

## ON BCL-ALGEBRA

Deena Al-Kadi<sup>1</sup>, Rodyna Hosny<sup>1,2</sup>

<sup>1</sup>Department of Mathematics and statistic, Taif University, Taif, SAUDI ARABIA <u>dak12le@hotmail.co.uk</u>

<sup>2</sup>Department of Mathematics, Zagazig University, Zagazig, EGYPT rodyna.hosny2001@gmail.com

# **ABSTRACT:**

It has been found that the BCL-algebra is more extensive class than BCK/BCI/BCH-algebra. In this paper we study some properties of BCL-algebra of type (2,0). We also find deformation of such algebra and illustrate the connection between divisible algebra and deformation function.

## **KEYWORDS:**

BCL-algebra; d-algebra; BCH-algebra; BCK-algebra; deformation

# SUBJECT CLASSIFICATION:



# Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 3, No 2 editor@cirworld.com www.cirworld.com, member.cirworld.com



#### 1. INTRODUCTION

A new class of algebra of type (2,0) called BCL-algebra is presented in [1]. Liushowed in [1, Theorem 2.4] that a proper BCL-algebra does exist, if such BCL-algebra is not BCK/BCl/BCH-algebra. It also has been shown in [1, Theorem 2.1] that any BCK/BCl/BCH-algebra is a BCL-algebra. The aim of this paper is to find when the converse of Theorem 2.1 in [1] is true. That is, to show when a BCL-algebra could be a BCK/BCl/BCH-algebra. The case where a BCL-algebra can be a BCH-algebra is studied and given in [1, Theorem 2.2]. Later in the paper we study deformation of BCL-algebra. The work in this part is motivated by the results in [3] on deformations of d/BCK-algebra.

We start in Section 2 by introducing the notions of BCL/d/BCH/BCI/ BCK-algebra respectively. Then, in Section 3, we investigate the relation between BCL-algebra and d/BCH/BCI and BCK-algebra. We give examples throughout the paper. The main results in this section are given in Theorem 3.1 which shows that a d-algebra X satisfying (x\*y)\*z=(x\*z)\*y for any x, y,  $z \in X$  is a BCL-algebra, Theorem 3.2 and Theorem 3.5 which gives the sufficient conditions which make a BCL-algebra become a BCK/BCI-algebra. In the final section of this paper, we define deformation function, deformation point and divisible algebra. We are concerned on the deformation of BCL-algebra. The main results in this section is Proposition 4.1 which gives a deformation of BCL-algebra and Theorem 4.1 that illustrate the connection between divisible BCL-algebra and a given map defined using associators of a non-zero element in X.

#### 2. PRELIMINARIES

We give here the definitions of BCL/d/BCH/BCI/BCK-algebra from [1,2,3]. We refer the reader to [4] and [5] for further information on BCI/BCK -algebra.

**Definition 2.1:** [1, Definition 2.1] An algebra (X; \*, 0) of type (2, 0) is a BCL-algebra if it satisfies the following conditions for any  $x, y, z \in X$ :

- 1) BCL-1: x \* x = 0;
- 2) BCL-2: x \* y = 0 and y \* x = 0 imply x = y;
- 3) BCL-3:((x\*y)\*z)\*((x\*z)\*y)\*((z\*y)\*x) = 0.

**Definition 2.2:** [2, p2] An algebra (X; \*, 0) of type (2, 0) is a d-algebra if it satisfies the following conditions for any  $x, y \in X$ :

- 1) d-1: x \* x = 0;
- 2) d-2: 0 \* x = 0;
- 3) d-3: x \* y = 0 and y \* x = 0 imply x = y.

**Definition 2.3:** [1, Definition 1.3] An algebra (X; \*, 0) of type (2, 0) is a BCH-algebra if it satisfies the following conditions for any  $x, y, z \in X$ :

- 1) BCH-1: x \* x = 0;
- 2) BCH-2: x \* y = 0 and y \* x = 0 imply x = y;
- 3) BCH-3: ((x\*y)\*z)\*((x\*z)\*y) = 0.

**Definition 2.4:** [1, Definition 1.1] An algebra (X; \*, 0) of type (2,0) is a BCI-algebra if it satisfies the following conditions for any  $x, y, z \in X$ :

- 1) BCI-1: x \* x = 0;
- 2) BCI-2: x \* 0 = 0 imply x = 0;
- 3) BCI-3: x \* y = 0 and y \* x = 0 imply x = y;



4) BCI-4: 
$$((x * y) * (x * z)) * (z * y) = 0$$
;

5) BCI-5: 
$$(x * (x * y)) * y = 0$$
.

**Definition 2.5:** [3, p316] An algebra (X; \*, 0) of type (2,0) is a BCK-algebra if it satisfies the following conditions for any  $x, y, z \in X$ :

- 1) BCK-1: x \* x = 0;
- 2) BCK-2: 0 \* x = 0;
- 3) BCK-3: x \* y = 0 and y \* x = 0 imply x = y;
- 4) BCK-4: ((x \* y) \* (x \* z)) \* (z \* y) = 0;
- 5) BCK-5: (x \* (x \* y)) \* y = 0.

#### 3. RESULTS ON BCL-ALGEBRAS

In this section, we give some properties related to BCL-algebra. We give necessary conditions for a BCL-algebra to become a d/BCK/BCl/BCH-algebra. We start with the following example of a d-algebra which is not a BCL-algebra.

**Example 3.1:** Let  $X := \{0, 1, 2, 3\}$  be a set in which \* is defined by the following Cayley table:

| * | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 3 | 2 |
| 2 | 2 | 2 | 0 | 1 |
| 3 | 3 | 1 | 2 | 0 |

We can easily see that (X; \*, 0) is a d-algebra and that BCL-1 and BCL-2 does hold. For BCL-3, we can see that if x = 3, y = 2 and z = 1, then

$$((3*2)*1)*((3*1)*2)*((1*2)*3) = (2*1)*(1*2)*(3*3) = 2*3*0 = 1*0 = 1 \neq 0.$$

Thus (X; \*, 0) is not a BCL-algebra.

Lemma 3.1: Not every d-algebra is a BCL-algebra.

This leads us to find a sufficient axiom (as shown in the next theorem) if satisfied then the d-algebra will become a BCL-algebra. We will label the extra axiom (x \* y) \* z = (x \* z) \* y by d-4<sup>+</sup> for brevity.

**Theorem 3.1:** A d-algebra (X; \*, 0) satisfying d- $4^+$  is a BCL-algebra.

Proof: Let (X; \*, 0) be a d-algebra. It is clear that BCL-1, BCL-2 are satisfied. We only need to show that BCL-3 is valid. We have ((x\*y)\*z)\*((x\*z)\*y)\*((z\*y)\*x)=0\*((z\*y)\*x)=0. Therefore, (X; \*, 0) is a BCL-algebra.  $\square$ 

In the next part we find a sufficient condition that makes a BCL-algebra be a d-algebra.

**Theorem 3.2:** A BCL-algebra (X; \*, 0) satisfying 0 \* x = 0 for any  $x \in X$  is a d-algebra.

Proof: The proof follows immediately from Definition 2.1.

We will apply Theorem 3.2 to the next example.

**Example 3.2:** Consider the BCL-algebra (X;\*,0) given in [1, Theorem 2.4] with the following table:



| * | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 3 | 1 |
| 2 | 2 | 3 | 0 | 2 |
| 3 | 3 | 0 | 0 | 0 |

It is obvious that d-1, d-2 and d-3 are applied in this example. Then (X; \*, 0) is a BCL-algebra, which is a d-algebra.

**Theorem 3.3:** (See [1, Theorem 2.6]) If (X; \*, 0) a BCL-algebra then the following relations are satisfied for any  $x, y, z \in X$ ,

- 1) (x \* (x \* y)) \* y = 0;
- 2) x \* 0 = 0 imply x = 0.

**Theorem 3.4:** (See [1, Theorem 2.1])

- 1) Any BCK-algebra is a BCL-algebra;
- 2) Any BCI-algebra is a BCL-algebra;
- 3) Any BCH-algebra is a BCL-algebra.

Motivated by Theorem 2.1 in [1] (stated above in Theorem 3.4) we give our theorem which will show the sufficient conditions that we apply on BCL-algebra to become BCK/BCI/BCH respectively. Note that the last case were studied in [1] and the related theorem is given below.

Theorem 3.5: Let (X;\*,0) be a BCL-algebra. If 0\*x=0 and x\*y=x\*z for any  $x,y,z\in X$ , then

- 1) the BCL-algebra is a BCK-algebra;
- 2) the BCL-algebra is a BCI-algebra.

Proof: It is clear that the axioms BCK-1, BCK-2, BCK-3 are satisfied. With the assumptions given above, we have ((x \* y) \* (x \* z)) \* (z \* y) = 0 \* (z \* y) = 0. This proves that the axiom BCK-4 is valid. Finally, we know from Theorem 3.3 that a BCL-algebra satisfies the relation BCK-5. Thus the BCL-algebra is a BCK-algebra.

Similarly, we can observe that the axioms BCI-1 and BCI-3 follows directly from Definition 2.1. Also, BCI-2 and BCI-5 are valid from Theorem 3.3. We show that BCI-4 is valid using the assumptions above as we done in the first part. This proves that the given BCL-algebra is a BCI-algebra.

We remind the reader that  $d-4^+$  is the axiom (x \* y) \* z = (x \* z) \* y.

**Theorem 3.6:** (See [1, Theorem 2.2]) If (X; \*, 0) is a BCL-algebra satisfying d-4<sup>+</sup>then the BCL-algebra is a BCH-algebra.

**Corollary 3.1:** Any d-algebra (X; \*, 0) satisfying d- $4^+$  is a BCH-algebra.

Proof: It is clear that BCH-1, BCH-2 are satisfied in any d-algebra and BCH-3 is d- $4^+$ . Hence any d-algebra satisfying d- $4^+$ is a BCH-algebra.  $\square$ 

## 4. DEFORMATION OF BCL-ALGEBRA

In this section we study deformation of BCL-algebra. We start with basic definitions taken from [3].

**Definition 4.1:** Let (X; \*, 0) be an algebra. A map  $\varphi : X \to X$  is said to be a deformation function of X if

- (i)  $x \neq 0$  implies  $x * \phi(x) \neq 0$ ,
- (ii) there exist  $a \in X$  such that  $a * \varphi(a) \neq a$ .

The element  $\mathbf{a}$  is called a deformation point of  $\mathbf{X}$  and  $(\mathbf{X}; *, \mathbf{0})$  is said to be a deformation algebra.

Next we will apply the notions in Definition 4.1 to a given BCL-algebra.



**Example 4.1:** Consider the algebra given in Example 3.2. Define a map  $\varphi$  by

 $\phi(0)=\phi(1)=0, \phi(2)=1, \phi(3)=0.$  Then we have  $1*\phi(1)=1*0=1\neq 0.$  Similarly we can see that  $2*\phi(2)\neq 0$  and  $3*\phi(3)\neq 0.$  Furthermore, there exists  $2\in X$  such that  $2*\phi(2)\neq 2.$  Therefore, the map  $\phi$  is a deformation function, the element 2 is a deformation point of X and X and X and X and deformation algebra.

**Proposition 4.1:** Let (X; \*, 0) be a BCL- algebra with 0 \* x = 0 and let  $\phi$  be a deformation function of X. Define a binary operation on X by:

 $x \nabla y := (x * y) * \phi(x * y)$  for any  $x, y \in X$ , then  $(X; \nabla, 0)$  is a d-algebra which is not a BCL-algebra.

Proof: Given (X; \*, 0) is a BCL- algebra and that 0 \* x = 0, by using the axioms in Definition 2.1 we have  $x \nabla x = (x * x) * \phi(x * x) = 0 * \phi(0) = 0$ . Also  $0 \nabla x = (0 * x) * \phi(0 * x) = 0 * \phi(0) = 0$ . Assume that  $x \nabla y = 0 = y \nabla x$ . Then  $(x * y) * \phi(x * y) = 0 = (y * x) * \phi(y * x)$ . As  $\phi$  is a deformation function we get x \* y = 0 = y \* x. Hence, x = y. Therefore,  $(X; \nabla, 0)$  is a d-algebra. We show that  $(X; \nabla, 0)$  is not a BCL-algebra by providing the next example.  $\square$ 

Example 4.2: Consider the BCL-algebra given in Example 3.2 and consider the deformation function  $\phi$  given in Example 4.1. If we define  $x \nabla y := (x * y) * \phi(x * y)$  then  $(X; \nabla, 0)$  is a deformed BCL-algebra (defined below) which is not BCL-algebra since  $((1\nabla 3)\nabla 2)\nabla ((1\nabla 2)\nabla 3)\nabla ((2\nabla 3)\nabla 1) = 3 \neq 0$ .

| ٧ | 0 | 1 | 2 | 3 |  |
|---|---|---|---|---|--|
| 0 | 0 | 0 | 0 | 0 |  |
| 1 | 1 | 0 | 3 | 1 |  |
| 2 | 3 | 3 | 0 | 3 |  |
| 3 | 3 | 0 | 0 | 0 |  |
|   |   |   |   |   |  |

Lemma 4.1: If  $x \nabla y = 0$  then x \* y = 0 for any  $x, y \in X$ .

Corollary 4.1: Let (X; \*, 0) be a BCH- algebra with 0 \* x = 0 and let  $\varphi$  be a deformation function of X. Define a binary operation on X by:

 $x \nabla y := (x * y) * \phi(x * y)$  for any  $x, y \in X$ , then  $(X; \nabla, 0)$  is a d-algebra which is not a BCH-algebra.

**Proof:** The proof is the same as the proof of Proposition 4.1 above using Definition 2.3. To verify that  $(X; \nabla, 0)$  is not a BCH-algebra, consider the algebra (X; \*, 0) defined as follows:

| * | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 3 | 2 |
| 2 | 2 | 3 | 0 | 1 |
| 3 | 3 | 2 | 1 | 0 |



It is not difficult to check that (X; \*, 0) is a BCH-algebra. Define the deformation function as given in Example 4.1. Then it is clear from the following table that the algebra  $(X; \nabla, 0)$  is a d-algebra and it is easy to check that the axiom BCH-3 fails as  $((1\nabla 3)\nabla 2)\nabla((1\nabla 2)\nabla 3) = 1 \neq 0$ . Hence,  $(X; \nabla, 0)$  is not a BCH-algebra.

| <b>V</b> | 0 | 1 | 2 | 3 |
|----------|---|---|---|---|
| 0        | 0 | 0 | 0 | 0 |
| 1        | 1 | 0 | 3 | 3 |
| 2        | 3 | 3 | 0 | 1 |
| 3        | 3 | 3 | 1 | 0 |

Definition 4.2: An algebra is said to be rigid if it has no non-trivial deformation.

**Example 4.3:** Consider the BCL-algebra given in Example 3.2 and define a deformation function as follows  $\varphi(0)=0$ ,  $\varphi(1)=2$ ,  $\varphi(2)=1$ ,  $\varphi(3)=0$ . With direct calculations we can show that the deformed algebra  $(X;\nabla,0)$  is a BCL-algebra where  $(X;\nabla,0)$  is defined below. Thus the BCL-algebra (X;\*,0) in this example is not rigid. Note that the algebra  $(X;\nabla,0)$  is a d-algebra.

| V | 0 | 1 | 2 | 3 |  |
|---|---|---|---|---|--|
| 0 | 0 | 0 | 0 | 0 |  |
| 1 | 3 | 0 | 3 | 3 |  |
| 2 | 3 | 3 | 0 | 3 |  |
| 3 | 3 | 0 | 0 | 0 |  |

**Definition 4.3:** An algebra (X; \*, 0) is said to be divisible if for any non-zero element  $x \in X$ , there exists an element  $\hat{x} \in X$  such that  $x * \hat{x} \notin \{0, x\}$ . The element  $\hat{x}$  is called an associator of x.

**Example 4.4:** Consider the algebra in Example 3.2. We can see that 2 is an associator of 1 and 1 is an associator of 2. Whereas, 3 has no associator. Hence, the given algebra is not divisible.

Remark 4.1: The associator is not unique in general.

**Proposition 4.2:** There exist some BCL-algebras (X;\*,0) which are not divisible.

Proof: Let (X; \*, 0) be a BCL-algebra then x \* x = 0 and for any  $x, y \in X, x \neq 0$ ,  $x * y \in X$ . Therefore, we might have the cases where x \* y = 0 or x \* y = x i.e. we might have  $x * y \in \{0, x\}$ . If this is the case then there is no associator  $\widehat{x}$  in X such that  $x * \widehat{x} \notin \{0, x\}$ . Hence (X; \*, 0) is not always divisible.  $\square$ 

**Theorem 4.1:** Let (X; \*, 0) be a divisible BCL- algebra and define for a non-zero element  $a \in X$ , a map  $\phi_a : X \to X$  by

$$\phi_a(x) = \begin{cases} \hat{a} & x = a \\ 0 & x \neq a. \end{cases}$$

Then  $\phi_a$  is a deformation function of X.

Proof: We will use the same strategy used in the proof of [3, Theorem 4.7].



Let  $x \neq 0$  then

$$x \, * \phi_a(x) = \begin{cases} a * \phi_a(a) = a * \widehat{a}, & x = a \\ x * \phi_a(x) = x * 0, & x \neq a. \end{cases}$$

Thus, if x=a, we have  $a*\phi_a(a)=a*\hat a\notin\{0,a\}$  as X is a divisible algebra. If  $x\neq a$ , given that  $x\neq 0$ , then from Definition 1.1 BCL-2 we see that  $x*0\neq 0$ . Hence,  $x*\phi_a(x)\neq 0$ . This proves that  $\phi_a$  is a deformation function of X.  $\square$ 

## **REFERENCES**

- [1] Liu, Y. H., 2011. A New Branch of the pure Algebra: BCL-Algebras. Advances in Pure Mathematics, 1(5):297-299.
- [2] Kim,H. S., J. Neggers and K. S. So, 2012. Some Aspects of d-Units in d/BCK-Algebras: Journal of Applied Mathematics, (2012):10 pages.
- [3] Allen, P. J., H. S. kim and J. Nggers, 2011. Deformations of d/BCK-Algebras. Bull. Korean Math. Soc., 48(2): 315-324.
- [4] Huang, Y. S., 2006. BCI-algebra: Science press, China.
- [5] MengJ. and Y. B. Jun, 1994. BCK-algebras: Kyung Moon Sa Co., Seoul, Korea.

