced fuzzy Lie C*-algebras. A  -linear mapping YXH : is 

called a Lie C*-algebra homomorphism if ([ , ]) [ ( ), ( )]H x y H x H y  for all ,x y X . 

Throughout this section, we assume that ( , )X N and ( , )Y N are induced fuzzy Lie C*-algebras. We prove the 

generalized Hyers-Ulam stability of homomorphisms in induced fuzzy Lie C*-algebras for the functional equation (1.1). 

Theorem 4.2.  Let ),0[: 1 nX be a function such that there exists an 
2

2 1

n

n
L


 with condition (2.1). 

Let  :f X Y  be a mapping satisfying 0)0( f  such that (2.2) and (2.4) hold, and 

           ([ , ]) [ ( ), ( )], 4.1
( , ,0,...,0)

t
N f x y f x f y t

t x y
 


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for all ,x y X and  all .0t  

Then  exists a unique homomorphism :H X Y such that 

            


 

2

2

( 1)(1 )
( ( ) ( ), ) 4.2

( 1)(1 ) ( ,0,0,..., ,0,0,...0)
jth

n L t
N f x H x t

n L t n x x

 
 

  
 

for all Xx  and all .0t  

Proof. By the same reasoning as in the proof of Theorem 2.1, we can fined the mapping 

2 2

2 2

1
( ) lim( ) (( ) )

1

k k

k

n n
H x N f x

n n


 


 exists for each Xx . It follows from (2.1) and (4.1) that 

                     

2 2 2
2

2 2 2

1 1
( ([ , ]) [ ( ), ( )], ) lim ( ) ([( ) , ( ) ])

1

k k k

k

n n n
N H x y H X H y t N f x y

n n n

  
   


  

                                                  

2 2 2

2 2 2

1 1
( ) [ (( ) ), (( ) )], t

1

k k kn n n
f x f y

n n n

 
 

 
  

                                                 

2
2

2

2 2 2
2

2 2 2

1
( )

lim
1 1 1

( ) (( ) , ( ) ,0,0,...,0)

k

k
k k k

n
t

n

n n n
t x y

n n n







  



 

                                                

2
2

2

2 2
2

2 2

1
( )

lim
1 1

( ) ( ) ( , ,0,...,0)

k

k
k k k

n
t

n

n n
t L x y

n n







 



 

for all ,x y X and 0t  . Since 

                                              

2
2

2

2 2
2

2 2

1
( )

lim 1
1 1

( ) ( ) ( , ,0,...,0)

k

k
k k k

n
t

n

n n
t L x y

n n







 



 

for all ,x y X   and 0t  ,  hence 

([ , ]) [ ( ), ( )].H x y H x H y  

 for all ,x y X   and 0t  .  Thus H is a Lie homomorphism satisfying (4.2), as desired.  

Corollary 4.3.  Let X be a normed vector space with norm . , 0   and p  be a real number with 1p  . Let 

:f X Y  be a mapping satisfying  

                

 

2
1 1 1

1

1 1
( ) ( ) ( ) ,

4.3

( )

n n

i i j i

i i j n i

n
p p

i

i

N f z x f x x nf z x t
n n

t

t z x

    



    



 
     

 



 

  


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                ( ) ( ) ( ) ,
( )

p p

t
N f xy f x f y t

t x y
 

 
 

             ( ) ( ) ,
p

t
N f x f x t

t x

  


 

for all Xxxxz n ,...,,, 21 , all 0t   and  all
1 . Then there exists a unique Lie homomorphism 

:H X Y such that 

                        

2 1 2(1 )

2 1 2(1 ) 2

( 1)
( ( ) ( ), )

( 1) 2 ( 1)

p p

pp p p

n n t
N f x H x t

n n t n n x

 

  

 
 

   
 

for all x X  and all 0t  ,   

Proof. The proof follows from Theorem 4.2.  

Definition 4.4. Let ( , )X N  and ( , )Y N  be induced fuzzy Lie C*-algebras. A  -linear mapping :D X Y is 

called a Lie C*-algebra derivation if ([ , ]) [ ( ), ] [x,D(y)]D x y D x y   for all ,x y X . 

Theorem 4.5.  Let ),0[: 1 nX be a function such that there exists an 
2

2 1

n

n
L


 with condition (3.1). 

Let  :f X Y  be a mapping satisfying 0)0( f  such that (2.2) and (2.4) hold, and 

   ([ , ]) [ ( ), ] [x, (y)], 4.4
( , ,0,...,0)

t
N f x y f x y f t

t x y
  


        

for all ,x y X and  all .0t  

Then  exists a unique Lie derivation :D X X such that 

 


 

2

2

( 1)(1 )
( ( ) ( ), ) 4.5

( 1)(1 ) ( ,0,0,..., ,0,0,...0)
jth

n L t
N f x D x t

n L t n x x

 
 

  
 

for all Xx  and all .0t  

Proof. By the same reasoning as in the proof of Theorem 3.1, we can fined the mapping 

2

2 2

2( 1)

1
( ) lim (( ) )

k
k

n kk

n n
D x N f x

n


   exists for each Xx . It follows from (3.1) and (4.4) that 

   
2 2 2

2

2 2 2

1 1
([ , ]) [ ( ), ] [x, (y)], lim (( ) ([ ( ) , ( ) ])

1

k k k

k

n n n
N f x y f x y f t N f x y

n n n

 
   


 

                            

2 2 2 2 2 2
2 2

2 2 2 2 2 2

1 1 1 1
( ) [ (( ) ), ( ) ]) ( ) [( ) , f( ( ) )], t)

1 1

k k k k k kn n n n n n
f x y x y

n n n n n n

   
 

 
 

                              

2
2

2

2 2 2
2

2 2 2

1
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1 1 1

( ) (( ) , ( ) ,0,0,...,0)

k

k
k k k

n
t

n
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t x y

n n n







  


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2
2

2

2 2
2

2 2

1
( )

lim
1 1

( ) ( ) ( , ,0,...,0)

k

k
k k k

n
t

n

n n
t L x y

n n







 



 

for all ,x y X and 0t  . Since 

                                                     

2
2

2

2 2
2

2 2

1
( )

lim 1
1 1

( ) ( ) ( , ,0,...,0)

k

k
k k k

n
t

n

n n
t L x y

n n







 



 

for all ,x y X   and 0t  ,  hence 

                                                          ([ , ]) [ ( ), ] [x,D(y)]D x y D x y   

for all ,x y X . Thus D is a Lie derivation satisfying (4.5), as desired. 
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