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ABSTRACT

The physical situation considered is that of quasi-state hydro magnetic flow of a viscous, incompressible and electrically
conducting fluid between two parallel plates distance 2L’ apart, when the lower plate is set in sinusoidal motion and the
upper stationary .Neglecting the Magnetic Prandtl Number, Solution for Quasi-steady state when the lower plate moves
with U, cos (wt) and the corresponding Skin —friction at the lower plate have been obtained. Discussion has been made of
these two features for the two cases when the magnetic lines of force have been fixed relative to the fluid and the moving
plate respectively.
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INTRODUCTION

Ramana Rao and Vidyanidhi (1970) studied the unsteady hydromagnetic flow between two parallel porous plates
of which the lower is stationary and the upper moved with uniform velocity A t™ (n = 0, 1) for the two cases when (i) the
magnetic lines of force are fixed relative to the fluid and (ii) the magnetic lines of force are fixed relative to the upper plate.

They however assumed the magnetic Prandtl number B, (_2 0i.e, neglecting the induced magnetic field. Singh, Sacheti

and Chandran (1994) brought out the transient effects of couette flow of an electrically conducting fluid subject to rotation
and magnetic field, when one of the plates has been set into uniformly accelerated motion for the above two cases.

Sutton and Sherman (1965) studied the hydromagnetic transient couette flow when magnetic Prandtl number B,
is unity. They obtained exact solutions for the velocity and the induced magnetic field assuming the upper plate is in
uniform motion and the lower plate is stationary. This work holds good when the magnetic lines of force are fixed relative
to the fluid. Ramesh (1996) presented the work of Sutton and Sherman assuming that the magnetic lines of force are fixed
relative to the upper plate.

Here we consider the hydromagnetic flow of a viscous, incompressible and electrically conducting fluid between
two parallel plates, distant 2L apart, when the lower plate is set in sinusoidal motion and upper stationary .Neglecting the

magnetic Prandtl number solution for quasi steady state when the lower plate moves with UOCOSa)t and the

corresponding skin-friction at the lower plate have been obtained. Discussion has been made of these two features for the
two cases when the Magnetic lines of force have been fixed relative to the fluid and the moving plate respectively.

2. MATHEMATICAL FORMULATION

The physical situation considered is that of quasi-state hydromagnetic flow of a viscous, incompressible and
electrically conducting fluid bounded by two infinite parallel plates, distant 2L apart, when Z!-axis is taken normal to the
plates. It is assumed that the plates are electrically non conducting and an applied uniform magnetic fieldHyis acting

parallel to the Z!-axis. When t!> 0, the lower plate / "= _L moves sinusoidallyi.e, U 0COS(a)j'tl) orlJ OSin(a)ltl) .

1
The upper plate Z =L is stationary for t!> 0. The governing equations of continuity and motion and Maxwell’s
equations are:

V.V=0 (1.1)
a—V1+ V.YV = (—E)Vp+vvz\7+ JEe (1.2)
ot P

VxB= Hod (1.3)

= oB

VxE = . (1.4)
V-B=0 (15)
J =o(E+V xB) (1.6)

Where \7 = (ul,O, 0) the velocity vector, p is the pressure, pis the density, V is the kinematic viscosity, J is the

current density, B is the magnetic induction vector, E is the electric field vector, M, is the magnetic permeability and &

is the electric conductivity. We assume the magnetic Reynolds number is so small, in others, Pm the magnetic Prandtl

number is almost zero being the ratio of magnetic Reynolds number and the Reynolds number, that the induced magnetic
field can be neglected in comparison with applied one (1962), so that

B=(0,0,B,) (L.7)

where B0 is a constant. It is also assumed that no applied and polarization voltage exists (i. e, E =0).This then
corresponds to the case when no energy is added or extracted from the fluid by the electric field. Science the plates are

infinite in extent, all physical variables (except pressure) are functions of Z'andt'. Equation (1.1) is automatically

satisfied. Now, the equation for the conservation of electric charge, V-J =0 leads to Ji: constant, where

J =(J%,35,3%) . Asin the case of vertical velocity, we immediately see that J; =0
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Equation (1.6) thus yields Jy =0, J, =—of,(u'—=Ue"") (1.8)
Noting that when the magnetic lines of force are fixed relative to the lower plate, moving sinusoidally equation (1.6) is
replaced by

- . - RPN,

J=c(E+(V -u'-Ue“"1)xB (1.9)

a . . 1 .
where | is the unit vector in X ™ - direction

In view of the above considerations equation (1.2) can be written in the component form as in (1986).

out o4t

_ _ 1 io't!
ro 1% e m(u - KU.e"“") (1.10)
0'802
Where M =
o,

0 if By is fixed relative to the fluid

K= 1if By is fixed relative to the sinusoidally
moving lower plate

Since we seek the quasi-state solution for u! the boundary conditions are
u* :eri‘”1t1 atZ'=—L andU*'=0at Z'=L fort'>0 (1.11)
The real and imaginary parts oful, when obtained corresponds to the motion of the lower plate either with UO cosw't'
or U, sin @'t respectively.
3. METHOD OF SOLUTION
substituting: U* =U €' f (Z%) (1.12)

In equation (1.10) we get

= 1
fn_{w} ¢__mk N
1% 1%

which is to be solved subject to the conditions of equation (1.11) namely

f(-L)=1, f(L)=0 (1.14)

And dash denotes the differentiation with respect to Z*

In terms of the non-dimensional quantities

1 1
V:u_, o= /ﬂL, o= /ﬁL, z:Z_, T = o't! (1.15)
U, 2v 2v L

1 1
P=(Wa'+o" +a?)?, Q=(Wa'+0* —a?)? (1.16)

We get
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1
f(2)=
@ |:Ch2PCOSZQ+Sh2PSin2Q:|

1 Ka* = — ]

(z———)(ChPZ cosQZChP cosQ + ShPZ sin QZShPsin Q) -
2 a'+o

Ka’o?

- (Sh PZsin QZChP cosQ-Ch PZ cos QZShPsm Q)+

\ _
Ka —(Sh PZsin QZchPQcosQ ChPcosQZShPsm Q)+

CZ +-CT

{____

2 a‘+o
Ka?o?

7(Ch PZ cosQZChP cosQ + ShPZ sin QZShPssin Q)}
CX 4-(7

1
| 2(Sh*P cos? Q + Ch?Psin? Q}
' ShPZ cosQZShP cosQ + ChPZ sin QZChPsin Q +
J— J— J— — B
i {Cth sin QZShP cos Q — ShPZcosQZChP sin Q}

(1.17)

4 gy 7
Ka . Ka‘o

a*+o'  at+o’
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s 1.1
The boundary condition U™ =U, COS @'t" of equation (1.11) gives the real part of U' =U €' f(Z")i.e,

il
- [CthcoszQ+ Sthsian}

_{(E—T—a;‘)(ChﬁcosEChPcosQ+ShﬁsinﬁShPsinQ)—_
0'{(0:6 (ShZPsin ZQChP cosQ — ChZP cos ZQShPsin Q)}cosT—
{E_aKf (ShZP'sin ZQchP cosQ — ChZP cos ZQShPsin Q) + _
540: (ChZP cos ZQChP cosQ + ShZP sin ZQShPsin Q)}sinT

1
| 2(Sh*Pcos®Q +Ch?Psin’ Q}
[ (ShZP cos ZQShP cosQ + ChZPsin ZQChPsin Q) cosT —
{Chﬁsin ZQShP cosQ — ShZPcosZQChP sin Q}sinT } '
Ko’ Ka’o?

———cosT + sinT
at+ot at+ot

(1.18)

Where in equations (1.17-1.18) Ch and Sh stands for cos hyperbolic and sine hyperbolic respectively.

The corresponding skin-friction 7 at the lower plate ‘: 7 } is given by
z=-1
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1
_{Z(CthcoszQ+ Sthsian)}

{(1— Ka —)(= PSh2P+QS|n2Q)+ a’o (Psm2Q+QSh2P)}cosT+
2 a'+o ‘o -
{(%_ Ko! & —)(Psin2Q+Qsh2P) - K“: (~Psh2P +Qsin2Q)}sinT (1:49)
CZ

I 1
| 4(Sh*Pcos’ Q + Ch?Psin? Q)}
[ (PSh2P +Qsin 2Q) cosT— (—Psin 2Q + QShﬁ)sinT]

- 1_ 1 1_ ottt 1
The boundary condition U™ =U, cos 't of equation (1.11) gives the imaginary part of U™= er f(Z)

corresponding skin- friction at the lower plate can be determined but these two expressions are not obtained here.

and its

We have computed the expressions for the velocity and skin-friction as given by equations (1.18) and (1.19). The velocity
distribution has been entered in Table I-VI and skin-friction in table VII.

Figures 1 and 2 show tables I, lll and IV respectively.
4. DISCUSSION

In the non-magnetic case i.e., a = 0, shown in Fig .1the effect of increasing T(w't!) is to reduce the velocity at any point of
the channel independent of K( K does not rise) for fixed o, the penetration depth. In the magnetic case shown in Fig.2, the
effect of increasing T also reduces the velocity at any point of the channel for fixed ¢ in both the cases when the magnetic
lines of force are fixed relative to the fluid K = 0 shown by and the lower plate K = 1 shown by------- . The effect
of increasing K as shown in Fig.2 is to increase the velocity at any point of the channel, its width taken as unity. From
Table II, in non-magnetic case, for fixed T the effect of increasing o is to increase the velocity but very feebly. This also
seen in the magnetic case from tables V and VI, corresponding to K=0 and 1 respectively. From these tables, as K
increases the velocity increases. From Table VII ,it observed that the skin-friction at the lower plate (i) when a« = 0, i.e, in
the non-magnetic case is the same independent of K( K does not arise) , (ii) in magnetic case decreases as K increases ,
(iii) decreases as both T and o increase in both hon-magnetic and magnetic cases, (iv) increases as a increases when K
= 0 and decreases when K = 1.

TABLE-I
T 0.5 1.0 5.0

Z

-1.0 .87758260 .54030230 .28366220
-0.8 79399850 49382050 .24649410
-0.6 .70905900 44493130 .21209510
-0.4 .62293530 .39391520 .18016350
-0.2 .53579140 .34104820 15039520
0 44778500 .28660250 12248450
0.2 .35906820 .23084650 .09612405
0.4 .26978870 17404580 .07100530
0.6 .18009040 11646370 .04681866
0.8 .09011438 .05836169 .02325379
1.0 0 0 0

Velocity distribution whena =0, 6=0.2,K=0and 1
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TABLE-II
o
0.2 0.4 0.6

z

-1.0 .87758260 .87758260 .87758260
-0.8 79399850 .80403510 .81233530
-0.6 .70905900 .72538010 .73679440
-0.4 .62293530 .64252720 .65386150
-0.2 .53579140 .55626710 .56582870
0 44778500 46728540 47444590
0.2 .35906820 37617670 .38099470
0.4 .26978870 .28345900 .28636310
0.6 .18009040 .18958880 19112330
0.8 .09011438 .09497619 .09561023
1.0 0 0 0

Velocity distribution whena =0, T=0.5,K=0and 1

TABLE-II
T 0.5 1.0 5.0

Z

-1.0 .87758260 .54030230 .28366220
-0.8 .66153110 40951220 .20928790
-0.6 149759850 30965790 15410920
-0.4 .37288020 .23321390 11309990
-0.2 .27755530 17441380 .08251508
0 .20411540 .12881780 .05955396
0.2 14677330 .09298015 .04210772
0.4 .10100920 .06418966 .02856892
0.6 .06321429 .04026641 .01768596
0.8 .03040743 .01939742 .00844937
1.0 0 0 0

Velocity distribution whena =1, 0=0.2, K=0
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TABLE-IV

T 0.5 1.0 5.0
Z
-1.0 .87758260 .54030230 .28366220
-0.8 .85117060 .52804790 .26695550
-0.6 .82116040 .51220150 .25189280
-0.4 .78520610 49159570 23715110
-0.2 .74048600 46469190 .22141350
0 .68348220 42946620 .20325330
0.2 .60970400 .38325820 .18100620
0.4 .51333510 32257140 15262010
0.6 .38677640 .24281010 11546960
0.8 .22004700 13793330 .06611700
1.0 0 0 0

Velocity distribution whena =1,06=0.2, K=1

TABLE-V
o 0.2 0.4 0.6

z

-1.0 87758260 87758260 87758260
0.8 66153110 66679070 67387630
0.6 149759850 50520470 51485320
-0.4 37288020 38107450 .39082780
-0.2 27755530 28532100 29397460
0 20411540 21090040 21797770
0.2 14677330 15230640 15772380
0.4 10100920 10517840 10903610
0.6 06321429 06598935 06844366
0.8 03040743 03179109 03297934
1.0 0 0 0

Velocity distribution whena =1, T=0.K=0
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TABLE-VI

o 0.2 0.4 0.6
Z
-1.0 .87758260 .87758260 .87758260
-0.8 .85117060 .86034430 .87178670
-0.6 .82116040 .83608260 .85381200
-0.4 .78520610 .80329900 .82390430
-0.2 .74048600 .75975080 .78094540
0 .68348220 .70230730 72249130
0.2 .60970400 .62673620 .64469460
0.4 .51333510 .52740290 54211260
0.6 .38677640 .39686730 40740250
0.8 .22004700 .22534470 .23088980
1.0 0 0 0

Velocity distribution whena =1, T=0.5,K=1
TABLE-VII

0 0.2 0.5 0 0.41423600
il 0.41423600

1 0 0.22591600

i 0.22591600

0.4 0.5 0 0 0.35329120
1 0.35329120

1 0.2 0.5 0 1.23688100
1 0.12656620

1 0 0.74656890

0.4 1 0.05386135

0.5 0 1.20067900

1 0.07028925

Values of skin-friction 7 at the lower plate
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