Degree of approximation of Conjugate Series of a Fourier Series by $(E, r)(N, p, q)$ Means
 B. P. Padhy ${ }^{1}$, U. K. Misra ${ }^{2}$, Mahendra Misra ${ }^{3}$ and Santosh Kumar Nayak ${ }^{4}$
 ${ }^{1}$ Department of Mathematics, Roland Institute of Technology Golanthara-761008, Odisha, India
 ${ }^{2}$ Department of Mathematics, National Institute of Science and Technology
 PallurHills-761008, Odisha, India
 ${ }^{3}$ Department of Mathematics, Binayak College,Berhampur Odisha, India
 ${ }^{4}$ Department of Mathematics, Jeevan Jyoti Mahavidyalaya, Raikia Khandamal, Odisha, India

Abstract

In this paper a theorem on degree of approximation of a function $f \in \operatorname{Lip} \alpha$ by product Summability $(E, r)(N, p, q)$ of conjugate series of Fourier series associated with f, has been established.

Keywords: Degree of Approximation; Lip α class of function; (E, r) mean; (N, p, q) mean; $(E, r)(N, p, q)$ product mean; conjugate Fourier series; Lebesgue integral.

2010-Mathematics subject classification: 42B05, 42 B 08.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 9, No 2
editor@cirjam.org
www.cirjam.com, www.cirworld.com

1. Introduction:

Let $\sum a_{n}$ be a given infinite series with sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{t_{n}\right\}$ denote the sequence of (N, p, q) mean of the sequence $\left\{s_{n}\right\}$. Then $\left\{t_{n}\right\}$ is defined as follows:

$$
\begin{equation*}
t_{n}=\frac{1}{r_{n}} \sum_{v=0}^{n} p_{n-v} q_{v} s_{v} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& r_{n}=p_{0} q_{n}+p_{1} q_{n-1}+\ldots+p_{n} q_{0}(\neq 0) \\
& p_{-1}=q_{-1}=r_{-1}=0
\end{aligned}
$$

If

$$
\begin{equation*}
t_{n} \rightarrow s \quad, \text { as } n \rightarrow \infty \tag{1.2}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be (N, p, q) summable to s.
The necessary and sufficient conditions for the regularity of (N, p, q) method are:
(i) $\frac{p_{n-v} q_{v}}{r_{n}} \rightarrow 0$, as $n \rightarrow \infty$ for each integer $v \geq 0$
and

$$
\begin{equation*}
\text { (ii) } \sum_{v=0}^{n}\left|p_{n-v} q_{v}\right|<H\left|r_{n}\right| \tag{1.4}
\end{equation*}
$$

where H is a positive number independent of n. The sequence -to-sequence transformation [1],

$$
\begin{equation*}
T_{n}=\frac{1}{(1+r)^{n}} \sum_{v=0}^{n}\binom{n}{v} r^{n-k} s_{v} \tag{1.5}
\end{equation*}
$$

defines the sequence $\left\{T_{n}\right\}$ of the (E, r) mean of the sequence $\left\{s_{n}\right\}$. If

$$
\begin{equation*}
T_{n} \rightarrow s, \text { as } n \rightarrow \infty \tag{1.6}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be (E, r) summable to s.Clearly (E, r) method is regular[1].
Further, the (E, r) transform of the (N, p, q) transform of $\left\{s_{n}\right\}$ is defined by

$$
\begin{align*}
\tau_{n}= & \frac{1}{(1+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} r^{n-k} T_{k} \\
& =\frac{1}{(1+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-\nu} q_{v} s_{v}\right\} \tag{1.7}
\end{align*}
$$

If

$$
\begin{equation*}
\tau_{n} \rightarrow s, \text { as } n \rightarrow \infty, \tag{1.8}
\end{equation*}
$$

then $\sum a_{n}$ is said to be $(E, r)(N, p, q)$-summable to s.
Let $f(t)$ be a periodic function with period 2π, L-integrable over $(-\pi, \pi)$, The Fourier series associated with f at any point x is defined by

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} A_{n}(x) \tag{1.9}
\end{equation*}
$$

and its conjugate series is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n x\right) \equiv \sum_{n=1}^{\infty} B_{n}(x) \tag{1.10}
\end{equation*}
$$

Let $\bar{S}_{n}(f ; x)$ be the n-th partial sum of the series given by (1.10). The L_{∞}-norm of a function $f: R \rightarrow R$ is defined by

$$
\begin{equation*}
\|f\|_{\infty}=\sup \{|f(x)|: x \in R\} \tag{1.11}
\end{equation*}
$$

and the L_{v}-norm is defined by

$$
\begin{equation*}
\|f\|_{v}=\left(\int_{0}^{2 \pi}|f(x)|^{v}\right)^{\frac{1}{v}}, v \geq 1 \tag{1.12}
\end{equation*}
$$

The degree of approximation of a function $f: R \rightarrow R$ by a trigonometric polynomial $P_{n}(x)$ of degree n under norm $\|.\|_{\infty}$ is defined by

$$
\begin{equation*}
\left\|P_{n}-f\right\|_{\infty}=\sup \left\{\left|p_{n}(x)-f(x)\right|: x \in R\right\} \tag{1.13}
\end{equation*}
$$

and the degree of approximation $E_{n}(f)$ of a function $f \in L_{v}$ is given by

$$
\begin{equation*}
E_{n}(f)=\min _{P_{n}}\left\|P_{n}-f\right\|_{v} \tag{1.14}
\end{equation*}
$$

This method of approximation is called Trigonometric Fourier approximation.
A function $f \in \operatorname{Lip} \alpha$ if

$$
\begin{equation*}
|f(x+t)-f(x)|=O\left(|t|^{\alpha}\right), 0<\alpha \leq 1 \tag{1.15}
\end{equation*}
$$

We use the following notation throughout this paper:

$$
\begin{equation*}
\psi(t)=\frac{1}{2}\{f(x+t)-f(x-t)\} \tag{1.16}
\end{equation*}
$$

$$
\overline{K_{n}}(t)=\frac{1}{2 \pi(1+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} r^{n-k}\left\{\frac{1}{r_{n}} \sum_{v=0}^{k} p_{k-v} q_{v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}
$$

Further, the method $(E, r)(N, p, q)$ is assumed to be regular and this case is supposed throughout the paper.

2. Known Theorems:

Dealing with the degree of approximation by the product $(E, q)(C, 1)$-mean of Fourier series, Nigam et al [3] proved the following theorem.

Theorem 2.1:

If a function f is 2π-periodic and of class $L i p \alpha$, then its degree of approximation by $(E, q)(C, 1)$ summability mean on its Fourier series $\sum_{n=0}^{\infty} A_{n}(t)$ is given by $\left\|E_{n}^{q} C_{n}^{1}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1$,where $E_{n}^{q} C_{n}^{1}$ represents the (E, q) transform of $(C, 1)$ transform of $\overline{s_{n}}(f ; x)$.

Subsequently Misra et al [2] have proved the following theorem on degree of approximation by the product mean $(E, q)\left(\bar{N}, p_{n}\right)$ of the conjugate series (1.10) of the Fourier series (1.9).

Theorem 2.2:
If f is a 2π - Periodic function of class Lip α, then degree of approximation by the product $(E, q)\left(\bar{N}, p_{n}\right)$ summability means on the conjugate series of its Fourier series (defined above) is given by $\left\|\tau_{n}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1$, where τ_{n} as defined in (1.7).

3. Main theorem:

In this paper, we have proved a theorem on degree of approximation by the product mean $(E, r)(N, p, q)$ of the Fourier series of a function of class Lip α. We prove:

Theorem -3.1:

If f is a 2π - Periodic function of the class $\operatorname{Lip}(\alpha, r)$, then degree of approximation by the product $(E, r)(N, p, q)$ summability means on its Fourier series (1.9) is given by, $\left\|\tau_{n}-f(x)\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1$, where τ_{n} is as defined in (1.7).

4. Required Lemmas:

We require the following Lemma for the proof the theorem.

Lemma -4.1:

$$
\left|\overline{K_{n}}(t)\right|=O(n) \quad, 0 \leq t \leq \frac{1}{n+1} .
$$

Proof of Lemma-4.1:

For $0 \leq t \leq \frac{1}{n+1}$, we have $\sin n t \leq n \sin t$ then

$$
\left|K_{n}(t)\right|=\frac{1}{2 \pi(1+r)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} r^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-\nu} q_{v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right|
$$

$$
\begin{aligned}
& \leq \frac{1}{2 \pi(1+r)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} r^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v} \frac{\cos \frac{t}{2}-\cos v t \cdot \cos \frac{t}{2}+\sin v t \cdot \sin \frac{t}{2}}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{2 \pi(1+r)^{n}} \left\lvert\, \sum_{k=0}^{n}\binom{n}{k} r^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v}\left(\frac{\cos \frac{t}{2}\left(2 \sin ^{2} v \frac{t}{2}\right)}{\sin \frac{t}{2}}+\sin v t\right)\right\}\right. \\
& \leq \frac{1}{2 \pi(1+r)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} r^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v}(O(v)+O(v))\right\}\right| \\
& \leq \frac{1}{2 \pi(1+r)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} r^{n-k} \frac{O(k)}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v}\right| \\
& =O(n) .
\end{aligned}
$$

This proves the lemma.

Lemma-4.2:

$$
\left|\overline{K_{n}}(t)\right|=O\left(\frac{1}{t}\right), \text { for } \frac{1}{n+1} \leq t \leq \pi
$$

Proof of Lemma-4.2:

For $\frac{1}{n+1} \leq t \leq \pi$, we have by Jordan's lemma, $\sin \left(\frac{t}{2}\right) \geq \frac{t}{\pi}, \sin n t \leq 1$.
Then

$$
\begin{aligned}
& \left|\overline{K_{n}}(t)\right|=\frac{1}{2 \pi(1+r)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} r^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{2 \pi(1+r)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} r^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v} \frac{\cos \frac{t}{2}-\cos v \frac{t}{2} \cdot \cos \frac{t}{2}+\sin v \frac{t}{2} \cdot \sin \frac{t}{2}}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{2 \pi(1+r)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} r^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v} \frac{\cos \frac{t}{2}\left(2 \sin ^{2} v \frac{t}{2}\right)+\sin v \frac{t}{2} \cdot \sin \frac{t}{2}}{\sin \frac{t}{2}}\right\}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{2 \pi(1+r)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} r^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} \frac{\pi p_{k-v} q_{v}}{2 t}\right\}\right| \\
& =\frac{1}{4(1+r)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} r^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v}\right\}\right| \\
& =\frac{1}{4(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} r^{n-k}\right| \\
& =O\left(\frac{1}{t}\right) .
\end{aligned}
$$

This proves the lemma.

5. Proof of Theorem 3.1:

Using Riemann -Lebesgue theorem, for the n-th partial sum $S_{n}(f ; x)$ of the Fourier series (1.9) of $f(x)$ and following Titchmarch [4], we have

$$
\overline{s_{n}}(f ; x)-f(x)=\frac{1}{2 \pi} \int_{0}^{\pi} \psi(t) \overline{K_{n}} d t
$$

Using (1.1), the (N, p, q) transform of $\overline{s_{n}}(f ; x)$ is given by

$$
t_{n}-f(x)=\frac{1}{2 \pi r_{n}} \int_{0}^{\pi} \psi(t) \sum_{k=0}^{n} p_{n-k} q_{k} \frac{\cos \frac{t}{2}-\cos \left(n+\frac{1}{2}\right) t}{\sin \left(\frac{t}{2}\right)} d t
$$

Denoting the $(E, r)(N, p, q)$ transform of $\overline{s_{n}}(f ; x)$ by τ_{n}, we have

$$
\begin{align*}
& \left\|\tau_{n}-f\right\|=\frac{1}{2 \pi(1+r)^{n}} \int_{0}^{\pi} \psi(t) \sum_{k=0}^{n}\binom{n}{k} r^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{\sin \left(\frac{t}{2}\right)}\right\} d t \\
& =\int_{0}^{\pi} \psi(t) \overline{K_{n}}(t) d t \\
& \quad=\left\{\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{\pi}\right\} \psi(t) \overline{K_{n}}(t) d t \\
& \tag{5.1}
\end{align*}
$$

Now

$$
\begin{align*}
\left|I_{1}\right|= & \frac{1}{2 \pi(1+r)^{n}}\left|\int_{0}^{1 / n+1} \psi(t) \sum_{k=0}^{n}\binom{n}{k} r^{n-k}\left\{\frac{1}{r_{k}} \sum_{v=0}^{k} p_{k-v} q_{v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{\sin \left(\frac{t}{2}\right)}\right\} d t\right| \\
& \leq O(n) \int_{0}^{\frac{1}{n+1}}|\psi(t)| d t, \quad \text { using lemma-4.1 } \\
& =O(n) \int_{0}^{\frac{1}{n+1}}\left|t^{\alpha}\right| d t \\
& =O(n)\left[\frac{t^{\alpha+1}}{\alpha+1}\right]_{0}^{\frac{1}{n+1}} \\
& =O(n)\left[\frac{1}{(\alpha+1)(n+1)}\right] \\
= & O\left(\frac{1}{(n+1)^{\alpha+1}}\right]^{2} \tag{5.2}
\end{align*}
$$

Next

$$
\begin{align*}
\left|I_{2}\right| \leq & \int_{\frac{1}{n+1}}^{\pi}|\psi(t)|\left|\overline{K_{n}}(t)\right| d t \\
\left|I_{2}\right| \leq & \int_{\frac{1}{n+1}}^{\pi}|\psi(t)| O\left(\frac{1}{t}\right) d t, \quad \text { using lemma-4.2 } \\
& =\int_{\frac{1}{n+1}}^{\pi}\left|t^{\alpha}\right| O\left(\frac{1}{t}\right) d t \\
& =\int_{\frac{1}{n+1}}^{n} t^{\alpha-1} d t \\
& =O\left(\frac{1}{(n+1)^{\alpha}}\right) \tag{5.3}
\end{align*}
$$

Then from (5.2) and (5.3), we have

$$
\begin{array}{r}
\left|\tau_{n}-f(x)\right|=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1 \\
\left\|\tau_{n}-f(x)\right\|_{\infty}=\sup _{-\pi<x<\pi}\left|\tau_{n}-f(x)\right|=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1
\end{array}
$$

This completes the proof of the theorem.

References

[1] G.H. Hardy: Divergent series, First edition, Oxford University press 70(19).
[2] Misra, U.K. Misra, M. Misra, B.P. Padhy and S.K. Buxi: On degree of approximation by product mean $(E, q)\left(\bar{N}, p_{n}\right)$ of the conjugate series of the Fourier series", International Journal of Math. and Sciences and Engineering Applications, ISSN 0973 - 9424, Vol.6, No. 122 (2012), pp 363-370.
[3] H.K. Nigam and Ajay Sharma: On degree of Approximation by product means, Ultra Scientist of Physical Sciences, Vol. 22 (3) M, 889-894, (2010).
[4] E.C. Titchmarch: The theory of functions, oxford university press, p.p402-403(1939).
[5] A. Zygmund : Trigonometric Series, second Edition, Vol.I, Cambridge University press, Cambridge , (1959).

