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ABSTRACT 

In this paper we extend the usual concept of Pettis integration to a statistical form. In order to achieve this, we prove some 
necessary statements such as Vitali theorem and  use the statistically compactness. We obtain some properties of 
statistical Pettis integration which are well known for the Pettis integration. 
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INTRODUCTION  

In recent years, statistical convergence has increasingly become an attractive area of research. The idea of statistical 
convergence was initially described by Zigmund [19]. The concept was further formalized by Steinhaus[14] and Fast [6]. A 
few years later, the concept was reintroduced by Schoenberg [16].  In this paper we follow the notions about the 
convergence of sequences introduced by Fridy [9],[8] as well as the approach of Schoenberg about integration. 

The base line concept is the statistical Cauchy convergence of Fridy[7]. On the Banach space, we adopted the approach 
from the work of Connor et al.[4](1989). 

2. Terminology 

Let  be A a subset of ordered natural set . It said to have density (A) if 
| |

( ) lim n
n

A
A

n
   , where A = {k<n : kA} 

and with |A| denotes the cardinality of this one. It is clear that the finite sets have the density zero and δ(A)= 1-δ(A) if 

A'=-A. If a property P(k)={k : kA}  holds for all kA with δ(A)=1, we say that property P holds for almost all k, that is 

a.a.k. The vectorial sequence x is statistically convergent to the vector(element) p of a vectorial normed space X if for 
each ε >0  

                                                    

1
lim |{  : ||x || } | 0k
n

k n p
n




     

in short form ||xk –p||<   a.a.k. 

We write st-limxk =p. In same way, the sequence x is a statistical Cauchy sequence if for every ε>0, there exists a number 

N=N(ε) such that  

                                                     ||xk– xN||<  a.a.k. 

Now, we deals with generalization of pointwise statistical convergence of functions on normed space. 

The sequence  {fk} contains the functions with values in one vectorial normed space. For each x of the domain, we 
consider the functional sequence {fk(x)}. 

 A sequence of functions {fk(x)} is said to be pointwise statistically convergent to f  if for every >0 

1
lim |{  : ||f ( ) ( ) || , }| 0k
n

k n x f x x S
n




      , 

i.e. for every xS, ||f k(x)-f(x)||<   a.a.k. 

We write st-limfk(x)=f(x) or 

st

kf f   on S. 

This means that for every δ>0, there exists integer N such that                         

1
lim |{  : ||f ( ) ( ) || , }|k
n

k n x f x x S
n

 


       

For all n>N = (N(ε,δ,x)) and for every ε>0. 

If the inequality in (1) holds for all k except finite many k, then one obtain the  usual limes, lim ( ) ( )n
n

f x f x


  on S. It 

follows that this limes implies st- lim ( ) ( )n kf x f x  . But the converse of this is not always true.  

A family  H of scalar integrable functions is uniformly integrable if 

                                                   
( ) 0lim | | 0E

E
h d    

uniformly for h H. 

If 0 is a subalgebra of , then E(h | 0) denotes the conditional expectation of h with respect to 0.  

    

Further, we denote (S,∑,μ) the probability measure space, where S is any set and  sigma algebra of Borel. 
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1. Vitali theorem 

 A function  f : S X,  where X is a vectorial normed space is called  simple function by μ, if there is a finite sequence of 

measurable sets {Ei}, such that  Ei  S, i=1,...,n  Ei  Ej =  for ij, S = 
1

n

ii
E

   and f(s) = xi  for s  Ei,  

It is represented in a form  f = 
1 i

n

i Ei
x 

 , where 
iE is a characteristic function of Ei. 

We denote T(μ,X) –the set of simple functions with domain S. T(μ,X) is a vectorial space with the addition of simple 
function and multiple with the real number(see [17]). The simple functions as it is known are the measurable functions. 

The function f:SX  is called statistically strongly measurable by μ on set S( in short form st- measurable) if there exists a 

sequence of simple functions (fn) T(μ,X) that for every s S and every  ε>0 holds: 

1
lim |{  : ||f ( ) ( ) || , }| 0k
n

k n s f s x S
n




      . 

for almost all s S. 

The function f : SX is called statistically strongly uniform measurable by μ on S if every >0 and every >0 there exists a 

integer  N(, ) such that 

                                                            

1
|{  : ||f ( ) ( ) || }|kk n s f s

n
    

 

for  k> N(, )  almost for every sS. In this case it is said that the sequence fk(s) converges statistically strong  almost 
everywhere uniformly by  μ  to the function f on S. 

Proposition 1.  A linear combination of st-measurable functions is  a st-measurable function.  

We modified some techniques developed in [12]  in order to prove in [3]  the following theorem. 

Theorem 2. (Theorem Egorov) [3]. If a function f : S X  is st- strongly measurable by μ, then it is st- strong measurable 

uniformly almost everywhere on S. 

Definition 3.  The function f : SX is statistically weakly measurable if the scalar function x*f is statistically  strong 

measurable for every x* of dual space X*.  

Definition 4. The integral of the simple function f : SX, is called the element of vectorial normed space 
1

( )
n

i ii
x E

 , 

symbolically 

1
( ) ( )

n

i ii

S

f s d x E 



 

In case E is a measurable set and E  S, then the integral of simple function f on E is the integral of function f E , we write 

( ) ( . )( )E

E S

f s d f s d   
 

We define the map 

1|| * ||  : T(,E) ; 1|| || || ( ) ||
S

f f s d   

It is easy to prove that ||f||1  is a seminorm. 

Following the definition of Cauchy sequences introduced by Fridy [7] and their extension to the functional sequences (see 
for example  [12]), the sequence (fk) is called a statistical Cauchy sequence if for every ε>0 there exists an integer 
N(=N(ε,x)) with 

1
lim |{  : ||f ( ) ( ) ||  x S}|=0n k Nk n x f x

n
       

In the set of st-Cauchy simple sequence, we define the equivalence relation:  

(fn)(gn) st – lim || fn-gn|| = 0.   
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The following theorem  extends in case of Banach space the results presented  in [8]. 

Theorem 5. [3], [7], [12]. Let (fk) be a sequence of functions on a set S with values to Banach space X. The following 

statements are equivalent: 

a)  the sequence (fk) is pointwise statistically convergent on S; 

b) the sequence (fk) is  a statistical Cauchy sequence on S. 

Lemma 6. If the sequence of simple functions (fn) is a st-Cauchy sequence on Banach space there exists  the limes st  

                       lim ( )k
Sk

f s d
.
 

Definition 7. The function f : SX is called st- Bochner integrable if there exists a st- Cauchy sequence of simple 

functions (fk) such that : 

                 i)  statistically converges a.e. by  to the function f ; 

                ii) lim || ( ) ( ) || 0k N
k

s

st f s f s d   a.e. 

st-lim ( )n
S

f s d  is called st- Bochner integral and denote with Bs - ( )
s

f x d  

This sequence (fn) of simple functions is called determinant of  function f. We have presented in our paper [3] a function 
that is statistical Bochner integrable but not Bochner integrable. 

 Theorem 8[3] . Let (fk(s)) be the sequence of st-measurable functions statistically convergent almost everywhere to the 

function f(s). If for a.a.k and every sS   ||fk(s)||||fk+1(s)||, then 

   lim || || ( ) || ( ) ||r
r

S S

st f d Bs f s d     

Lemma 9. [3] (Fatou) Let {fn(x)} be the sequence of strong measurable functions from S into X, then for every AS holds 

     liminf || || liminf || ||n n

A A

st f d st f d     . 

Lemma 10. [15] (Salat) A sequence (xk) is statistically convergent to p if and only if there exists a set K={k1<k2<…} 

that (K)=1 and lim( )
nk

n
x p


 .  

The set K is directed and the sequence ( )
nkx is called the essential subsequence of (xk). The above lemma can be 

formulated: 

A sequence (xk) is statistically convergent to p if and only if there exists an essential subsequence ( )
nkx which converges 

in usual meaning to limes p. We write lim k
K

x p . We can formulate an immediate corollary of Salat’s lemma. 

Preposition 11. The sequence {fk(x)} where fn : SX, (X a vectorial normed space) is statistically convergent to f(x), if and 

only if, there exists an essential subsequence ( )
nkf of it that is convergent to f(x). 

Corollary 12 . The sequence {fk(x)}is statistically convergent almost everywhere to f(x) on S if there exists an essential 

subsequence ( )
nkf such that is convergent almost everywhere to f(x).  

Theorem 13. (Vitali) Let (S, , ) be a positive measure space,  finite and the sequence {fn} where  fn  : SX is uniformly 

integrable  . If 

a)  

b) ||f(x)||< 
Then the following hold: 

1. fL1() 

2. Bs- || ||n
E

f f d  
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Proof. For proving statement 1, we use the Fatou’s  lemma  liminf || || liminf || ||n n

S S

st f d st f d    
 

Using uniform integrability we have || || 1
E

f d  where E is a set such that (E)<. 

By the Egorov theorem 2, the sequence fn statistically uniformly  converges on the set E
c
 and || || 1

c n N
E

f f d   

for  n>N and a.a.n.  

Using triangle inequality we have || || || || 1
c cn N

E E
f d f d M     .  This proves the statement 1.  For the second 

statement we have 

|| || || || || || || || .
cn n n

S E E E
f f f d f d f f d           

Where ES and (E)<. All the terms in the above inequality are bounded for a.a.n. This proves the statement 2. 

1. Statistical Pettis integration 
 
Definition 14. [2] A point p is called a statistically-sequential accumulation point of the set F if there is a sequence x=(xk) 

of points in F\{p} such that st-lim(xk)=p. The set of all statistically –sequential accumulation points of F is called statistically-
sequential closure of F. We say that a set is statistically-sequential closed if it contains all the points in its statistically- 
closure. 

Definition 15 . A subset F of X is called statistically-sequential compact if whenever x=(xk) is a sequence of points in F 

there is a subsequence y= ( )
nky of x with st-lim

nky =pF. 

Preposition 16 . A subset F of X is sequentially compact if and only if it is statistically-sequential compact in it. 

Proof. Let F be a subset of statistically-sequential compact set X. By definition, for  every sequence x in F there is a 

subsequence (yk) such that is statistically convergent to the point pF. But the sequence (yk) has an essential 

subsequence ( )
nky convergent to the same point p. This means that F is sequentially compact. 

Let we extend the concept of Pettis integration  by means of statistical convergence. Let (S, , ) be a measurable space 

with finite measure  and X one Banach space.   

Definition 17. Let E be  a subset of the set S. The function f : SX  is called statistically Pettis integrable if 

a) The function x*f  is statistically Bohner integrable for every x*X* 

b) There exists an element xE   of X such that   

                                               x*(xE)=st- *( )
E

x f d  for every x*X*.                                               (1)   

          The element xE  is called  indefinite statistical Pettis integral and we denote  

                                                     xE =st-P-
E

fd .                                                                           (2)   

 
Proposition 18. Let X be a Banach space and  there exists on it the sequence of simple functions  (fn(s)) statistically 

weakly convergent almost everywhere to the function f(s) such that  

   | * * |n m
E

x f x f d 0  almost every m,n 

for every x*X*. Then  the function f is statistically Pettis integrable and 

   lim ( ) ( )n
E E

st f s d st f s d     .                                (3) 

Proof. Since the real functions are   -integrable  then the integrability of the real function  x*f for every x*X* is derives 

from the fact that statistical weak convergence of the sequence (fn) implies  statistical convergence of real sequence     

x*fnx*f  and   

                               * *
st

n
E E

x f d x fd   .                                (4) 
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Considering the property of integration of simple functions we have  

                                                              
* *n n

E E
x f d x f d                              (5) 

From  (3) and (4) and continuousness of the function x* follows the statistical convergence of the sequence 

 * n
E

x f d . It follows that sequence n
E

f d  is statistically Cauchy on the weakly topology of  X. As the space X  

is a Banach space the sequence statistically converges to the point xE ,  

                            
n E

E
st f d x  . 

So we have 

                            * *( )
st

n E
E

x f d x x                           (6) 

From the  (4), (5) and (6) comes (1) and (2). This way, the statistical limit of the sequence of integrals  n
E

f d of the 

simple functions defins the statistical integral of Pettis of the function f. This proves the equality (2). 

A function  is weakly uniformly bounded if there is a constant µ such that | * | || *||x f M x  a.e   (the 

exceptional set may vary with  ). 

In the following two theorems we adhere to the approach used in [11] and [13] for usual Pettis integration. 

Theorem 19.  Let  be a function and X  a Banach space. If there exists a sequence  { : }nf n  of  X-valued 

st- Pettis integreable functions on S such that : 

(a) The set { * : * ( *), }nx f x B X n     is uniformly integrable . 

(b)  lim * *nst x f x f  in measure, for each     

Then f is st- Pettis integrable and  lim n
E E

st f d Ps fd     weakly in X, for each E  

Proof:  Fix  E  and  let  C be the st-weakly  closure of the set .{ : }n
E

f d n     Since Vitalis convergence 

(theorems 13) guaranties that  lim * *n
E E

st x f d Bs x fd     for each  , we see by the ([1] –

Corollary 2.9) C is statistically bounded and  \  n
E

C f d : n  consists of at most one point. In order to prove our 

assertion it is sufficient to show that C  is st-weakly compact, since this yields the existence of statistically weakly  limit of  

{ : }n
E

f d n     in X. Clearly, the limit can only be equal to
E

fd and so we be able to conclude that is st-Pettis 

integrable on E and hence on the whole of  . Suppose therefore that C  is not weakly compact(so and statistically weakly 
compact- Proposition 16). Then, according to a theorem of James ([10]  Theorem 1) there exists a bound sequence 

{ : } Cnx n    and >0, such that  

                            
*( ) 0    n kx x for k n    

and                          

                            
*( )       n kx x for k n    

Since lim * *nst x f x f     we find  a set A    that  (n  A : |x*fn – x*f|>)=0 for every >0. So for  we have  

                           
lim * *n

E En A
x f d Bs x fd 


    . 

We can  choose a subsequence { : m \ A}mg   of { }nf  and a subsequence  
*{ }my  of 

*{ }nx  , such that  

(i) 
* 0k m

E
y g d                          k<m 

(ii) 
*

k m
E

y g d 
 
                         km 

(iii) lim * *m
E E

st x f d x fd     for each  x*X*.  
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Considerer now the set 
*{ : }my f m  . It follows from  (a)  that this set is uniformly integrable and stastically bounded 

in . Hence it is relatively weakly compact. This yields the existence of a function  and a subsequence 

*{ : }jz j   of 
*{ : \ }my m A   such that  

*lim jst z f h    weakly in . Applying (iii) for all  we get the 

inequality j
E

z fd  and hence
E
hd  . Now we shall appeal to the theorem of Mazur. Let 

1 ( )... ,   mm m

k ma a    be non-negative numbers, such that 1m

jj
a  and 

*lim( )m

j j mjm
a z f h  in .  Without 

lost of generality, we may assume, that above convergence holds , Clearly, if   is weakly*  st-closter point of the 

sequence  
*{ m

j j mj
a z   : m } then 

*

0h z f   µ-a.e. In particular ,we have  

(iv)          
*

0
E

z fd     

On the other hand, since each  is st-Pettis integrable, the functional  * * n
E

x x g d  is weakly* continues. Hence, 

if  
*

,{ }n    is a subsequence of 
*{ : }m

j mj
a z m n  which converges st-weakly to , then applay (i) we get :  

                                
* * * *

, , 0 00 lim limn n n n n n
E E E E

g d g d z g d z g d 
 

             

Since this holds for each  \n A   ,we see from (iii) that 
*

0 0
E

z fd  . This contradicts the inequality (iv). 

Theorem 20. Let (S, , ) be a measure space and 0. The function f : SX f is st-Pettis integrable and st-weakly 

measurable with respect to a separable measure space (S, 0, 
0

| 
) if and only if there exists a sequence {fn : n} of 

X-valued simple functions on S such that 

(a) The family {x*fn : n, x*B(X*)} is uniformly integrable, 

(b) Foe each x*X* lim * *n
n

st x f x f   -a.e. 

Proof. Since the simple functions are Pettis integrable, one direction of this is immediate from the theorem 19. Assume 

that f is weakly measurable with respect to a separable space (S, 0, 
0

| 
) and, let    ({En, n})0 be a 

countable generated -algebra which is 
0

| 
-dense in 0. Moreover, let n be a partition of S generated by the sets 

E1,…,En. Put for each n the functions 

    
0

      ( 0)
( ) 0n

E
n EE

fd
f

E





 


  

It is well known that {fn, (n) 
1n




is an X-valued martingale and x*fnE(x*f | ) a.a.n. is in L1


0

( , , | )S    (cf. Neveu 

[14]) and -a.e. (Diestel [5]). Moreover the conditional expectation operator is a contraction on L1 ( | )


 and so we have 

   | * | | * |n
E E

x f d x f d    a. a. n. 

As by the assumption is dense in 0, we have ( * | ) *E x f x f

  -a. e. and  so 

    x*fnx*f   
0

|  -a. e. and a. a. n. 

On the other hand, from the condition (b) we have that the sequence {x*fn : n} is st-convergent to x*f weakly in L1(). 

The above conditions means exactly that for each E the sequence { }n
E

f d is st-convergent to 
E

fd . Hence n 

is contain in a weakly closure of the set nn
 where n is the indefinite Pettis integral of fn. As each set  n() is finite 

dimensional, the union is weakly separable. According to the well known result of Mazur the weakly and norm separability 
in Banach space coincide. 
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Proposition 21. If the function f : SX  is st- Bochner integrable then it is  also st- Pettis integrable and the equation 

holds 

   ( ) ( )
E E

st P f s d st Bs f s d        

for every set EV. 

Proof. Since the  function f(s) is st- Bochner integrable there exists a determinant sequence of simple functions fn 

convergent almost everywhere uniformly and for  almost every n to the function  f. While the functions x* of X* are 
continuous, we have  

  |x*(fn)-x*(f)| * . ( ) ( )nx f s f s 0  a. a. n, 

so 

  st-Bs- | *( ) *( ) | * 0n n
E E

x f x f d x f f d      . 

This means that the  sequence of  functions x*(fn) is statistically convergent to x*f.  It follows that x*f is st-Bochner 
integrable as the real function. Considering once more the property of integration of simple functions  we have 

  * * *n n
E E E

x f d x f d x fd       for every x* of X*. 

On the other hand , the sequence which is st-weakly convergent has a unique limit. It implies that from statistical 

convergence of the sequence of integrals  n
E

f d to the st- Bochner integral 
E

fd entails the convergence to the 

st-Bochner integral of the sequence 

                             
* *n

E E
x f d x fd   . 

Consequently 

                             
* *

E E
x fd x fd   . 

From the (2) and (3)  we proved the existence of st- Pettis integral and its are equal. 

Theorem 22. Let  (S,, ) be a finite measure space, X a Banach space and f : SX. Suppose there is a sequence {fn} of 

st-Pettis integrable functions from S to X such that lim * *n
K

x f x f  -a.e. for each x* in X*(the null set on which 

convergence fails may vary with x*). If there is a scalar function v(x) with || * || ( )nx f v x  -a.e. for each x* X* and 

nK, then f is st-Pettis integrable and     

                                                 lim n
E E

st f d Ps fd     . 

Proof. By the domination theorem, the function x*f is st-Bohner integrable for every x*X* and  

      lim * *n
E E

st x f d Bs x fd     , for E.                (7) 

We can write 

                   * *n n
E E

x f d x f d                     (8) 

From (7) and (8) we have that the sequence { }n
E

f d is fundamental in X*. By the completeness of Banach space X* 

the above sequence has the limes y: 

lim * *n
E

st x f d x y   for every x*X*. 

This fulfills two conditions of st-Pettis integrability of function f: 

lim n
E E

Ps fd y st f d      . 
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