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1  Introduction 

Friedmann and Schouten[1] introduced idea of semi symmetric linear connection on a differentiable manifold. Hayden [2] 
introduced the idea of semi symmetric linear connection on Riemannian manifold. K. Yano [3] studied semi-symmetric metric 
connection in a Riemannian manifold. Mishra and Pandey [9] studied semi symmetric metric connection in an almost contact 

manifold. A linear connection D  in an n- dimensional(where n is odd) differentiable manifolds M is said to be 
semi-symmetric connection if its torsion tensor T of type (1, 2) is defined as  

 ],[=),( YXXDYDYXT YX   

 .)()(= YXXY    (1.1) 

 for arbitrary vector fields X and Y and where   is 1-form. If T vanishes then the manifold M becomes torsion free. The 

connection D  is a metric connection, if there is a Riemannian metric g in M such that 0=Dg , otherwise it is non metric. 

Various properties are studied by T.Imai [5], [6], Agashe and Chafle [12], [13] De and Sengupta [15], [16] and several others. 
Mishra and Pandey [9] defined semi-symmetric metric T-connection and studied some properties on the almost Grayan 
manifold. In this paper we study the semi-symmetric metric T-connection on a Sasakian manifold. Section 2 is devoted to 
preliminaries and some definitions. In section three we studied T- connections and find a relation between a generalised 
quasi Sasakian manifold and quasi Sasakian manifold. In section 4 some special cases of curvature tensor is studied. Finally 
we studied curvature properties with respect to the semi-symmetric metric F-T connection.  

2  Preliminaries 

 An n-dimensional differentiable Manifold M  of class 
1rC  (where n is odd), is called an almost contact 

manifold if it admits an almost contact structure (F, , ) consisting of a (1,1) tensor field F, a 1-form   and vector field   

satisfying  

 ,)(=2  XXXF   (2.1) 

 0,=)(F  (2.2) 

 0,=oF  (2.3) 

 1,=)(  (2.4) 

 for arbitrary vector field X . Let g be a compatible Riemannian metric with structure (F, , ), that is  

 ),()(),(=),( YXYXgFYFXg   (2.5) 

 for arbitrary vector fields X , Y  in M , then ),( gM  is said to be an almost contact metric manifold. If we put   for 

X  in (2.5) and using (2.2), (2.3) and (2.4) we obtain  

 ).(=),( XXg   (2.6) 

 Also,  

 ),(=),(
def

YFXgYX  (2.7) 

 or  

 ),(=),('
def

YFXgYXF  (2.8) 

 gives  

 0.=),(),( XYYX   (2.9) 

 An almost contact metric manifold M  is said to be a Sasakian manifold [8] if it satisfies  

 ,)(),(=)( XYYXgYFDX    (2.10) 

 for arbitrary vector fields X  and Y  on M . Here D  denotes the Levi-Civita connection of the metric g. A normal 

contact metric manifold of dimension n  greater than or equal to three is called a Sasakian manifold. Let R  be the 

curvature tensor of type (1, 3) and S  is the Ricci tensor of type (0,2)  with respect to the Levi-Civita connection D , then 

the following relations hold in a Sasakian manifold for any arbitrary vector fields X  and Y .  
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 FXDX =  (2.11) 

 YXXYYXR )()(=),(    (2.12) 

 ),(=))(( FYXgYDX  (2.13) 

 YFDYXR X )(=),(  (2.14) 

 )()(1)(),(=),( YXnYXSFYFXS   (2.15) 

 ).(1)(=),( XnXS    (2.16) 

 The projective curvature tensor having one-one correspondence between each coordinate neighbourhood of an 
n-dimensional Riemannian manifold and a domain of Euclidean space such that there is one-one correspondence between 

geodesics of Riemannian manifold with straight line in Euclidean space. The manifold M  is projectively flat if and only its 
curvature becomes constant.  

Definition 2.1 Let M be an odd dimensional Riemannian manifold then the quasi conformal curvature tensor C [27] is given 

by  

 YZXSXZYSbZYXaRZYXC ),(),([),(=),(   

 ]),(),( QYZXgQXZYg   

 ].),(),(][
2

[
12

YZXgXZYgb
n

a

n

r



  (2.17) 

 where a  and b  are two scalars and r  is the scalar curvature of the manifold. 

Definition 2.2 The M-projective curvature tensor 
*W is defined as [4]  

 YZXSXZYS
n

ZYXRZYXW ),(),([
1)2(

1
),(=),(* 


  

 ]),(),( QYZXgQXZYg   (2.18) 

where R  is Riemannian curvature tensor, S  is Ricci tensor, Q  is Ricci operator and g  is metric tensor and X ,Y  

and Z  are arbitrary vector fields. Also we have  

 ),),((=),,,( ** UZYXWgUZYXW  (2.19) 

Definition 2.3 An almost contact manifold satisfying  

 0=),('),('),(' YXFDXZFDZYFD ZYX   (2.20) 

for arbitrary vector fields X , Y , and Z , called quasi sasakian manifold [23].  

Definition 2.4 An almost contact manifold satisfying  

 ))()[((),('),('),(' FZDXYXFDXZFDZYFD YZYX   

 )])(())()[((])(( FZDXDYFYD XZZ    

 0.=)])(())()[(( FXDFYDZ YX    (2.21) 

for arbitrary vector fields X,Y and Z, called generalised quasi sasakian manifold [23].  

Definition 2.5 The almost contact metric manifold satisfying  

 ))()(())()((=),)('( FYDZFZDYZYFD XXX    (2.22) 

for arbitrary vector fields X,Y and Z, called generalised cosympletic manifold [23].  

Definition 2.6 The almost contact metric manifold satisfying  

                      ),)('(),)('(),)('( YXFDXZFDZYFD ZYX   
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                   )])(())()[(( FYDFZDX ZY    

                   )])(())()[(( FZDFXDY XZ    

                            0=)])(())()[(( FXDFYDZ YX                                   (2.23) 

for arbitrary vector fields X,Y and Z, called generalised quasi sasakian manifold[23].  

Definition 2.7 The almost contact metric manifold satisfying  

 )])()[((),)('(),)('( FZDYZFYFDZYFD FXXX   

 0=)])(())()[(( YDFYDZ XFX    (2.24) 

for every vector fields X,Y and Z, called generalised almost contact normal metric manifold [23].  

Definition 2.8 The almost contact metric manifold satisfying  

 ))()(())()((=),)('( YDZFXDYZYFD FXZX    (2.25) 

 for arbitrary vector fields X,Y and Z, called normal quasi sasakian metric manifold.[23].  

Definition 2.9 The almost contact metric manifold satisfying  

 ))()((),)('(=),)('( FZDYZYFDZFYFD XXFX   (2.26) 

for arbitrary vector fields X,Y and Z, called almost contact normal metric manifold[23].  

3  T-connection 

Let D be Riemannian connection then a linear connection 
~

 defined [9],[26] as  

  ),()(=
~

YXgXYYDY XX   (3.1) 

 for arbitrary vector fields X and Y and   is 1-form associated to vector field  , called semi symmetric metric connection 

if  

 ),(=)(  YgY  (3.2) 

The torsion tensor T of the connection   and metric tensor is given by  

 YXXYYXT )()(=),(    (3.3) 

 0=gX  (3.4) 

 In addition if  

 0=
~
X  (3.5) 

 0=)(
~

YX  (3.6) 

holds for arbitrary fields X and Y then the connection 
~

 is called semi-symmetric metric T-connection. Putting =x  in 

(3.1) and using equation (3.5) we get  

  ),()(=
~

XgXYYDY   (3.7) 

 0=),(  XgXDX   (3.8) 

 0=),())((1=)( FYFXgYDX    (3.9) 

Using (3.1) we get  

 ),(=))(( FYXgYDX  (3.10) 

Replacing Y by Y in (3.10) we get  
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 ],[=])[( 2YFFXgYDX   

  

 ),(=])[( ZFXgYDX   (3.11) 

Using (3.5) and(3.6) the equation (2.23) we get  

 ),()(2),('),('),(' ZFYgXYXFDXZFDZYFD ZYX   

 0.=),()(2),()(2 YFXgZXFZgY    (3.12) 

If g is skew symmetric then (2.23) becomes  

 0=),('),('),(' YXFDXZFDZYFD ZYX   (3.13) 

Therefore we can state the following theorem  

Theorem 3.1 A generalised quasi sasakian manifold with semi symmetric metric T-connection becomes quasi sasakian 

manifold. 

4  Some special cases of curvature tensor 

Taking inner product of (2.17) with X we have  

 ),(),(),(),([),(=),(
~

ii eYgZeSXXgZYSbZYaSZYS   

 )],(),(),(),( QYXgYXgQXXgZYg   

 )],(),(),(),(][
2

[
12

XYgZXgXXgZYgb
n

a

n

r



  

 ),(),()],(),(1))()(,([= YXSZXgXXSZYgnbaZYS   

 1)].)(,(][
2

[
12




 nZYgb
n

a

n

r
 (4.1) 

because ),(=),( YXSQYXg . Hence we state the following theorem.  

Theorem 4.1 Let M  be a Sasakian manifold admitting a semi symmetric metric T-connection whose Ricci tensor 

vanishes with parameters 0=a  and 0=b  then the Ricci tensor for quasi conformal curvature tensor also vanishes.  

The m-projective curvature tensor field 
*W is given by (2.18) and taking inner product with X, we get  

 ),),((=),),((
1=1=

ii

n

i

ii

n

i

eZYeRgeZYeWg   

 ),(),(),(),([
1)2(

1

1=1=

ii

n

i

ii

n

i

eYgZeSeegZYS
n

 


  

 )],(),(),(),( iiii eQYgZegeQegZYg   (4.2) 

Therefore,  

 )],(),(),(),(1))(,([
1)2(

1
),(=),(

~
ii eYSZegrZYgZYSnZYS

n
ZYSZYS 


  

since =),( ii eeS  Trace of Q  = Scalar curvature where Q  is Ricci operator and S is Ricci tensor. Hence  

 )],(),(),(1))(,([
1)2(

1
),(=),(

~
ZYSrZYgZYSnZYS

n
ZYSZYS 


  
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 )],(.),(1)[(
1)2(

1
=),(

~
ZYgrZYSn

n
ZYS 


 

If scalar curvature r and Ricci tensor S(X,Y) both vanishes then  

 0=),(
~

ZYS  (4.3) 

Hence we have the following theorem.  

Theorem 4.2 If the Ricci tensor S(X,Y) and scalar curvature r both vanishes then the Ricci tensor with respect to 

m-projective curvature tensor also vanishes.  

The conharmonic curvature tensor C
~

of Riemannian connection R is given by  

 ]),(),(),(),([
2

1
),,(=),,(

~
QYZXgQXZYgYZXSXZYS

n
ZYXRZYXC 


  (4.4) 

for arbitrary vector fields X,Y and Z. where S is Ricci tensor and Q is Ricci operator. Contracting above equation with respect 
to X we get  

 ),(),([
2

1
),(=),(

~

1=

ii

n

i

eegZYS
n

ZYSZYS 


  

 ),(),(),(),( jiii eQegZYgeYgZeS   

 ),(1))(,([
2

1
),(= YZSnZYS

n
ZYS 


  

 ),(=)],(),(),(),( ZYSeYSZegeeSZYg iiii   

 )],(),(),(1))(,([
2

1
YZSrZYgYZSnZYS

n



  

 ]),(),([
2

1
= rZYgZYS

n



 (4.5) 

where =),(
1=

ii

n

i

eQeg  scalar curvature r . Hence we have the following theorem.  

Theorem 4.3 If M  be an be an almost contact metric manifold admitting a semi symmetric metric T-connection whose 
Ricci tensor and scalar curvature r both vanishes then the Ricci tensor with respect to the semi symmetric metric 
T-connection also vanishes.   

5   Curvature properties of semi symmetric metric F-T connection 

Definition 5.1 Let R be Riemannian connection on an almost contact manifold with 1-form  , vector field   and (1,1) 

tensor F satisfying[3]  

 FYXYXFYXgFXXYYRYD XX )(),(),())((=    (5.1) 

The connection D  be a metric (F,T) connection if  

 0=gDX  (5.2) 

 0=FDX  (5.3) 

 0=XD  (5.4) 

 and  

 0=XD  (5.5) 

 where ),(=),(' YFXgYXF  We have  



ISSN 2347-1921                                                           

1952 | P a g e                              J u l y  2 4 ,  2 0 1 4  
 

               )],([=),)('( YFXgYXFD ZZ   

 ),(],)[(),)((=),)('( YZZZ DFXgYXFDgYFXgDYXFD   

 Using (5.2) and (5.3) we get  

 ),(=),)('( YDFXgYXFD ZZ  (5.6) 

 Therefore by (4.1) we get  

),(),(),(=),)('(),)('(),)('( YDFZgZDFYgYDFXgYXFDXZFDZYFD XXZZYX   

 0=),(),(),( YDFZgZDFYgYDFXg XXZ   (5.7) 

for quasi Sasakian manifold. Thus we state the following theorem.  

Theorem 5.1 The quasi sasakian manifold with semi symmetric metric F-T connection satisfies  

 0.=),(),(),( YDFZgZDFYgYDFXg XXZ   (5.8) 

For F-T connection following condition holds  

 ),(=),)('( YDFXgYXFD ZZ  (5.9) 

 ),(=))(( FZFXgZDX  (5.10) 

 ),(=))(( ZFXgFZDX  (5.11) 

 ),(=))(( FZFXgFZDFX  (5.12) 

 ),(=))(( 2 YXFgYDFX  

                                     )()(),(=))(( YXYXgYDFX                            (5.13) 

By using (5.9), (5.10), ( 5.11) and (2.22) we get  

 ),()(),()(=),( YFXgZZFXgYZDFYg X    (5.14) 

Thus we can state the following theorem.  

Theorem 5.2 The generalised cosympletic manifold with semi symmetric metric F-T connection satisfies  

 ).,()(),()(=),( YFXgZZFXgYZDFYg X    (5.15) 

By using (5.9), (5.10), ( 5.11) and (2.23), we get  

 )],(),()[(),(),(),( YFZgZFYgXYDFXgXDFZgZDFYg ZYX    

 0=)],(),()[()],(),()[( ZFYgYFXgZZFXgXFZgY    (5.16) 

Theorem 5.3 Let M  is generalised quasi sasakian manifold equipped with semi symmetric metric F-T connection satisfy  

 )],(),()[(,(),(),( YFZgZFYgXYDFXgXDFZgZDFYg ZYX    

 0.=)],(),()[()],(),()[( ZFYgYFXgZZFXgXFZgY    (5.17) 

By (2.24), (5.9), (5.10)and (5.12), we get  

 )],()),()[()],()[(),(),( 22 YFXgFYFXgZZXFgYZDYFgZDFYg XFX    (5.18) 

Using definition of almost contact manifold we get  

 ),()()()(),(),( ZXgYZDYZDYgZDFYg XXFX    

 0=),()(),()()()()( YFXgZFYFXgZZYX    (5.19) 

Thus we state the following theorem.  
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Theorem 5.4 The generalised almost contact normal metric manifold with semi symmetric metric F-T connection satisfy  

 ),()()()(),(),( ZXgYZDYZDYgZDFYg XXFX    

 0.=),()(),()()()()( YFXgZFYFXgZZYX    (5.20) 

Now by using (5.9),(5.11),(5.12) and (2.25) gives  

 )]()(),()[()],()[(=),( YXYXgZXFZgYZDFYg X    (5.21) 

 )]()()(),()(),()[(=),( ZYXYXgZXFZgYZDFYg X    (5.22) 

Hence we can state the above result in the form of following theorem.  

Theorem 5.5 A normal quasi Sasakian manifold with semi symmetric metric F-T connection satisfies  

 )].()()(),()(),()[(=),( ZYXYXgZXFZgYZDFYg X    (5.23) 

Now by use of (5.9), (5.11), (5.12) and (2.26), which gives  

 ),()(),(=),( 2 ZFXgYYDFYgZDYFg XFX   (5.24) 

 ),()(),(=),)(( ZFXgYYDFYgZDYYg XFX    (5.25) 

 ),()(),(=),()(),( ZFXgYYDFYgZDgYZDYg XFXFX    (5.26) 

Therefore,  

 0=),()(),()(),(),( ZDgYZFXgYYDFYgZDYg FXXFX    (5.27) 

Hence we can state the above result in the form of following theorem.  

Theorem 5.6 The almost contact normal metric manifold with F-T connection satisfy  

 0.=),()(),()(),(),( ZDgYZFXgYYDFYgZDYg FXXFX    (5.28) 

By (5.9), (5.10) and (2.20) gives  

 0=),(),(),( YDFXgXDFZgZDFYg ZYX   (5.29) 

 Hence we can have following theorem.  

Theorem 5.7 The quasi sasakian manifold with semi symmetric metric F-T connection satisfy  

 0.=),(),(),( YDFXgXDFZgZDFYg ZYX   (5.30) 
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