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ABSTRACT 

The paper examines functional and operator variants of Jensen's, chord's, and Mercer's inequality with a convex function 
on the interval of real numbers. In this research we relied on general functional and operator forms of Jensen's inequality. 
Among others, corresponding means are also observed. The inequalities for operators are observed without operator 
convexity. 
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1. INTRODUCTION 

Through this paper I   will be a non-degenerate interval, [ , ]a b   will be a non-degenerate closed segment, and 

< , >a b   will be a non-degenerate open segment. If 
ix I  are numbers, and [0,1]ip   are coefficients such that 

=1
=1

n

ii
p , then the sum 

=1

n

i ii
p x  belongs to I , and it is called the convex combination on I . For a continuous 

function :f I   the convex combination 
=1

( )
n

i ii
p f x  belongs to ( )f I . A convex hull of a set X  will be 

denoted by coX . 

If :f I   is a function, then the chord line joining the points ( , ( ))A a f a  and ( , ( ))B b f b  of the graph of f  with 

<a b  will be denoted by 
cho

[ , ]a bf , that is,  

 
cho

[ , ]( ) = ( ) ( ).a b

b x x a
f x f a f b

b a b a

 


 
 (1.1) 

Theorem A. 1 (The Jensen-chord-Mercer inequality)  Let 
=1

n

i ii
p x  be a convex combination on [ , ]a b . 

Then every convex function :[ , ]f a b   verifies the series of inequalities  

 

=1 =1

cho

[ , ]

=1

=1

( )

( ) ( ) ( ).

( ) ( ) ( )

n n

i i i i

i i

n

i a b i

i

n

i i

i

f a b p x p f a b x

f a f b p f x

f a f b p f x

 
     

 

  

  

 





 (1.2) 

     

Figure 1. Graphical presentation of the inequality in (1.2) 

The  inequality  in (1.2) is possible because the expression  

 

=1 =1 =1 =1

= ( ) = ( )
n n n n

i i i i i i i

i i i i

a b p x p a b p x p a b x          

is the convex combination on [ , ]a b . Namely, since [ , ]ix a b , then [ , ]ia b x a b   . Our aim is to expand the 

series of inequalities in (1.2)  with more points. The third inequality in (1.2)  is Mercer's inequality which was derived in [4] 

by using Jensen's inequality. It can be derived using only the chord line. If :[ , ]f a b   is a convex function, and 
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=1

n

i ii
p x  is a convex combination on [ , ]a b , then using the chord as the affine function 

cho

[ , ]( ) = ( ) =a bh x f x x  , 

it follows  

 
=1 =1 =1

=1

= ( ) ( ) ( )

( ) ( ) ( ).

n n n

i i i i i i

i i i

n

i i

i

f a b p x h a b p x h a h b p h x

f a f b p f x

   
         

   

  

  



 

Lemma 1.1. 2  Let ,ij kx y   be numbers, and 
ip   be coefficients such that 

=1
=1

n

ii
p . 

Then every affine function :h    verifies the equality  

 

1 1

=1 =1 =1 =1 =1 =1

= ( ) ( ).
m m n m m n

k i ij k i ij

k j i k j i

h y p x h y p h x
  

  
 
     (1.3) 

The equality in (1.3) can be adapted to a convex function :f I   as the inequality  

 

1 1

=1 =1 =1 =1 =1 =1

( ) ( )
m m n m m n

k i ij k i ij

k j i k j i

f y p x f y p f x
  

   
 
     (1.4) 

 with coefficients [0,1]ip  , numbers ,ij kx y I  so that \< , >ky I a b  where [ , ] = co{ }ija b x , and with the 

requirement that the number 
1

=1 =1 =1

m m n

k i ijk j i
y p x


    belongs to [ , ]a b . This inequality can be easily verified using 

the chord line 
cho

[ , ]( ) = ( ) =a bh x f x x  , and applying the equality in (1.3). 

The inequality in (1.4)  with a convex continuous function f  was obtained as the main result in [7, Theorem 2.1] using the 

majorization assumptions  

 1 1 1 1( , , ) ( , , ) =1, ,i im mx x y y foreveryi n      

where 
1

1 =1 =1
=

m m

im k ijk j
x y x



   , instead of requires that \< , >ky I a b  and 
1

=1 =1 =1
[ , ]

m m n

k i ijk j i
y p x a b


    . 

Using the Jensen inequality and the chord line, the inequality in (1.4) can be refined to the series of inequalities as it 
follows: 

Theorem 1.2. 3  Let ,ij kx y I  be numbers so that \< , >ky I a b  where [ , ] = co{ }ija b x . Let the numbers 

1

=1 =1
=

m m

i k ijk j
x y x


   belong to [ , ]a b . Let [0,1]ip   be coefficients such that 

=1
=1

n

ii
p . 

Then every convex function :f I   verifies the series of inequalities  

 

1 1

=1 =1 =1 =1 =1 =1

1
cho cho

[ , ] [ , ]

=1 =1 =1

1

=1 =1 =1

( ) ( ).

( ) ( )

m m n n m m

k i ij i k ij

k j i i k j

m m n

a b k i a b ij

k j i

m m n

k i ij

k j i

f y p x p f y x

f y p f x

f y p f x

 





   
     

   

 

 

    

 

 

 (1.5) 

Proof. The proof can be done by applying Jensen's inequality to the convex combination  
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1 1 1

=1 =1 =1 =1 =1 =1 =1 =1 =1 =1

= =
m m n m n m n n m m

k i ij i k i ij i k ij

k j i k i j i i k j

y p x p y p x p y x
   

   
 

        

which belongs to [ , ]a b , and then using the chord line 
cho

[ , ]( ) = ( )a bh x f x .                                                                   

2. FUNCTIONAL VARIANTS OF INEQUALITIES 

Let X  be a non-empty set, and   be a real vector space of functions :g X  . A linear functional P :   is 

positive (non-negative) or monotone if P( ) 0g   for every non-negative function g . If a space   contains a unit 

function 1 , by definition ( ) =1x1  for every x X , and P( ) =11 , we say that the functional P  is unital or normalized. 

Let P :   be a positive linear functional, w  be a non-negative function such that P( ) =1w , and 

:g X I  be a function where I  is a closed interval. If wg , then P( )wg I . If the interval I  is not closed, 

then it can happen that P( )wg I . The following example shows such an undesirable situation: 

Example 2.1. 4  Let = =<0,1]X I  and  

  
0

= : | ( ) isfinite .lim
x

g I g x
 

  

If P :   is defined by  

 
0

P( ) = ( ),lim
x

g g x
 

 

then P  is a positive linear functional. The functional P  is also unital because 1   and P( ) =11 . If we take =w 1 , 

and ( ) =g x x  for x I , then g  and its image is in I , but P( ) = P( ) = 0wg g I .   

Let P :i   be positive linear functionals, iw   be non-negative functions such that 
=1
P ( ) =1

n

i ii
w , and 

:ig X I  be functions where I  is a closed interval. If the functions i iw g  belong to  , then the functional sum 

=1
P ( )

n

i i ii
w g  belongs to I , and the sum itself can be called a functional convex combination on I . 

The backbone of this section is the next functional form of Jensen's inequality (the part of [6, Theorem 4.3]): 

 Theorem B. 5  Let P :i   be positive linear functionals, iw   be non-negative functions such that 

=1
P ( ) =1

n

i ii
w , and :ig X I  be functions where I  is a closed interval. 

Then every convex continuous function :f I   verifies the inequality  

 

=1 =1

P ( ) P ( ( ))
n n

i i i i i i

i i

f w g w f g
 

 
 
   (2.1) 

provided that the functions i iw g  and ( )i iw f g  belong to  .   

Corollary 2.2. 6  Let P :i   be positive linear functionals, iw   be non-negative functions such that 

=1
P ( ) =1

n

i ii
w , and : [ , ]ig X a b  be functions. 

Then every convex continuous function :[ , ]f a b   verifies the series of inequalities  



ISSN 2347-1921 

172 | P a g e                               O c t  2 1 ,  2 0 1 3  

 

 

 

 

 

=1 =1

cho

[ , ]

=1

=1

P ( ) P ( )

( ) ( ) P ( )

( ) ( ) P ( )

n n

i i i i i i

i i

n

i i a b i

i

n

i i i

i

f a b w g w f a b g

f a f b w f g

f a f b w f g

 
     

 

  

  

 





 (2.2) 

provided that the functions 
i iw g , ( )i iw f g  and ( )i iw f a b g   belong to  .  

Proof. First is the use of the inequality in (2.1)  with the functional convex combination  

  
=1 =1

P ( ) = P ( ) .
n n

i i i i i i

i i

a b w g w a b g      

After that we apply 
cho

[ , ]a bf  with its affinity, and thus obtain the inequality in (2.2).                                                          

The special case of the inequality in (2.2) for =1n  was obtained in [1, Theorem 2.1] as the main result. The next is the 

generalization of Corollary (2.2) as well as the functional variant of Theorem 1.2. 

Theorem 2.3. 7  Let P :i   be positive linear functionals, iw   be non-negative functions such that 

=1
P ( ) =1

n

i ii
w , :ijg X I  be functions where I  is a closed interval, and \< , >ky I a b  be numbers where 

[ , ] = co{ ( )}ija b g X . Let the images of the functions 
1

=1 =1
=

m m

i k ijk j
g y g


   are contained in [ , ]a b . 

Then every convex continuous function :f I   verifies the series of inequalities  

  

 

1 1

=1 =1 =1 =1 =1 =1

1

[ , ] [ , ]

=1 =1 =1

1

=1 =1 =1

P ( ) P

( ) P ( )

( ) P ( )

m m n n m m

k i i ij i i k ij

k j i i k j

m m n
cho cho

a b k i i a b ij

k j i

m m n

k i i ij

k j i

f y w g w f y g

f y w f g

f y w f g

 





    
       

    

 

 

    

 

 

 (2.3) 

provided that the functions i ijw g , ( )i ijw f g  and ( )i iw f g  belong to  .  

Proof. Similarly as the proof of Corollary (2.2) because the expression  

 

1 1

=1 =1 =1 =1 =1 =1

P ( ) = P
m m n n m m

k i i ij i i k ij

k j i i k j

y w g w y g
   

    
  

      

is the functional convex combination on [ , ]a b .  

Now we will use the third inequality in (2.2) to functional means. In the functional case quasi-arithmetic means are formed 

by the application of strictly monotone continuous functions to functional convex combinations. Thus, let I  be a closed 

interval, : I   be a strictly monotone continuous function, and 
=1
P ( )

n

i i ii
w g  be a functional convex combination 

on I . The discrete functional  -quasi-arithmetic mean of functions ig  with weighted functions iw  with respect to 

functionals Pi  is the number  

 
1

=1

( , ,P ) = P ( ( ))
n

i i i i i i

i

M g w w g    
 
 
  (2.4) 
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provided that the functions ( )i iw g  belong to  . This number belongs to I  because the functional convex 

combination 
=1
P ( ( ))

n

i i ii
w g  belongs to ( )I . Functional quasi-arithmetic means are invariant with respect to affine 

mappings, that is, they verify the equality  

 ( , ,P ) = ( , ,P )i i i i i iM g w M g w    

for every strictly monotone continuous function  , and every pair of real numbers 0   and  . 

If :[ , ]a b   is a strictly monotone continuous function, and : [ , ]ig X a b  are functions, then we can define the 

functional mean  

 
1

=1

( , , , ,P ) = ( ) ( ) P ( ( ))
n

i i i i i i

i

N a b g w a b w g      
  

 
  (2.5) 

provided that the functions ( )i iw g  belong to  . The functional convex combination  

   
=1 =1

( ) ( ) P ( ( )) = P ( ) ( ) ( )
n n

i i i i i i

i i

a b w g w a b g           

belongs to ([ , ])a b  because the images of the functions ( ) ( ) ( )ia b g     are contained in ([ , ])a b . 

Therefore the number = ( , , , ,P )i i iN N a b g w   belongs to [ , ]a b . The functional means N  are also invariant with 

respect to affine mappings. If we take = ( ) = ( )y x x   , then 
1 1= ( ) =

y
x y


 



   
 
 

. Thus, it follows  

 

 

 

1

=1

1 =1

1

=1

= ( ) ( ) P ( ( ))

[ ( ) ] [ ( ) ] P [ ( ) ]

=

= ( ) ( ) P ( ) = ,

n

i i i

i

n

i i i

i

n

i i i

i

N a b w g

a b w g

a b w g N





   

      




   







 
  

 

 
      

 
 
 
 

 
  

 







 

which shows the invariant property of the observed functional means. 

In applications of convexity we often use strictly monotone continuous functions , : I    such that   is convex 

with respect to   (  is  -convex), that is, 
1=f    is convex (this terminology is taken from [8, Definition 1.19]). 

A similar notation is used for concavity. 

Corollary 2.4. 8  Let , :[ , ]a b    be strictly monotone continuous functions. Let P :i   be positive linear 

functionals, iw   be non-negative functions such that 
=1
P ( ) =1

n

i ii
w , and : [ , ]ig X a b  be functions. 

If   is either  -convex and increasing or  -concave and decreasing, then the inequality  

    , , , ,P , , , ,Pi i i i i iN a b g w N a b g w   (2.6) 

holds provided that the functions ( )i iw g  and ( )i iw g  belong to  . 

If   is either  -convex and decreasing or  -concave and increasing, then the reverse inequality is valid in (2.6).  
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Proof. Suppose that   is  -convex and increasing. Put 
1=f   . Using the third inequality in (2.2)  with 

= ( )J I  and convex function :f J  , it follows  

  1

=1 =1

( ) ( ) P ( ) ( ) ( ) P ( ( )).
n n

i i i i i i

i i

a b w g a b w g         
     

 
   

After applying the increasing function 
1 

 on the above inequality, we have the inequality in (2.6).  

If we use the functions 
1

1( ) =x x 


, 

0( ) = lnx x , and 
1( ) =x x  in the inequality in (2.6), we have the following 

harmonic-geometric-arithmetic inequality for functional means N : 

Corollary 2.5. 9  Let P :i   be positive linear functionals, iw   be non-negative functions such that 

=1
P ( ) =1

n

i ii
w , and : [ , ] <0, >ig X a b    be functions. 

Then the double inequality  

 

 

1

=1 =1

=1

1 1
P exp P ln

P

n n
i

i i i

i ii i

n

i i i

i

w ab
w

a b g g

a b w g



      
           

      

  

 



 (2.7) 

holds if provided that the functions 
i

i

w

g
, lni iw g  and i iw g  belong to  .  

Proof. The left side of the inequality in (2.7) follows from the inequality in (2.6) with functions 
1( ) =x x 
 and 

( ) = lnx x , so in this case   is  -convex (
1( ) = lnx x   ) and increasing. 

The right side of the inequality in (2.7) follows from the inequality in (2.6) with functions ( ) = lnx x  and ( ) =x x , 

and as in the previous case   is  -convex (
1( ) = expx x  ) and increasing.                                                  

3. OPERATOR VARIANTS OF INEQUALITIES 

Recall some notations and definitions. Let   be a Hilbert space,and ( )   be a C
*

-algebra of all bounded linear 

operators :A   . The bounds of a self-adjoint operator ( )A   are defined by  

 
=1 =1

= , = , ,supinfA A
x x

a Ax x and b Ax x   
   

 

and if Sp( )A  denotes its spectrum, then Sp( ) [ , ]A AA a b . If 1H  denotes the identity operator on  , then  

 1 1 .A H A Ha A b   

Let   and   be two Hilbert spaces. Let : ( ) ( )i      be positive linear mappings, ( )iW    be positive 

operators such that 
=1

( ) =1
n

i i Ki
W , and ( )iA    be self-adjoint operators with spectra in I . Then the 

spectrum of the operator sum 
=1

( )
n

i i ii
W A  is contained in I , and the sum itself may be called an operator convex 

combination on I . For a continuous function :f I   the spectrum of the operator convex combination 

 
=1

( )
n

i i ii
W f A  is contained in ( )f I . 



ISSN 2347-1921 

175 | P a g e                               O c t  2 1 ,  2 0 1 3  

 

A continuous function :f I   is said to be operator increasing on I  if A B  implies ( ) ( )f A f B  for every 

pair of self-adjoint operators , ( )A B   with spectra in I . A function f  is said to be operator decreasing if the 

function f  is operator increasing. 

The most commonly used the operator form of Jensen's inequality for operator convex functions can be found in [2] where 

=1i HW . Next is the operator form of Jensen's inequality for generally convex functions (the part of [6, Theorem 5.1] or 

[5, Theorem 1]): 

Theorem C. 10  Let : ( ) ( )i      be positive linear mappings, ( )iW    be positive operators such that 

=1
( ) =1

n

i i Ki
W , and ( )iA    be self-adjoint operators with spectra in I . Let 

M Ma b  be bounds of the 

operator convex combination 
=1

= ( )
n

i i ii
M W A . 

Then every convex continuous function :f I   verifies the inequality  

  
=1 =1

( ) ( )
n n

i i i i i i

i i

f W A W f A
 

   
 
   (3.1) 

if provided that [ , ] Sp( ) =M M ia b A   or {endpoint} for all iA .   

Corollary 3.1. 11  Let : ( ) ( )i      be positive linear mappings, ( )iW    be positive operators such that 

=1
( ) =1

n

i i Ki
W , and ( )iA    be self-adjoint operators with spectra in I . Let <M Ma b  be bounds of the 

operator convex combination 
=1

= ( )
n

i i ii
M W A . Let the spectra of the operators = 1 1i M H M H iB a b A   are 

contained in I . 

Then every convex continuous function :f I   verifies the inequalities  

  
=1 =1

1 1 ( ) ( 1 1 )
n n

M K M K i i i i i M H M H i

i i

f a b W A W f a b A
 

       
 

   (3.2) 

and  

 

 
[

=1 =1

=1

cho( 1 1 ) ( )1 ( )1 ( )
, ]

( )1 ( )1 ( ( ))

n n

i i M H M H i M K M K i i ia
M Mi i

n

M K M K i i i

i

W f a b A f a f b W f A
b

f a f b W f A

         
 

   

 


 (3.3) 

if provided that [ , ] Sp( ) =M M ia b A   or {endpoint} for all iA .  

Proof. Let = 1 1M K M KN a b M  . Then [ , ] [ , ]N N M Ma b a b , and therefore [ , ] Sp( ) =N N ia b B   or 

{endpoint} for all iB  because the same is true for [ , ]M Ma b  and Sp( )iB . We can apply the inequality in  (3.1) on the 

operator convex combination 
=1

= ( )
n

i i ii
N W B , that is,  

  
=1 =1

1 1 ( ) = ( 1 1 ) ,
n n

M K M K i i i i i M H M H i

i i

a b W A W a b A        

and so get the inequality in (3.2). 

The inequality in (3.3) is a consequence of inequalities  
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[

[

cho1 1 ( 1 1 )
, ]

cho= ( )1 ( )1 ( )
, ]

( )1 ( )1 ( )

M H M H i M H M H ia
M M

M H M H ia
M M

M H M H i

f a b A f a b A
b

f a f b f A
b

f a f b f A

    

 

  

 

for all =1, ,i n .                                                                                                                                                                

The result related to the inequalities in (3.2) and (3.3) with operator convex functions was obtained in [3, Theorem 1] as 
the main result. 

Theorem 3.2. 12  Let : ( ) ( )i      be positive linear mappings, ( )iW    be positive operators such that 

=1
( ) =1

n

i i Ki
W , and ( )ijA    be self-adjoint operators with spectra in I . Let ky I  be numbers so that the 

spectra of the operators 
1

=1 =1
= 1

m m

i k H ijk j
B y A


   are contained in I . Let <N Na b  be bounds of the operator 

convex combination 
1

=1 =1 =1
= 1 ( )

m m n

k K i i ijk j i
N y W A


    . 

Then every convex continuous function :f I   verifies the inequality  

 

1 1

=1 =1 =1 =1 =1 =1

1 ( ) 1
m m n n m m

k K i i ij i i k H ij

k j i i k j

f y W A W f y A
     

         
    
      (3.4) 

if provided that  [ , ] Sp =N N ia b B   or {endpoint} for all iB , as it verifies the inequality  

 

1

=1 =1 =1

1

[ [
=1 =1 =1

1

=1 =1 =1

1

cho cho( )1 ( )
, ] , ]

( )1 ( ( ))

n m m

i i k H ij

i k j

m m n

k K i i ij
a a
N N N Nk j i

m m n

k K i i ij

k j i

W f y A

f y W f A
b b

f y W f A







  
    

  

 
    

 

  

  

 

 

 (3.5) 

if additionally provided that all [ , ]k N Ny a b , and [ , ] Sp( ) =N N ija b A   for all ijA .  

Proof. Since  

 

1 1

=1 =1 =1 =1 =1 =1

1 ( ) = 1 ,
m m n n m m

k K i i ij i i k H ij

k j i i k j

y W A W y A
   

      
  

      

thus 
=1

= ( )
n

i i ii
N W B . Considering the spectral conditions  [ , ] Sp =N N ia b B   or {endpoint} for all iB , 

we are in a position to apply the inequality in (3.1) on the operator N , and so get the inequality in (3.4). 

Considering all spectral conditions and using 
[

cho
, ]a

N N

f
b

, we obtain the inequality in(3.5).                                        

We also want to use Theorem C to operator means. In the operator case quasi-arithmetic means are introduced by the 

application of strictly monotone continuous functions to operator convex combinations. Thus, let : I   be a strictly 

monotone continuous function, and 
=1

= F ( )
n

i i ii
M W A  be an operator convex combination on I . The discrete 

operator  -quasi-arithmetic mean of self-adjoint operators ( )iA    with weighted operators iW  with respect to 

positive linear mappings Fi  is the operator  
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1

=1

( , , ) = F ( ( )) .
n

i i i i i i

i

M A W W A    
  

 
  (3.6) 

The spectrum of this operator is contained in I  because the spectrum of the operator convex combination 

=1
F ( ( ))

n

i i ii
W A  is contained in ( )I . The operator quasi-arithmetic means ( , , )i i iM A W   are invariant with 

respect to affine mappings, that is, they verify the equality  

 ( , ,F ) = ( , ,F )i i i i i iM A W M A W    

for every strictly monotone continuous function  , and every pair of real numbers 0   and  . 

If the spectra of all iA  are contained in [ , ]a b , we can define the operator mean  

 ( 1 , 1 , , ,F ) = 1 1 ( , , ).K K i i i K K i i iN a b A W a b M A W     (3.7) 

Since the spectrum of the operator ( , , )i i iM A W   is contained in [ , ]a b , the same is true for the spectrum of the 

operator ( 1 , 1 , , ,F )K K i i iN a b A W . 

Another operator mean can also be defined, using bounds a b   of the operator mean ( , , )i i iM A W  , with the  

expression  

 ( 1 , 1 , ,F ) = 1 1 ( , , ).K K i i i K K i i iN a b A W a b A W         (3.8) 

The operator means ( 1 , 1 , , ,F )K K i i iN a b A W  and ( 1 , 1 , ,F )K K i i iN a b A W    are also invariant with respect to affine 

mappings. 

Corollary 3.3. 13  Let , :[ , ]a b    be strictly monotone continuous functions. Let : ( ) ( )i      be 

positive linear mappings, ( )iW    be positive operators such that 
=1

( ) =1
n

i i Ki
W , and ( )iA    be self-

adjoint operators with spectra in [ , ]a b . Let a b   be bounds of the operator mean ( , , )i i iM A W  . 

If   is either  -convex with operator increasing 
1 

 or  -concave with operator decreasing 
1 

, then the inequality  

 ( 1 , 1 , , ,F ) ( 1 , 1 , , ,F )K K i i i K K i i iN a b A W N a b A W   (3.9) 

holds provided that [ , ] Sp( ) =ia b A     or {endpoint} for all iA . 

If   is either  -concave with operator increasing 
1 

 or  -convex with operator decreasing 
1 

, then the reverse 

inequality is valid in (3.9).  

Proof. Suppose   is  -convex with operator increasing 
1 

. Put 
1=f   . Using the inequality in (3.1)  with 

= ( )J I  and convex continuous function :f J  , it follows  

    1

=1 =1

F ( ) F ( ) .
n n

i i i i i i

i i

W A W A     
 

 
   

After applying the operator increasing function 
1 

 on the above inequality, multiplying by 1 , and adding 1 1K Ka b , 

we have the inequality in (3.9).  

The consequence of the inequality in Error! Reference source not found. is the following version of harmonic-geometric-

arithmetic inequality for the operator means ( 1 , 1 , , ,F )K K i i iN a b A W : 



ISSN 2347-1921 

178 | P a g e                               O c t  2 1 ,  2 0 1 3  

 

Corollary 3.4. 14  Let : ( ) ( )i      be positive linear mappings, ( )iW    be strictly positive operators 

such that 
=1

( ) =1
n

i i Ki
W , and ( )iA    be strictly positive operators with spectra in [ , ] <0, >a b   . Let 

0 0a b  be bounds of the operator mean 
ln ( , , )i i iM A W  . 

Then the double inequality  

 

   

 

1

1

=1 =1

=1

( )1 ( )1 exp ln

( )1

n n

K i i i K i i i

i i

n

K i i i

i

a b W A a b W A

a b W A



   
         

   

   

 



 (3.10) 

holds if provided that 
0 0[ , ] Sp( ) =ia b A   or {endpoint} for all 

iA .  

Proof. The right side of the inequality in (3.10) follows from the inequality in (3.9) with functions ( ) = lnx x  and 

( ) =x x , so   is  -convex (
1( ) = expx x  ) and 

1( ) =x x 
 is operator increasing. 

The left side of the inequality in (3.10) follows from the reverse of the inequality in (3.9) with functions 
1( ) = ln = lnx x x    and 

1( ) =x x 
, so in this case   is  -convex (

1( ) = expx x  ) and 
1 1( ) =x x  

 

is operator decreasing. Invariant property of the observed means provides ln ln=N N .                                         
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