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ABSTRACT 

In this paper, we represents incompressible Navier-Stokes equations, i.e. fluid is incompressible in the domain 
2 . 

Navier-Stokes equations have wide applications in fluid mechanics, air and sea navigation. Mathematicians have not 
proven yet these equations. In this paper  we describe incompressibility and existence of  these equations in the domain 

n  (n=2), Navier-Stokes problem is now included in the Millenium problems of Clay mathematics Institute.  
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INTRODUCTION  

In this paper,  we study the motion of fluid membrane and Incompressibilty of fluid, and existence of Navier-Stokes’s three 
impotant equations. Navier-Stokes equations are the most important and  famous equations for  turbulent flow of fluid or 
wind from a century. The Proof of Navier-Stokes equations is most challenging for all Mathematician from all around the 
world.  

Navier-Stokes equations were originally derived in the 1840s on the basis of conservation laws and first- order 
approximations. But if one assumes sufficient randomness in microscopic molecular in  processes in fluid they can also be 
derived from molecular dynamics, as done in the early 1900s.  

The major difficulty in obtaining a time-accurate solution  for an incompressible flow arises from the  fact that the continuity 
equation does not contain the time-derivative explicitly. The constraint of mass conservation is achieved by an implicit 
coupling between the continuity equation and the pressure in the momentum equations. One can use an explicit time 
advancement scheme which obtains the pressure at the current time-step such that the continuity equation at the next step 
is satisfied. However, for  fully implicit or semi implicit schemes, the   aforementioned difficulty prevents the use of the 
conventional Alternating Direction Implicit (ADI) scheme  to advance in time as is the case for compressible flows. 

For very low Reynolds numbers and simple geometries, it is often possible to find explicit formulas for solutions to the 
Navier-Stokes equations. But even in the regime of flow where regular arrays of eddies are produced, analytical methods 
have never yielded complete explicit solutions. In this regime, however, numerical approximations are fairly easy to find.  

Since about the 1960s computers have been powerful enough to allow computations at least nominally to be extended to 
considerably higher Reynolds numbers. And it has become increasingly common to see numerical results given far into the 
turbulent regime - leading sometimes to the assumption that turbulence has somehow been derived from the Navier-
Stokes equations. But just what such numerical results actually have to do with detailed solutions to the Navier-Stokes 
equations is not clear. Our understanding of them remians minimal.The challenge is to make substantial progress towards 
a mathematical theory which will unlock hidden secrets in Navier-Stokes equations.  

Mathematical Approach of Navier-Stokes Equations 

The Euler and Navier-Stokes equations describe the motion of a fluid in
n (n=2,3). These equations can be solved for an 

unknown velocity vector    , ,iu x t u x t , 1 i n   and pressure  ,P x t  defined for position x and 

time 0t    
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with intial conditions       0,0u x u x ,  
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Equation (1) is just Newton’s second law of motion f = ma for a fluid element subject to the external 

force  ,if f x t , 1 x n   and to the forces arising from pressure and friction. Equation (2) just says the 

incompressibility of fluid . Where  ,if x t are the components of a given externally applied force ( for e.g. gravity) ,  

is +ve coefficient of viscosity and 
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  is a Laplacian operator in the space variables.  0u x  is a given, 

C
 divergence-free vector field on 

n . Equation  (1), (2), (3) are Euler equations with equal to zero. 

Incompressibility and Existence 

Cosider a fluid membrane. Let P’Q’R’S’ shape of an element an element of the membrane at any time t. Let PQRS be 

projections of P’Q’R’S’ on xy-plane. We wish to obtain position change  , ,u x y t  at any point  , yx  at any time t>0. 

First we cosider the following assumptions: 

(a) The mass of the fluid membrane per unitvarea is constant   (say) 

(b) The whole motion takes place in a direction perpendicular  to xy- plane. 
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(c) The surface tension T per unit length developed by fluid membrane molecules is same at all points. We consider 
T does not change during the motion. 

(d) The position change of  , ,u x y t  is small as compared to the size of the membrane. All angles of inclination 

are small.  

 

Fig 1.1 

If we consider motion of the element P’Q’R’S’ , The forces T y on its opposite edges Q’R’ of length y act at angles 

 and  to the horizontal. 

                     These have  vertical components    sin sinT y T y      

                                                                            sin sinT y                                                              

Since  and   are so small so that sin tan    , sin tan      
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So similarly the forces T x  act on the edges P’Q’ and S’R’ of length x have a vertical component  



ISSN 2347-1921 

4 | P a g e                                A u g 2 4 , 2 0 1 3  

 

      

y y y

u u
T x

y y





     
     

      

 

Area of the portion P’Q’R’S’ is x y  and mass is x y  . Again the acceleration of the fluid membrane in vertical 

direction is 
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. Using Newton’s laws of motion P = mf the equation of the portion P’Q’R’S’ is 
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Dividing both sides by x y  , we have 
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                As 0y  and 0y  , then equation  (4) gives the result 
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From equation  (3) the intial condition    0,0u x u x ,    
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Then Eq.(5) becomes       
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This result shows that Eq.(2)  is incompressible  i.e. the incompressibility of fluid in two dimensional (
2 ) 

There fore Navier-Stokes equations exits. Equations  (1), (2), (3) are Euler equations with equal to zero. 
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