ON BCL-ALGEBRA

Deena Al-Kadi ${ }^{1}$, Rodyna Hosny ${ }^{1,2}$
${ }^{1}$ Department of Mathematics and statistic, Taif University, Taif, SAUDI ARABIA
dak12le@hotmail.co.uk
${ }^{2}$ Department of Mathematics, Zagazig University,Zagazig, EGYPT
rodyna.hosny2001@gmail.com

ABSTRACT:

It has been found that the BCL-algebra is more extensive class than BCK/BCI/BCH-algebra. In this paper we study some properties of BCL-algebra of type (2,0). We also find deformation of such algebra and illustrate the connection between divisible algebra and deformation function.

KEYWORDS:

BCL-algebra; d-algebra; BCH -algebra; BCI -algebra; BCK -algebra; deformation

SUBJECT CLASSIFICATION:

03G25, 06F35, 14D15

Council for Innovative Research

Peer Review Research Publishing System
Journal: Journal of Advances in Mathematics
Vol 3, No 2
editor@cirworld.com
www.cirworld.com, member.cirworld.com

1. INTRODUCTION

A new class of algebra of type (2,0) called BCL-algebra is presented in [1]. Liushowed in [1, Theorem 2.4] that a proper BCL-algebra does exist, if such BCL-algebra is not BCK/BCI/BCH-algebra. It also has been shown in [1, Theorem 2.1] that any $\mathrm{BCK} / \mathrm{BCl} / \mathrm{BCH}$-algebra is a BCL-algebra. The aim of this paper is to find when the converse of Theorem 2.1 in [1] is true. That is, to show when a BCL-algebra could be a $\mathrm{BCK} / \mathrm{BCI} / \mathrm{BCH}$-algebra. The case where a BCL -algebra can be a $\mathrm{BCH}-$ algebra is studied and given in [1, Theorem 2.2]. Later in the paper we study deformation of BCL-algebra. The work in this part is motivated by the results in [3] on deformations of $\mathrm{d} / \mathrm{BCK}$-algebra.

We start in Section 2 by introducing the notions of $\mathrm{BCL} / \mathrm{d} / \mathrm{BCH} / \mathrm{BCI} / \mathrm{BCK}$-algebra respectively. Then, in Section 3, we investigate the relation between BCL -algebra and $\mathrm{d} / \mathrm{BCH} / \mathrm{BCl}$ and BCK -algebra. We give examples throughout the paper. The main results in this section are given in Theorem 3.1 which shows that a d-algebra X satisfying $(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{z}) * \mathrm{y}$ for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ is a BCL-algebra, Theorem 3.2 and Theorem 3.5 which gives the sufficient conditions which make a BCLalgebra become a $\mathrm{BCK} / \mathrm{BCl}$-algebra. In the final section of this paper, we define deformation function, deformation point and divisible algebra.We are concerned on the deformationof BCL-algebra. The main results in this section is Proposition 4.1 which gives a deformation of BCL-algebra and Theorem 4.1 that illustrate the connection between divisible BCL-algebra and a given map defined using associators of a non-zero element in X .

2. PRELIMINARIES

We give here the definitions of $\mathrm{BCL} / \mathrm{d} / \mathrm{BCH} / \mathrm{BCI} / \mathrm{BCK}$-algebra from [1,2,3]. We refer the reader to [4] and [5] for further information on $\mathrm{BCI} / \mathrm{BCK}$-algebra.
Definition 2.1: [1, Definition 2.1] An algebra ($\mathrm{X} ; *, 0$) of type (2,0) is a BCL-algebra if it satisfies the following conditions for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$:

1) $\mathrm{BCL}-1: \mathrm{x} * \mathrm{x}=0$;
2) $B C L-2: x * y=0$ and $y * x=0$ imply $x=y$;
3) $\mathrm{BCL}-3:((\mathrm{x} * \mathrm{y}) * \mathrm{z}) *((\mathrm{x} * \mathrm{z}) * \mathrm{y}) *((\mathrm{z} * \mathrm{y}) * \mathrm{x})=0$.

Definition 2.2: [2, p2] An algebra ($\mathrm{X} ; *, 0$) of type $(2,0)$ is a d-algebra if it satisfies the following conditions for any $\mathrm{x}, \mathrm{y} \in \mathrm{X}$:

1) $d-1: x * x=0$;
2) $\mathrm{d}-2: 0 * \mathrm{x}=0$;
3) $d-3: x * y=0$ and $y * x=0$ imply $x=y$.

Definition 2.3: [1, Definition 1.3] An algebra ($\mathrm{X} ; *, 0$) of type (2,0) is a BCH-algebra if it satisfies the following conditions for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$:

1) $B C H-1: x * x=0$;
2) $B C H-2: x * y=0$ and $y * x=0$ imply $x=y$;
3) $\operatorname{BCH}-3:((x * y) * z) *((x * z) * y)=0$.

Definition 2.4: [1, Definition 1.1] An algebra ($\mathrm{X} ; *, 0$) of type $(2,0)$ is a BCl -algebra if it satisfies the following conditions for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$:

1) $\mathrm{BCI}-1: \mathrm{x} * \mathrm{x}=0$;
2) $\mathrm{BCI}-2: \mathrm{x} * 0=0$ imply $\mathrm{x}=0$;
3) $\mathrm{BCI}-3: \mathrm{x} * \mathrm{y}=0$ and $\mathrm{y} * \mathrm{x}=0$ imply $\mathrm{x}=\mathrm{y}$;
4) $\operatorname{BCl}-4:((x * y) *(x * z)) *(z * y)=0$;
5) $\mathrm{BCI}-5:(\mathrm{x} *(\mathrm{x} * \mathrm{y})) * \mathrm{y}=0$.

Definition 2.5: [3, p316] An algebra ($\mathrm{X} ; *, 0$) of type (2,0) is a BCK-algebra if it satisfies the following conditions for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$:

1) $B C K-1: x * x=0$;
2) $В С К-2: 0 * x=0$;
3) BCK-3: $x * y=0$ and $y * x=0$ imply $x=y$;
4) BCK-4: $((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})) *(\mathrm{z} * \mathrm{y})=0$;
5) $\operatorname{BCK}-5:(x *(x * y)) * y=0$.

3. RESULTS ON BCL-ALGEBRAS

In this section, we give some properties related to BCL-algebra. We give necessary conditions for a BCL-algebra to become a $\mathrm{d} / \mathrm{BCK} / \mathrm{BCI} / \mathrm{BCH}$-algebra. We start with the following example of a d-algebra which is not a BCL-algebra.
Example 3.1: Let $\mathrm{X}:=\{0,1,2,3\}$ be a set in which * is defined by the following Cayley table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	3	2
2	2	2	0	1
3	3	1	2	0

We can easily see that $(\mathrm{X} ; *, 0)$ is a d-algebra and that BCL-1 and BCL-2 does hold. For BCL-3, we can see that if $x=3, y=2$ and $z=1$, then
$((3 * 2) * 1) *((3 * 1) * 2) *((1 * 2) * 3)=(2 * 1) *(1 * 2) *(3 * 3)=2 * 3 * 0=1 * 0=$ $1 \neq 0$.
Thus $(\mathrm{X} ; *, 0)$ is not a BCL-algebra.
Lemma 3.1: Not every d-algebra is a BCL-algebra.
This leads us to find a sufficient axiom (as shown in the next theorem) if satisfied then the d-algebra will become a BCLalgebra. We will label the extra axiom $(x * y) * z=(x * z) * y$ by $d-4^{+}$for brevity.

Theorem 3.1: A d-algebra ($\mathrm{X} ; *, 0$) satisfying $d-4^{+}$is a BCL-algebra.
Proof: Let $(\mathrm{X} ; *, 0)$ be a d-algebra. It is clear that BCL-1, BCL-2 are satisfied. We only need to show that BCL-3 is valid. We have $((\mathrm{x} * \mathrm{y}) * \mathrm{z}) *((\mathrm{x} * \mathrm{z}) * \mathrm{y}) *((\mathrm{z} * \mathrm{y}) * \mathrm{x})=0 *((\mathrm{z} * \mathrm{y}) * \mathrm{x})=0$. Therefore, $(\mathrm{X} ; *, 0)$ is a BCL-algebra.
In the next part we find a sufficient condition that makes a BCL-algebra be a d-algebra.
Theorem 3.2: A BCL-algebra $(X ; *, 0)$ satisfying $0 * x=0$ for any $x \in X$ is a d-algebra.
Proof: The proof follows immediately from Definition 2.1.
We will apply Theorem 3.2 to the next example.
Example 3.2: Consider the BCL-algebra $(\mathrm{X} ; *, 0)$ given in [1, Theorem 2.4] with the following table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	3	1
2	2	3	0	2
3	3	0	0	0

It is obvious that $d-1, d-2$ and $d-3$ are applied in this example. Then $(X ; *, 0)$ is a BCL-algebra, which is a d-algebra.
Theorem 3.3: (See [1, Theorem 2.6]) If $(\mathrm{X} ; *, 0)$ a BCL-algebra then the following relations are satisfied for any $x, y, z \in X$,

1) $(\mathrm{x} *(\mathrm{x} * \mathrm{y})) * \mathrm{y}=0$;
2) $\mathrm{x} * 0=0$ imply $\mathrm{x}=0$.

Theorem 3.4: (See [1, Theorem 2.1])
1)Any $B C K$-algebra is a BCL-algebra;
2) Any BCl -algebra is a BCL -algebra;
3) Any BCH-algebra is a BCL-algebra.

Motivated by Theorem 2.1 in [1] (stated above in Theorem 3.4) we give our theorem which will show the sufficient conditions that we apply on BCL-algebra to become $\mathrm{BCK} / \mathrm{BCI} / \mathrm{BCH}$ respectively. Note that the last case were studied in [1] and the related theorem is given below.
Theorem 3.5: Let $(X ; 0)$ be a BCL-algebra. If $0 * x=0$ and $x * y=x * z$ for any $x, y, z \in X$, then

1) the BCL-algebra is a BCK-algebra;
2) the BCL-algebra is a BCl -algebra.

Proof: It is clear that the axioms BCK-1, BCK-2, BCK-3 are satisfied. With the assumptions given above, we have $((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})) *(\mathrm{z} * \mathrm{y})=0 *(\mathrm{z} * \mathrm{y})=0$. This proves that the axiom BCK-4 is valid. Finally, we know from Theorem 3.3 that a BCL-algebra satisfies the relation BCK-5. Thus the BCL-algebra is a BCK-algebra.

Similarly, we can observe that the axioms $\mathrm{BCl}-1$ and $\mathrm{BCl}-3$ follows directly from Definition 2.1. Also, $\mathrm{BCl}-2$ and $\mathrm{BCl}-5$ are valid from Theorem 3.3. We show that $\mathrm{BCI}-4$ is valid using the assumptions above as we done in the first part. This proves that the given BCL-algebra is a BCl -algebra.
We remind the reader that $d-4^{+}$is the axiom $(x * y) * z=(x * z) * y$.
Theorem 3.6: (See [1, Theorem 2.2]) If $(X ; *, 0)$ is a BCL-algebra satisfying $d-4^{+}$then the BCL-algebra is a BCH-algebra.
Corollary 3.1: Any d-algebra ($\mathrm{X} ; *, 0$) satisfying $\mathrm{d}-\mathrm{4}^{+}$is a BCH -algebra.
Proof: It is clear that $\mathrm{BCH}-1, \mathrm{BCH}-2$ are satisfied in any d-algebra and $\mathrm{BCH}-3$ is $d-4^{+}$. Hence any d-algebra satisfying $d-4^{+}$is a BCH -algebra.

4. DEFORMATION OF BCL-ALGEBRA

In this section we study deformation of BCL-algebra. We start with basic definitions taken from [3].
Definition 4.1: Let $(X ; *, 0)$ be an algebra. A map $\varphi: X \rightarrow X$ is said to be a deformation function of X if
(i) $\mathrm{x} \neq 0$ implies $\mathrm{x} * \varphi(\mathrm{x}) \neq 0$,
(ii) there exist $a \in X$ such that $a * \varphi(a) \neq a$.

The element a is called a deformation point of X and $(\mathrm{X} ; *, 0)$ is said to be a deformation algebra.
Next we will apply the notions in Definition 4.1 to a given BCL-algebra.

Example 4.1: Consider the algebra given in Example 3.2. Define a map φ by
$\varphi(0)=\varphi(1)=0, \varphi(2)=1, \varphi(3)=0$. Then we have $1 * \varphi(1)=1 * 0=1 \neq 0$. Similarly we can see that $2 * \varphi(2) \neq 0$ and $3 * \varphi(3) \neq 0$. Furthermore, there exists $2 \in \mathrm{X}$ such that $2 * \varphi(2) \neq 2$. Therefore, the $\operatorname{map} \varphi$ is a deformation function, the element 2 is a deformation point of X and $(X ; *, 0)$ is a deformation algebra.

Proposition 4.1: Let $(\mathrm{X} ; *, 0)$ be a $B C L$ - algebra with $0 * \mathrm{X}=0$ and let φ be a deformation function of X . Define a binary operation on X by:
$\mathrm{x} \nabla \mathrm{y}:=(\mathrm{x} * \mathrm{y}) * \varphi(\mathrm{x} * \mathrm{y})$ for any $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, then $(\mathrm{X} ; \nabla, 0)$ is a d-algebra which is no ta BCL-algebra. Proof: Given $(\mathrm{X} ; *, 0)$ is a BCL- algebra and that $0 * \mathrm{x}=0$, by using the axioms in Definition 2.1 we have $\mathrm{x} \nabla \mathrm{x}=(\mathrm{x} * \mathrm{x}) * \varphi(\mathrm{x} * \mathrm{x})=0 * \varphi(0)=0$. Also $0 \nabla \mathrm{x}=(0 * \mathrm{x}) * \varphi(0 * \mathrm{x})=0 * \varphi(0)=0$. Assume that $\mathrm{x} \nabla \mathrm{y}=0=\mathrm{y} \nabla \mathrm{x}$. Then $(\mathrm{x} * \mathrm{y}) * \varphi(\mathrm{x} * \mathrm{y})=0=(\mathrm{y} * \mathrm{x}) * \varphi(\mathrm{y} * \mathrm{x})$. As φ is a deformation function we get $x * y=0=y * x$. Hence, $x=y$. Therefore, $(X ; \nabla, 0)$ is a d-algebra. We show that $(X ; \nabla, 0)$ is not a BCLalgebra by providing the next example.ㅁ

Example 4.2: Consider the BCL-algebra given in Example 3.2 and consider the deformation function φ given in Example 4.1. If we define $\mathrm{x} \nabla \mathrm{y}:=(\mathrm{x} * \mathrm{y}) * \varphi(\mathrm{x} * \mathrm{y})$ then $(\mathrm{X} ; \nabla, 0)$ is a deformed BCL-algebra (defined below) which is not BCL -algebra since $((1 \nabla 3) \nabla 2) \nabla((1 \nabla 2) \nabla 3) \nabla((2 \nabla 3) \nabla 1)=3 \neq 0$.

∇	0	1	2	3
0	0	0	0	0
1	1	0	3	1
2	3	3	0	3
3	3	0	0	0

Lemma 4.1: If $\mathrm{x} \nabla \mathrm{y}=0$ then $\mathrm{x} * \mathrm{y}=0$ for any $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.
Corollary 4.1: Let $(\mathrm{X} ; *, 0)$ be a BCH - algebra with $0 * \mathrm{x}=0$ and let φ be a deformation function of X . Define a binary operation on X by:
$\mathrm{x} \nabla \mathrm{y}:=(\mathrm{x} * \mathrm{y}) * \varphi(\mathrm{x} * \mathrm{y})$ for any $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, then $(\mathrm{X} ; \nabla, 0)$ is a d-algebra which is not a BCH-algebra.
Proof: The proof is the same as the proof of Proposition 4.1 above using Definition 2.3. To verify that $(\mathrm{X}, \nabla, 0)$ is not a BCH-algebra, consider the algebra ($\mathrm{X} ; *, 0$) defined as follows:

$*$	0	1	2	3
0	0	0	1	0
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

It is not difficult to check that $(\mathrm{X} ; *, 0)$ is a BCH -algebra. Define the deformation function as given in Example 4.1. Then it is clear from the following table that the algebra ($\mathrm{X} ; \nabla, 0$) is a d-algebra and it is easy to check that the axiom $\mathrm{BCH}-3$ fails as $((1 \nabla 3) \nabla 2) \nabla((1 \nabla 2) \nabla 3)=1 \neq 0$. Hence, $(X ; \nabla, 0)$ is not a BCH -algebra.

∇	0	1	2	3
0	0	0	0	0
1	1	0	3	3
2	3	3	0	1
3	3	3	1	0

Definition 4.2: An algebra is said to be rigid if it has no non-trivial deformation.
Example 4.3: Consider the BCL-algebra given in Example 3.2 and define a deformation function as follows $\varphi(0)=0, \varphi(1)=2, \varphi(2)=1, \varphi(3)=0$. With direct calculations we can show that the deformed algebra ($\mathrm{X} ; \nabla, 0$) is a BCL-algebra where $(\mathrm{X} ; \nabla, 0)$ is defined below. Thus the BCL-algebra $(\mathrm{X} ; *, 0)$ in this example is not rigid. Note that the algebra $(\mathrm{X} ; \nabla, \mathrm{O})$ is a d-algebra.

∇	0	1	2	3
0	0	0	0	0
1	3	0	3	3
2	3	3	0	3
3	3	0	0	0

Definition 4.3: An algebra $(\mathrm{X} ; *, 0)$ is said to be divisible if for any non-zero element $\mathrm{x} \in \mathrm{X}$, there exists an element $\hat{\mathrm{X}} \in \mathrm{X}$ such that $\mathrm{x} * \hat{\mathrm{X}} \notin\{0, \mathrm{x}\}$. The element $\hat{\mathrm{x}}$ is called an associator of x .

Example 4.4: Consider the algebra in Example 3.2. We can see that 2 is an associator of 1 and 1 is an associator of 2. Whereas, 3 has no associator. Hence, the given algebra is not divisible.
Remark 4.1: The associator is not unique in general.
Proposition 4.2: There exist some BCL-algebras ($\mathrm{X} ; *, 0$) which are not divisible.
Proof: Let $(\mathrm{X} ; *, 0)$ be a $B C L-a l g e b r a ~ t h e n ~ \mathrm{x} * \mathrm{x}=0$ and for any $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \neq 0, \mathrm{x} * \mathrm{y} \in \mathrm{X}$. Therefore, we might have the cases where $\mathrm{x} * \mathrm{y}=0$ or $\mathrm{x} * \mathrm{y}=\mathrm{x}$ i.e. we might have $\mathrm{x} * \mathrm{y} \in\{0, \mathrm{x}\}$. If this is the case then there is no associator $\widehat{\mathrm{X}}$ in X such that $\mathrm{x} * \hat{\mathrm{X}} \nsubseteq\{0, \mathrm{x}\}$. Hence $(\mathrm{X} ; *, 0)$ is not always divisible.

Theorem 4.1: Let $(\mathrm{X} ; *, 0)$ be a divisible BCL- algebra and define for a non-zero element $a \in X$, a map $\varphi_{\mathrm{a}}: \mathrm{X} \rightarrow \mathrm{X}$ by

$$
\varphi_{\mathrm{a}}(\mathrm{x})= \begin{cases}\mathrm{a} & \mathrm{x}=\mathrm{a} \\ 0 & \mathrm{x} \neq \mathrm{a}\end{cases}
$$

Then φ_{a} is a deformation function of X .

Proof: We will use the same strategy used in the proof of [3, Theorem 4.7].

Let $\mathbf{x} \neq 0$ then
$\mathrm{x} * \varphi_{\mathrm{a}}(\mathrm{x})= \begin{cases}\mathrm{a} * \varphi_{\mathrm{a}}(\mathrm{a})=\mathrm{a} * \mathrm{a}, & \mathrm{x}=\mathrm{a} \\ \mathrm{x} * \varphi_{\mathrm{a}}(\mathrm{x})=\mathrm{x} * 0, & \mathrm{x} \neq \mathrm{a} .\end{cases}$
Thus, if $\mathrm{x}=\mathrm{a}$, we have $\mathrm{a} * \varphi_{\mathrm{a}}(\mathrm{a})=\mathrm{a} * \mathrm{a} \notin\{0, \mathrm{a}\}$ as X is a divisible algebra. If $\mathrm{x} \neq \mathrm{a}$, given that $\mathrm{x} \neq 0$, then from Definition $1.1 \mathrm{BCL}-2$ we see that $\mathrm{x} * 0 \neq 0$. Hence, $\mathrm{x} * \varphi_{\mathrm{a}}(\mathrm{x}) \neq 0$. This proves that φ_{a} is a deformation function of X . \square

REFERENCES

[1] Liu,Y. H., 2011. A New Branch of the pure Algebra: BCL-Algebras. Advances in Pure Mathematics, 1(5):297-299.
[2] Kim,H. S., J. Neggers and K. S. So, 2012. Some Aspects of d-Units in d/BCK-Algebras: Journal of Applied Mathematics,(2012) :10 pages.
[3] Allen,P. J., H. S. kim and J. Nggers, 2011. Deformations of d/BCK-Algebras.Bull. Korean Math. Soc., 48(2): 315-324.
[4] Huang,Y. S., 2006. BCl-algebra: Science press, China.
[5] MengJ. and Y. B. Jun, 1994. BCK-algebras: Kyung Moon Sa Co., Seoul, Korea.

