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ABSTRACT 

For a connected graph G of order n ≥ 2, a subset S of vertices of G is a monophonic set of G if each vertex v in G lies on a 
x-y monophonic path for some elements x and y in S.  The minimum cardinality of a monophonic set of G is defined as the 
monophonic number of G, denoted by m(G).  A monophonic set of cardinality m(G) is called a m-set of G.  A set S of 
vertices of a connected graph G is an open monophonic set of G if for each vertex v in G, either v is an extreme vertex of 

G and v  S, or v is an internal vertex of a x-y monophonic path for some x, y  S.  An open monophonic set of minimum 
cardinality is a minimum open monophonic set and this cardinality is the open monophonic number, om(G). A connected 
open monophonic set of G is an open monophonic set S such that the subgraph  < S > induced by S is connected.  The 
minimum cardinality of a connected open monophonic set of G is the connected open monophonic number of G and is 
denoted by omc(G). A total open monophonic set of G is an open monophonic set S such that the subgraph < S > induced 
by S contains no isolated vertices.  The minimum cardinality of a total open monophonic set of G is the total open 
monophonic number of G and is denoted by omt (G). A total open monophonic set of cardinality omt(G) is called a omt-set 
of G. The total open monophonic numbers of certain standard graphs are determined. Graphs with total open monophonic 
number 2 are characterized. It is proved that if G is a connected graph such that omt(G) = 3(or omc(G) = 3), then G = K3 or 
G contains exactly two extreme vertices. It is proved that for any integer n ≥ 3, there exists a connected graph G of order n 
such that om(G) = 2, omt(G) = omc(G) = 3. It is proved that for positive integers r, d and k ≥ 4 with r ≤ d ≤ 2r, there exists a 
connected graph G of radius r, diameter d and total open monophonic number k. It is proved that for positive integers a, b, 
n with 4 ≤ a ≤ b ≤ n, there exists a connected graph G of order n such that omt(G) = a and omc(G) = b. 
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1. INTRODUCTION 

By a graph G = (V, E) we mean a finite, undirected connected graph without loops or multiple edges. The order and size of 
G are denoted by n and m, respectively.  For basic graph theoretic terminology we refer to Harary [4]. The distance d(u,v) 
between two vertices u and v in a connected graph G is the length of a shortest u-v path in G.  An u-v path of length d(u,v) 
is called an u-v geodesic.  It is known that this distance is a metric on the vertex set V. For any vertex v of G, the 
eccentricity e(v) of v is the distance between v and a vertex farthest from v.  The minimum eccentricity among the vertices 
of G is the radius, rad G and the maximum eccentricity is its diameter, diam G of G.  The neighborhood of a vertex v is the 
set N(v) consisting of all vertices which are adjacent with v.  A vertex v is an extreme vertex of G if the subgraph induced 

by its neighbors is complete. A geodetic set of G is a set S  V such that every vertex of G is contained in a geodesic 
joining some pair of vertices in S.  The geodetic number g(G) of G is the cardinality of a minimum geodetic set.  A vertex x 

is said to lie on a u-v geodesic P if x is a vertex of P and x is called an internal vertex of P if x  u, v.  A set S of vertices of 

a connected graph G is an open geodetic set of G if for each vertex v in G, either v is an extreme vertex of G and v  S, or 

v is an internal vertex of a x-y geodesic for some x, y  S.  An open geodetic set of minimum cardinality is a minimum 
open geodetic set and this cardinality is the open geodetic number og(G).  It is clear that every open geodetic set is a 

geodetic set so that g(G)  og(G).  The geodetic number of a graph was introduced and studied in [1, 2]. The open 
geodetic number of a graph was introduced and studied in [3, 5, 7] in the name open geodomination in graphs. A chord of 

a path u1, u2, …,un in G is an edge uiuj with j  i + 2.  For two vertices u and v in a connected graph G, a u-v path is called 
a monophonic path if it contains no chords.  A set S of vertices in a connected graph G is a monophonic set of G if every 
vertex of G is contained in a monophonic path joining some pair of vertices in S.  The monophonic number m(G) of G is 
the cardinality of a minimum monophonic set. A set S of vertices in a connected graph G is an open monophonic set if for 

each vertex v in G, either v is an extreme vertex of G and v  S, or v is an internal vertex of an x-y monophonic path for 

some x, y  S.  An open monophonic set of minimum cardinality is a minimum open monophonic set and this cardinality is 
the open monophonic number om(G) of G. An open monophonic set of cardinality om(G) is called  a om-set of G. The 
open monophonic number of a graph was introduced and studied in [9]. The connected open monophonic number of a 
graph was introduced and studied in [8]. 

The following theorems are used in the sequal. 

Theorem 1.1[9] Every extreme vertex of a connected graph G belongs to each open monophonic set of G. In 

particular, if the set S of all extreme vertices of G is an open monophonic set of G, then S is the unique minimum open 
monophonic set of G. 

Theorem 1.2 [9] If G is a connected graph with no extreme vertices, then om(G)  3. 

Theorem 1.3 [9] If G is a connected graph with a cutvertex v, then every open monophonic set of G contains at least 

one vertex from each component of G – v. 

Theorem 1.4 [9] Each cutvertex of a connected graph G belongs to every minimum connected open monophonic set  

of G. 

2. TOTAL OPEN MONOPHONIC NUMBER OF A GRAPH 

Definition 2.1  Let G be a connected graph with at least two vertices. A total open monophonic set of a graph G is an 

open monophonic set S such that the subgraph < S > induced by S contains no isolated vertices.  The minimum 
cardinality of a total open monophonic set of G is the total open monophonic number of G and is denoted by omt(G). A 
total open monophonic set of cardinality omt(G) is called omt-set of G. 

 

 

 

 

 

 

                                                                                          G 
Figure 1 A graph G with omt(G) = 10. 

Example 2.2 For the graph G given in Figure 1, it is clear that the set S = {v1, v2, v5, v7, v12, v13, v14} is the unique 

minimum open monophonic set of G so that om(G) = 7.  It is easily verified that the set S1 = {v1, v2, v3, v4, v5, v7, v11, v12, v13, 
v14} is the unique minimum total open monophonic set of G so that omt(G) = 10. Also, it is clear that S2 = {v1, v2, v3, v4, v5, 
v6, v7, v9, v10, v11, v12, v13, v14} and S3 = {v1, v2, v3, v4, v5, v7, v8, v9, v10, v11, v12, v13, v14} are the minimum connected open 
monophonic sets and so omc(G) = 13. Thus the open monophonic number, total open monophonic number and the 

connected open monophonic number of a graph are different. 

 By Theorem 1.1, each extreme vertex belongs to every total open monophonic set. Since a total open monophonic 
set contains no isolated vertices, it follows that each support vertex of G also belongs to every total monophonic set of G. 
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Let S be the set of all extreme vertices and support vertices of G. Then every total open monophonic set of G contains S. 
If S is a total open monophonic set of G, then it follows that S is the unique minimum total open monophonic set of G. 

Thus we have the following theorem. 

Theorem 2.3 Every total open monophonic set of a connected graph G contains all its extreme vertices and support 

vertices. If the set of all extreme vertices and support vertices form a total open monophonic set of G, then it is the unique 
minimum total open monophonic set of G. 

Corollary 2.4 For the complete graph Kn(n ≥ 2), omt(Kn) = n. 

Theorem 2.5  For a connected graph G,  2  om(G)  omt(G)  omc(G)  n.         

 Proof. An open monophonic set needs at least two vertices and so om(G) ≥ 2. Since every connected open 

monophonic set of G is a total open monophonic set, and every total open monophonic set is an open monophonic set, it 

follows that om(G)  omt(G)  omc(G). Since the vertex set V is a connected open monophonic set of G, it is clear that 

omc(G)  n. Hence 2  om(G)  omt(G)  omc(G)  n. 

Corollary 2.6 If G is a connected graph such that omt(G) = 2, then om(G) = 2. 

Corollary 2.7 If G is a connected graph such that om(G) = n, then omt(G) =  omc(G) = n. 

Remark 2.8 For the complete graph Kn (n ≥  2), omt(Kn) = n so that the total open monophonic number of a graph 

attains its least value 2 and largest value n. Also, all the inequalities in Theorem 2.5 can be strict. 

 

 

 

 

G 

Figure 2 A Graph G with 2 < om(G) < omt(G) < omc(G) < n.  

 For the graph G given in Figure 2, it is clear that the set S = {v1, v3, v4, v7, v8} is a minimum open monophonic set of G 
so that om(G) = 5. It is easily verified that the set S1 = {v1, v3, v4, v6, v7, v8} is a minimum total open monophonic set so that 
omt(G) = 6. Also, it is clear that the set S2 = {v1, v2, v3, v4, v6, v7, v8} is a minimum connected open monophonic set of G so 
that omc(G) = 7. Thus 2 < om(G) < omt(G) < omc(G) < n.  

 Also, we notice that for any path of order at least 4, the open monophonic number is 2, whereas the total open 
monophonic number is 4. This shows that the converse of Corollary 2.6 need not be true.     

Theorem 2.9 For any non-trivial tree T, the set of all endvertices and support vertices of T is the unique minimum total 

open monophonic set of G. 

Proof. Since the set of all endvertices and support vertices of T forms a total open monophonic set, the results follows 

from Theorem 2.3. 

Theorem 2.10 If G is a connected graph with no extreme vertices, then omt(G) ≥ 3. 

Proof. This follows from Theorems 1.2 and 2.5. 

Theorem 2.11 Let G be a connected graph with cutvertices and let S be a total open monophonic set of G. If v is a 

cutvertex of G, then every component of G – v contains an element of S. 

Proof. Since every total open monophonic set is an open monophonic set, the result follows from Theorem 1.3.                            

Now, we characterize the graphs for which the total open monophonic number is 2. 

Theorem 2.12 For any connected graph G, omt(G) = 2 if and only if G = K2. 

Proof. If G = K2, then omt(G) = 2. Conversely, if omt(G) = 2, then S = {u, v} is a minimum total open monophonic set of 

G. Then uv is an edge. It is clear that no vertex other than u and v lie on a u – v monophonic path and so G = K2.    

Theorem 2.13 If G is connected graph such that omt(G) = 3 (or omc(G) = 3), then G = K3 or G contains exactly two 

extreme vertices. 

Proof. Let omt(G) = 3. Let S = {v1, v2, v3} be a minimum total open monophonic set of G. Then it is clear that the 

subgraph  < S > induced by S is either K3 or K1, 2. If < S > = K3, then obviously G = K3. Now, suppose that < S > = K1, 2. 

 

 

    

 

 

v1 

v2 

v3 

v4 v5 
v6 

v7 

v8 



ISSN 2347-1921                                                           

2102 | P a g e                                                        A u g u s t  3 0 ,  2 0 1 4  

 

Without loss of generality, assume that v2 and v3 are nonadjacent. By Theorem 1.1, it follows that any vertex v ≠ v1, v2, v3 
is non-extreme. We show that v2 and v3 are extreme in G. If v2 is not extreme, then there exists a vertex v in S such that v 
≠ v1, v2, v3 and v2 lies as an internal vertex of a v3 – v monophonic path in G. This is not possible and so v2 is an extreme 
vertex of G. Similarly, v3 is also an extreme vertex of G. Thus G contains exactly two extreme vertices.                    

Corollary 2.14 If G is a connected graph such that omt(G) = 3 (or omc(G) = 3) and if S = {v1, v2, v3} is a minimum 

total(or connected) open monophonic set of G such that subgraph induced by S is K1, 2 with v2 and v3 nonadjacent, and if 
deg v2 = deg v3 = 1 in G, then G = K1, 2. 

Proof. By Theorem 2.13, v2 and v3 are the only two extreme vertices of G. Since deg v2 = deg v3 = 1, a vertex v ≠ v1, v2, 

v3 cannot lie as an internal vertex of a v2 – v3 monophonic path. Hence it follows that G = K1, 2. 

The following existence theorem is interesting. 

Theorem 2.15 For any integer n ≥ 3, there exists a connected graph G of order n such that om(G) = 2 and omt(G) = 

omc(G) = 3. 

Proof. For n = 3, let G = K1, 2. Then, obviously om(G) = 2, omt(G) = omc(G) = 3. For n = 4, let G be the graph given in 

Figure 3. 

 

 

 

 

G 

Figure 3 A graph G of order 4 with omt(G) = omc(G) = 3. 

 Then S = {v2, v4} is an open monophonic set of G and S′ = {v1, v2, v4} is a minimum total as well as a connected open 
monophonic set of G so that omt(G) =  omc(G) = 3. 

 For n ≥ 5, let G be the graph obtained from the cycle Cn : v1, v2, … , vn, v1 by adding the edges v1 v3 and v1 vn – 1. The 
graph G is given in Figure 4. Then v2 and vn are the extreme vertices of G and S = { v2, vn} is an open monophonic set of 
G so that om(G) = 2. Since the subgraph induced by S is not connected (not total also), and since S′ = {v1, v2, vn} is a 
connected open monophonic set of G, it follows that omt(G) = omc(G) = 3. Thus the proof is complete. 

 

 

 

G 

Figure 4 A graph G of order n with omt(G) = omc(G) = 3. 

In the following, we give another class of graphs of order n ≥ 4 with om(G) = 2 and omt(G) = omc(G) = 3. 

         For n ≥ 4, let Pn−1 : v1, v2, . . . , vn−1 be a path of order n − 1. Let G be the graph in Figure 5 obtained from Pn −1 by 
adding a new vertex v and joining the edges vvi for each i = 1, 2, . . . , n − 1. Then v1 and vn−1 are the extreme vertices of 
G and S = {v1, vn−1} is an open monophonic set of G so that om(G) = 2. Since the subgraph induced by S is not connected 
(not total also), and since S′ = {v1, v, vn − 1} is a connected open monophonic set of G, it follows that omt(G) = omc(G) = 3. 
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G 

Figure 5 A graph G of order n with omt(G) = 3 

We leave the following problem as an open question. 

Problem 2.16 Characterize the class of graphs G for which omt(G) = 3 (or omc(G) = 3). 

Theorem 2.17 For any cycle G = Cn(n ≥ 4), omt(G) = 4. 

Proof. For G = C4, it is clear that no 3-element subset of vertices is an open monophonic set of G. Hence it follows that 

omt(G) = 4. For G = C5, it is easily seen that no 3-element subset of vertices is an open monophonic set of G. Since S = 
{v1, v2, v3, v4} is a total open monophonic set of G, it follows that omt(G) = 4. Let the cycle G = Cn(n ≥ 6) be Cn : v1, v2, . . . , 
vn, v1. Since G has no extreme vertices, it follows from Theorem 2.10 that omt(G) ≥ 3. It is easily seen that no 3-element 
subset of G is a total open monophonic set. Now, let vt be a vertex of G such that d(v1, vt) ≥ 3. Then it is clear that S′ = {v1, 
v2, vt, vt+1} is a total open monophonic set of G so that omt(G) = 4. Thus the proof of the theorem is complete. 

Theorem 2.18 For the complete bipartite graph G = Kr,s(2 ≤ r ≤ s), omt(G) = 4. 

Proof. Let G = Kr,s(2 ≤ r ≤ s). Let U = {u1, u2, . . . ,ur} and W = {w1,w2, . . . ,ws} be the partite sets of G. Since G contains 

no extreme vertices, it follows from Theorem 2.10 that omt(G) ≥ 3. It is clear that no 3-element subset of vertices of G is an 
open monophonic set of G so that omt(G) ≥ 4. Let S be any set of four vertices formed by taking two vertices from each of 
U and W. Then it is clear that S is a total open monophonic set of G so that omt(G) = 4. 

Theorem 2.19 For any wheel Wn = K1 + Cn−1(n ≥ 5), omt(Wn) = 4. 

Proof. Let Wn = K1 + Cn−1(n ≥ 5). Let n ≥ 7. Since Wn has no extreme vertices, it follows from Theorem 2.10 that omt(Wn) 

≥ 3. It is easily seen that no 3-element subset of Wn is a total open monophonic set. Now, let vt be a vertex of Cn−1 such 
that d(v1, vt) ≥ 3 in Cn−1. Then it is clear that S′ = {v1, v2, vt, vt+1} is a total open monophonic set of Wn so that omt(Wn) = 4. 
Now, let Wn = K1 + Cn−1(n = 5, 6). Since Wn has no extreme vertices, it follows from Theorem 2.10 that omt(Wn) ≥ 3. It is 
easily verified that no 3-element subset of vertices of Wn is an open monophonic set. Since S = {v1, v2, v3, v4} is a total 
open monophonic set of Wn, it follows that omt(Wn) = 4. Thus the proof is complete. 

3. EXISTENCE RESULTS 

For every connected graph G, rad G ≤ diam G ≤ 2 rad G. Ostrand [6] showed that every two positive integers a and b with 
a ≤ b ≤ 2a are realizable as the radius and diameter, respectively, of some connected graph. Now, Ostrand’s theorem can 
be extended so that the total open monophonic number can also be prescribed, when a ≤ b ≤ 2a. 

Theorem 3.1 For positive integers r, d and k ≥ 4 with r ≤ d ≤ 2r, there exists a connected graph G with rad G = r, diam 

G = d and omt(G) = k. 

Proof. If r = 1, then d = 1 or 2. For d = 1, let G = Kk. Then omt(G) = k. For d = 2, omt(G) = k, where G = K1,k −1. For r ≥ 2, 

we construct a graph G with the desired properties as follows: 

Case 1. r = d. Let C2r : u1, u2, . . . , u2r, u1 be a cycle of order 2r. Let G be the graph in Figure 6, obtained from C2r by 
adding the new vertices v1, v2, . . . , vk − 3 and joining each vi(1 ≤ i ≤ k − 3) with u1 and u2 of C2r, and also joining ur and       
ur + 2. It is easily verified that the eccentricity of each vertex of G is r so that rad G = diam G = r. 
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Figure 6 A graph G with rad G = diam G = r and omt(G) = k. 
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Let S = {v1, v2, . . . , vk − 3, ur + 1} be the set of all extreme vertices of G. Then S is an open monophonic set of G, 
and it is not a total open monophonic set of G. By Theorem 2.3, every total open monophonic set of G contains S. It is 

clear that for any x ∉ S, S ∪ {x} is not a total open monophonic set of G. It is easily verified that the set S1 = S∪ {u1, ur} is a 
minimum total open monophonic set of G so that omt(G) = k. 

Case 2. r < d. Let C2r : u1, u2, . . . , u2r, u1 be a cycle of order 2r and let Pd−r+1 : v0, v1, v2, . . . , vd−r be a path of order           
d – r + 1. Let H be the graph obtained from C2r and Pd−r+1 by identifying the vertex v0 of Pd−r+1 and u1 of C2r. Now, let G be 
the graph obtained by adding the new vertices w1, w2, . . . , wk−4 to H and joining each vertex wi(1 ≤ i ≤ k − 4) with the 
vertex vd−r−1, and also joining ur and ur+2. The graph G is shown in Figure 7 and has rad G = r and diam G = d. 

 

 

 

 

G 
Figure 7 A graph G with rad G =r, diam G = d and omt(G) = k. 

Let S = {w1, w2, . . . ,wk−4, vd−r, ur+1, vd−r−1} be the set of all extreme vertices and support vertices of G. By 
Theorem 2.3, every total open monophonic set of G contains S. Since S ∪ {ur} is a total open monophonic set of G, it 
follows that omt(G) = k. 

Theorem 3.2 For positive integers r, d and k = 3 with r ≤ d ≤ 2r and d = r + 1, there exists a connected graph G with rad 

G = r, diam G = d and omt(G) = k. 

Proof. If r = 1, then d = 1 or 2. For d = 1, let G = Kk. Then omt(G) = k. For d = 2, omt(G) = k, where G = K1,k −1. For r ≥ 2, 

we construct a graph G with the desired properties as follows: 

Case 1. r = d. For r = 2, let G be the graph shown in Figure 8. Then it is clear that d = 2 and omt(G) = 3. 

 

 

 

 

G 
Figure 8 A graph G with rad G = diam G = 2 and omt(G) = 3. 

Now, let r ≥ 3. Let C2r : v1, v2, . . . , v2r, v1 be a cycle of order 2r. Let G be the graph in Figure 9, obtained by 
adding the edges v1v3 and v1v2r −1. It is easily verified that the eccentricity of each vertex of G is r so that rad G = diam G = 
r. Also v2 and v2r are the extreme vertices of G and S = {v2, v2r} is an open monophonic set of G so that om(G) = 2. Since 
the subgraph induced by S is not total, and since S′ = {v1, v2, v2r} is a total open monophonic set of G, it follows that omt(G) 
= 3. 
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Figure 9 A graph G with rad G = diam G  and omt(G) = 3. 
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Case 2. r < d and d = r + 1. For r = 2, let G be the graph shown Figure 10. Then it is clear that d = 3 and omt(G) = 3. 

 

 

 

 

 

 

G 

Figure 10 A graph G with rad G =2, diam G = 3 and omt(G) = 3. 

Now, let r ≥ 3. Let C2r+3 : v1, v2, . . . , v2r+3, v1 be a cycle of order 2r + 3. Let G be the graph in Figure 11 obtained 
by adding the edges v1v3 and v1v2r+2. It is easily verified that the eccentricity of each vertex of G is r so that rad G = r and 
diam G = r + 1. Also v2 and v2r+3 are the extreme vertices of G and S = {v2, v2r+3} is an open monophonic set of G so that 
om(G) = 2. Since the subgraph induced by S is not total, and since S′ = {v1, v2, v2r+3} is a total open monophonic set of G, it 
follows that omt(G) = 3. 

 
 
 
 
 
 
 
 
 
 

G 

Figure 11 A graph G with rad G = r, diam G = r + 1  and omt(G) = 3. 

We leave the following problem as an open question. 

Problem 3.3 For positive integers r, d and k = 3 with r ≤ d ≤ 2r, does there exist a connected graph G with rad G = r, 

diam G = r + l with 2 ≤ l ≤ r and omt(G) = k ? 

Remark 3.4 For k = 2, by Theorem 2.12, omt(G) = 2 if and only if G = K2. Hence for k = 2, a graph exists only when r = 

d = 1. 

In the view of Theorem 2.5, we have the following realization theorem. 

Theorem 3.5 For positive integers a, b and n with 4 ≤ a ≤ b ≤ n, there exists a connected graph G of order n, with 

omt(G) = a and omc(G) = b. 

Proof. We prove this theorem by considering four cases. 

Case 1. a = b = n. By Theorem 1.1, omc(G) = omt(G) = n for G = Kn. 

Case 2. a < b < n. Let Pb−a+4: u1, u2, . . . ,ub−a+4 be a path of order b − a + 4. Let G be the graph of order n in Figure 12, 
obtained from Pb−a+4 by adding the new vertices w1,w2, . . . ,wn − b; v1, v2, . . . , va − 4 to Pb−a+4 and joining w1,w2, . . . ,wn − b 
with both u2 and u4; and also joining each vi(1 ≤ i ≤ a − 4) with ub−a+3. 
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G 

Figure 12 A graph G with omt(G) = a and omc(G) = b for a < b < n. 

Let S1 = {u1, ub−a+4, v1, v2, . . . , va − 4}, S2 = {u2, ub−a+3} and S3 = {u2, u4, u5, . . . , ub−a+3} denote the sets of all 
extreme vertices, support vertices and cutvertices, respectively. Since S1 ∪ S2 is a total open monophonic set of G, it 
follows from Theorem 2.3 that omt(G) = a. By Theorems 1.1 and 1.4, every connected open monophonic set contains  
S1 ∪ S3. Since the subgraph induced by S1 ∪ S3 is not connected, and since S1 ∪ S3 ∪ {u3} is a connected open 
monophonic set of G, it follows that omc(G) = b. 

Case 3. a = b < n. Let P3 : u1, u2, u3 be a path of order 3. Let G be the graph of order n in Figure 13, obtained from P3 by 
adding the new vertices v1, v2, . . . , va – 4 and joining each vi(1 ≤ i ≤ a − 4) with u2; and also adding the new vertices w1,w2, 
. . . ,wn−a+1 and joining each wi(1 ≤ i ≤ n − a + 1) with u1 and u3. 

 

 

 

 

 

 

 

 

G 
Figure 13  A graph G with omt(G) =  omc(G) = a for a < b < n 

First, let a > 4. Let S = {v1, v2, . . . , va − 4, u2}. By Theorem 2.3, every total open monophonic set of G contains S. 
It is easily verified that for any vertex wi(1 ≤ i ≤ n − a + 1), Si = S ∪ {u1, u3, wi} is a minimum total open monophonic set of 
G so that omt(G) = a. Since Si is also minimum connected open monophonic set of G, we have omc(G) = a. Thus omt(G) = 
omc(G) = a = b. Next, let a = 4. Then it is clear that for any vertex wi(1 ≤ i ≤ n − a + 1), Ti = {u1, u2, u3, wi} is a minimum 
total open monophonic set as well as a minimum connected open monophonic set of G so that omt(G) = omc(G) = 4 = a = 
b. 

Case 4. a < b = n. Let Pb−a+4 : u1, u2, . . . , ub−a+4 be a path of order b − a + 4. Let G be the graph of order n in Figure 14, 
obtained from Pb−a+4 by adding the new vertices v1, v2, . . . , va−4 and joining each vi(1 ≤ i ≤ a − 4) with ub−a+3. 
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Figure 14  A graph G with omt(G) = a and omc(G) = b = n for a < b = n. 

Let S = {u1, ub−a+4, v1, v2, . . . , va − 4, u2, ub−a+3} be the set of all extreme vertices and support vertices of G. It 
follows from Theorem 2.3 that omt(G) = a. Let S1 ={u2, u3, . . . , ub−a+3} be the set of all cutvertices of G. Since S ∪ S1 is a 
connected open monophonic set of G, it follows from Theorems 1.1 and 1.4 that omc(G) = b = n. 
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