Skew Injective Modules Relative to Torsion Theories Mehdi Sadik Abbas, MohanadFarhan Hamid Department of Mathematics, College of Science, University of Mustansiriya, Baghdad, Iraq amsaj59@yahoo.com Department of Mathematics, College of Science, University of Mustansiriya, Baghdad, Iraq mohanadfhamid@yahoo.com # **ABSTRACT** The purpose of this paper is to extend results about skew injective modules to a torsion theoretic setting. Given a hereditary torsion theory τ , a module M is called τ -skew injective if all endomorphisms of τ -dense submodules of M can be extended to endomorphismsof M. A characterization of τ -skew injectivity using split short exact sequences is given. # Indexing terms/Keywords Torsion theory; τ -torsion module; τ -dense submodule;skew injective module. # Council for Innovative Research Peer Review Research Publishing System Journal: Journal of Advances in Mathematics Vol 9, No 2 editor@cirjam.org www.cirjam.com, www.cirworld.com # 1 Preliminaries All modules considered will be right unital R-modules, where R is some associative ring with a nonzero identity. By $\tau = (\mathcal{T}, \mathcal{F})$ we denote a hereditary torsion theory on the category mod-R of R-modules, where \mathcal{T} (resp. \mathcal{F}) denotes the class of all τ -torsion (resp. τ -torsion free) R-modules. A submodule N of a module M is said to be τ -dense in M (denoted $N \leq^{\tau d} M$) if M/N is τ -torsion, and M is τ -torsion if and only if all its elements are annihilated by τ -dense right ideals of R. A submodule N of M is called τ -essential in M (denoted $N \leq^{\tau e} M$) if N is both τ -dense and essential in M. In this case, M is called a τ -essential extension of N. The intersection of any finite number of τ -dense (resp. τ -essential) submodules is again τ -dense (resp. τ -essential). If N and K are submodules of a module M such that $N \leq^{\tau e} M$ then $N \cap K \leq^{\tau e} K$. Any submodule that contains a τ -dense (resp. τ -essential) submodule is itself τ -dense (resp. τ -essential). An R-module is called τ -injective if it is injective with respect to every short exact sequence having a τ -torsion cokernel. Every R-module M admits a π -injective envelope $E = E_{\tau}(M)$, i.e. a π -injective R-module M is called π -quasi injective homomorphisms from π -dense submodules of M into M are extendable to endomorphisms of M. For preliminaries about torsion theories, we refer to [2]. Charalambides [3] introduced the concept of τ -essentially closed submodules. A submodule N of a module M is called τ -essentially closed in M (denoted $N \leq^{\tau c} M$) if N has no proper τ -essential extensions in M. A module M is called *skew injective* [4] if whenever N is a submodule of M, any f in $\operatorname{End}(N)$ can be extended to $g \in \operatorname{End}(M)$. Note that in [5] skew injective modules are called semiinjective. In this paper, we generalize this concept to torsion theoretic setting. # 2 τ -Skew Injective Modules **Definition.** A module M is called τ -skew injective if whenever N is a τ -dense submodule of M, any f in $\operatorname{End}(N)$ can be extended to $g \in \operatorname{End}(M)$. #### Remarks. - a) Every skew injective module is τ -skew injective. - b) Every τ -quasi injective module (and hence every τ -injective) module is τ -skew injective. - c) If M is a τ -torsion τ -skew injective module, then it is skew injective. - d) If τ is the torsion theory in which every R-module is τ -torsion, then a module is τ -skew injective if and only if it is skew injective. **Proposition 1:** A module M is τ -skew injective if and only if for every τ -essential submodule N of M, any endomorphism of N can be extended to an endomorphism of M. *Proof.* Let N be a τ -dense submodule of M and $f \in \operatorname{End}(N)$. Let N' be a relative complement of N in M. Then $N \oplus N'$ is a τ -essential submodule of M. Moreover, f can be extended to an R-endomorphism g of $N \oplus N'$ by putting g(N') = 0. By the given condition, there is an R-homomorphism R of M which extends R-homomorphism R of R-homomorphism R-homomorphi Given a submodule M of a module E and an endomorphism f of E, we call f an M- τ -essential endomorphism if $f(N) \subseteq N$ for some τ -essential submodule N of M. **Theorem 2:** If E is the τ -injective envelope of a module M, then the following statements are equivalent: - (a) Mis τ -skew injective and $f(M) \subseteq M$ for any endomorphism f of E having a τ -essential kernel. - (b) $g(M) \subseteq M$ for any $M-\tau$ -essential endomorphism g of E. *Proof.* (a) \Rightarrow (b) Let g be an M- τ -essential endomorphism of E. Then there is a τ -essential submodule N of M such that $g(N) \subseteq N$. By τ -skew injectivity of E, there exists $h \in \operatorname{End}(M)$ that extends g. Again τ -injectivity of E gives existence of a E in $\operatorname{End}(E)$ such that $E|_{M} = E$. So $E|_{M} = E$. So $E|_{M} = E$. So $E|_{M} = E$. Then by hypothesis $E|_{M} = E$. Then by hypothesis $E|_{M} = E$. Therefore, for any $E|_{M} = E$. Then by hypothesis $E|_{M} = E$. Then by hypothesis $E|_{M} = E$. (b) \Rightarrow (a) Since any endomorphism of E having a τ -essential kernel is necessarily an M- τ -essential homomorphism, we need only prove that M is τ -skew injective. By Proposition 1, let N be a τ -essential submodule of M and $f \in \operatorname{End}(N)$. By τ -injectivity of E we have a $g \in \operatorname{End}(E)$ such that $g(N) = f(N) \subseteq N$. Hence, g is an M- τ -essential homomorphism, so $g(M) \subseteq M$. Then, $g|_M \in \operatorname{End}(M)$ is an extension of f. \square The following Theorem generalizes Lemma 6 of [5]. **Theorem 3:** Let M be a τ -skew injective module, E a τ -essential extension of M and f an M- τ -essential endomorphism of E. If for each $x \in M$ there exists a positive integer n such that $f^{n+1}(x) = f^n(x)$, then $f(M) \subseteq M$. *Proof.* Let N be the sum of all τ -dense submodules N' of M such that $f(N') \subseteq N'$. Therefore $f(N) \subseteq N$ and by hypothesis, N is a τ -essential submodule of M. We see that $f^n(N) \subseteq N$ for all $n \ge 1$, henceby τ -skew injectivity of M, there exist endomorphisms $g_1, g_2, ...$ of M such that $(f^n - g_n)(N) = 0$ for all $n \ge 1$. So we have well-defined homomorphisms h_n from M/N into $E:h_n(m+N)=(f^n-g_n)(m)$ for all $m \in M$, $n \ge 1$. Let $\bar{A}_n=h_n^{-1}(N\cap Im\,h_n)$ for all n. Hence \bar{A}_n are τ -essential submodules of $\bar{M}=M/N$, for \bar{A}_n is the inverse image under the homomorphism h_n of the essential submodule $N\cap Im\,h_n$ of Im h_n , this gives essentiality of \bar{A}_n in \bar{M} . Moreover, $\bar{M}=M/N$ is a τ -torsion module. This means that \bar{A}_n is τ -dense in \bar{M} for all n. If $\bar{M}=\bar{0}$, then $f(M)\subseteq M$ and everything is proved. Assume $b\in M\setminus N$ so that $\bar{N}+\bar{b}\bar{R}$ is a non-zero submodule of \bar{M} and choose a natural number n such that $f^{n+1}(b)=f^n(b)$. Put $\bar{A}=\bar{A}_1\cap\dots\cap\bar{A}_n$, hence \bar{A} is a τ -essential submodule of M since \bar{A} is the intersection of a finite number of τ -essential submodules of \bar{M} . Now $\bar{A}\cap \bar{N}+\bar{b}\bar{R}\neq 0$. Therefore, there exists an element $r\in R$ such that $br\in (N+bR)\setminus N$ and $br+N\in \bar{A}_1\cap\dots\cap\bar{A}_n$. It follows from the definition of the modules \bar{A}_i that $h_i(br)\in M$ for $i=1,\dots,n$. If $b_1=br$, then $g_m(b_1)\in M$ for all m. From the definition of the homomorphisms h_i we see that $f^i(b_1)\in M$ for $i=1,\dots,n$. But then $f^m(b_1)\in M$ for all m, since $f^{m+1}(b_1)=(f^{m+1}(b))r=f^m(b_1)$. Now put $N_1=N+\sum_{i=0}^\infty f^i(b_1R)$. Hence N_1 is a τ -dense submodule of M with $f(N_1)\subseteq N_1$ and $N_1\not\subseteq N$, in contradiction with the choice of the module N. \square Charalambides [3] defines a module M to be τ -quasi continuous if it is invariant under idempotentsof $\operatorname{End}(E_{\tau}(M))$. From the above Theorem,we see that if f is an idempotent in $\operatorname{End}(E_{\tau}(M))$ and M is τ -skew injective, then $f^2(x) = f(x)$ for all $x \in M$, hence $f(M) \subseteq M$. So we have the following corollary. **Corollary 1:** Every τ -skew injective module is τ -quasi continuous. \Box In [3], a module M is defined to be τ -CS if every (τ -essentially) closed τ -dense submodule of M is a direct summand. There, it is proved that τ -quasi continuous modules are τ -CS. Hence we have: **Corollary 2:** Any τ -skew injective module is τ -CS. \Box τ -skew injectivity is preserved by taking direct summands: **Proposition 4:** A direct summand of a τ -skew injective module is τ -skew injective. *Proof.* Let M be τ -skew injective such that $M=N\oplus N'$. Let K be a τ -dense submodule of N. Then $N/K\cong (N\oplus N')/(K\oplus N')$ is τ -torsion, which means that $K\oplus N'$ is τ -dense in M. Any homomorphism $f\colon K\to K$ can be extended to a homomorphism $f'\colon K\oplus N'\to K\oplus N'$ by putting f'(k+n')=f(k) for all $k+n'\in K\oplus N'$. Now τ -skew injectivity of M gives a homomorphism $g\in \operatorname{End}(M)$ that extends f'. Hence $h=pgi_N$ extends f, where p is the projection map of M onto N. \square We end this section with a characterization of τ-skew injective modules using split short exact sequences: **Theorem 5:** For a module A, the following statements are equivalent: - (1) $Ais\tau$ -skew injective. - (2) Any short exact sequence $0 \to A \xrightarrow{\alpha} B$ splits whenever there exists $\beta \in \text{Hom } (A, B)$ such that: - (a) $\alpha(A) + \beta(A) = B$, - (b) $\alpha(A) \cap \beta(A) \subseteq \alpha(\beta^{-1}(\alpha(A)))$ and - (c) $\beta^{-1}(\alpha(A)) \leq^{\tau-d} A$. *Proof.* (1) \Rightarrow (2) Let $N = \beta^{-1}(\alpha(A))$. By hypothesis, $\alpha(A) \cap \beta(A) = \beta\left(\beta^{-1}(\alpha(A))\right) = \beta(N) \subseteq N$. Hence by τ -skew injectivity of A, the homomorphism $\beta: N \to A$ extends to a homomorphism $\gamma: A \to A$. By assumption, $B = \alpha(A) + \beta(A)$, i.e. for each $b \in B$ there exist a, a' in A such that $b = \alpha(a) + \beta(a')$. Define $\delta: B \to A$ by $\delta(b) = \alpha(a) + \gamma(a')$. It is an easy matter to verify that δ is an R-homomorphism. Moreover, for $a \in A$, $\delta(\alpha(a)) = \delta(\alpha(a) + \beta(0)) = \alpha(a) + \gamma(0) = \alpha(a)$ so that $\alpha(A)$ is a direct summand of B. (2) \Rightarrow (1) Let N be a τ -dense submodule of A and $g \in \text{End}(N)$. Form the pushout diagram: $$\begin{array}{ccc} N & \xrightarrow{i} & A \\ g \downarrow & & \downarrow \beta \\ 0 \to A & \xrightarrow{\alpha} & B \end{array}$$ where $B = (A \oplus A)/W$, with $W = \{(n, -g(n)), n \in N\}$. If the second row splits then we get a homomorphism $\alpha' : B \to A$ such that $\alpha' \alpha = 1_A$. Hence $\alpha' \beta i$ is an extension of g. So we need to show that conditions in (2) hold. But it is easy to see that conditions (a) and (b) hold. Moreover, $\beta^{-1}(\alpha(A)) = N$ which is τ -dense in A. Hence the lower sequence splits by (2). \square ## 3 Direct sum of τ -skew injective modules In Theorem 2 of the last section, we proved that a module M is (a) τ -skew injective and (b) $f(M) \subseteq M$ for any $f \in \operatorname{End}(\operatorname{E}_{\tau}(M))$ having a τ -essential kernel if and only if $g(M) \subseteq M$ for any M- τ -essential endomorphism g of E. In this section, we seek conditions on the module M and/or the ring R so that condition (b) above is already satisfied. Let us see first what happens if we take direct sum or summands of modules satisfying condition (b): **Proposition 6.**A module *M* satisfies condition (b) if and only if any direct summand of *M* satisfies condition (b). *Proof.* Let $M=M_1\oplus M_2$ so that $E_{\tau}(M)=E_{\tau}(M_1)\oplus E_{\tau}(M_2)$. Let f be an endomorphism of $E_{\tau}(M_1)$ having a τ -essential kernel. Now f can be easily extended to an endomorphism of $E_{\tau}(M_1)\oplus E_{\tau}(M_2)$ by $(x,y)\mapsto (f(x),0)$ whose kernel is now equal to $\ker f\oplus E_{\tau}(M_2)$ which is clearly a τ -essential submodule of $E_{\tau}(M_1)\oplus E_{\tau}(M_2)$. By assumption, the image of M under this map is contained in M. So $f(M_1)\subseteq M_1$. Conversely, Let f be an endomorphism of $E_{\tau}(M)$ having a τ -essential kernel. Now for all i, $M_i \cap \ker f$ is τ -essential in M_i . But $M_i \cap \ker f$ is the kernel of $p_i \circ (f|M_i)$, where p_i is the projection map of M onto M_i . Hence $p_i \circ (f|_{M_i})(M_i) \subseteq M_i$ for all i. So $f(M) \subseteq M$. \square Recall that a module M is called τ -nonsingular [1] if $Z_{\tau}(M) = 0$ where $Z_{\tau}(M) = \{m \in M \mid \operatorname{ann}_R(m) \leq^{\tau e} R\}$. The following proposition shows that if we assume τ -nonsingularity of the module M, then we can remove condition (b) above from Theorem 2: **Proposition 7.** Let M be a τ -nonsingular module. Then M is τ -skew injective if and only if M is invariant over endomorphisms $g \in \operatorname{End}(\operatorname{E}_{\tau}(M))$ having M- τ -essential kernels. *Proof.* We will show that the only endomorphism of M that has a τ -essential kernel is the zero homomorphism. But this implies that M is invariant under such homomorphisms and hence by Theorem 2, the result follows. To this end, let $f \in \operatorname{End}(M)$ with $\ker f \leq^{\tau-e} M$, and let $g = 1_M - f \in \operatorname{End}(M)$. We will show that $g = 1_M$ and hence f = 0. For each $x \in M$, there exists a non-zero element $r \in R$ such that $0 \neq xr \in \ker f$, so f(xr) = 0 hence g(x)r = g(xr) = xr - f(xr) = xr, then (g(x) - x)r = 0 and $\operatorname{ann}_R(g(x) - x)$ is a non-zero ideal of R. But $(\ker f : x) \leq^{\tau e} R$ and hence $\operatorname{ann}_R(g(x) - x) \leq^{\tau e} R$, i.e. $g(x) - x \in Z_{\tau}(M) = 0$ and therefore f(x) = 0. \square In the next result, if the τ -injective envelope of M satisfies some ascending chain condition, then we can get rid of condition (b). **Proposition 8.** Let M be a τ -skew injective module. If $E = \mathbb{E}_{\tau}(M)$ satisfies the ascending chain condition on τ -essential submodules, then $f(M) \subseteq M$ for every M- τ -essential $f \in \operatorname{End}(E)$. *Proof.* Consider the ascending chain $M \cap \ker f \subseteq M \cap \ker f^2 \subseteq \cdots \subseteq M$. It is clear that $M \cap \ker f^k \leq^{\operatorname{re}} M$ for each $k \geq 1$, so by assumption there is a positive integer n_\circ such that $M \cap \ker f^n = M \cap \ker f^{n+1}$ for all $n \geq n_\circ$. We claim that $\operatorname{Im}(f^n) \cap \ker f \cap M = 0$. To see this, let $x \in \operatorname{Im} f \cap M = 0$. So there is $y \in E$ such that $x = f \cap M = 0$. Now for $x \in M$, $x = f \cap M = 0$. Hence $y \in \ker f^{2n} = \ker f^n$. So $x = f^n(y) = 0$. But $\ker f^n \leq^{\tau - e} E$ implies that $\operatorname{Im} f^n = 0$. Now for $x \in M$, $x = f \cap M = 0$. $x \in M$ is an $x \in M$ in $x \in M$. The proof of $x \in M$ is a sum of $x \in M$ in $x \in M$. The proof of $x \in M$ is a sum of $x \in M$ in $x \in M$. The proof of $x \in M$ is a sum of $x \in M$. The proof of $x \in M$ is a sum of $x \in M$ in $x \in M$ is a sum of $x \in M$. The proof of $x \in M$ is a sum of $x \in M$ in i Now, combining the above propositions with Theorem 2, we get: **Corollary.** If M is a τ -nonsingular module or $E_{\tau}(M)$ satisfies the ascending chain condition on τ -essential submodules, then M is τ -skew injective if and only if it is invariant under all M- τ -essential endomorphisms of $E_{\tau}(M)$. \Box Now, we put conditions on the ring R to help us remove condition (b). For this we give a concept that generalizes both noetherian and weakly noetherian modules in [5]. **Definition.** A module M is said to be τ -weakly noetherian if for every ascending chain $L_1 \subseteq L_2 \subseteq \cdots$ of submodules of M with $L_{i+1}/L_i \le^{\mathrm{re}} M/L_i$ for all i, there is a positive integer k such that $L_{n+1} = L_n$ for all $n \ge k$. A ring R is called τ -weakly noetherian if it is τ -weakly noetherian as an R-module. #### Remarks. - (1) Every module with ascending chain condition on τ -essential submodules is τ -weakly noetherian. - (2) If M is τ -weakly noetherian then so is any homomorphic image of M. - (3) Every cyclic module over a τ -weakly noetherian ring is τ -weakly noetherian. *Proof.*(1) Let $L_1 \subseteq L_2 \subseteq \cdots$ be an ascending chain of submodules of a τ -weakly noetherian module M with $L_{i+1}/L_i \leq^{\tau e} M/L_i$ for all i. For each i, under the natural map $M \to M/L_i$, we have L_{i+1} is the preimage of L_{i+1}/L_i . So it must be essential in M. Moreover, $M/L_{i+1} \cong (M/L_i)/(L_{i+1}/L_i)$ is τ -torsion, hence $L_{i+1} \leq^{\tau e} M$. Thus the ascending chain $L_2 \subseteq L_3 \subseteq \cdots$ (and hence the ascending chain $L_1 \subseteq L_2 \subseteq \cdots$) terminates. - (2) Let N be a submodule of M. We want to show that M/N is τ -weakly noetherian. Let $L_1/N \subseteq L_2/N \subseteq \cdots$ be an ascending chain of submodules of M/N such that $(L_{i+1}/N)/(L_i/N) \le^{\tau e} (M/N)/(L_i/N)$ for each i. Hence $L_{i+1}/L_i \le^{\tau e} M/L_i$ for each i. Now for every i, $(M/L_i)/(L_{i+1}/L_i) \cong \frac{(M/N)/(L_i/N)}{(L_{i+1}/N)/(L_i/N)}$, so that $L_{i+1}/L_i \le^{\tau e} M/L_i$. So by assumption there is a positive integer k such that $L_{n+1} = L_n$ for all $n \ge k$ or $L_{n+1}/N = L_n/N$. - (3) Let M be a cyclic module over a τ -weakly noetherian ring R. This means that $M \cong R/\operatorname{ann}_R(m)$ for some $m \in M$. By (2) it follows that M is τ -weakly noetherian. \square **Theorem 9.** Let M be a module over a τ -weakly noetherian ring, then for each endomorphism f of $\operatorname{End}(\operatorname{E}_{\tau}(M))$ that has a τ -essential kernel, there is a positive integer n such that $f^n(x)=0$ for every $x\in\operatorname{E}_{\tau}(M)$. Proof. Put $E=\mathrm{E}_{\tau}(M)$ and let $K_0=0$, $K_1=\ker f$, ..., $K_{n+1}=f^{-1}\big(K_n\cap f(E)\big)$. Hence $K_1\subseteq K_2\subseteq\cdots$ is an ascending chain of submodules of E. Now $\ker f=K_1\leq^{\mathrm{rd}}E$. This implies that $K_n\leq^{\mathrm{rd}}E$ for each n and hence $E/K_{n+1}\cong(E/K_n)/(K_{n+1}/K_n)$ which is τ -torsion, gives that $K_{n+1}/K_n\leq^{\mathrm{rd}}E/K_n$. So $K_{n+1}/K_n\leq^{\mathrm{re}}E/K_n$ for each n since $K_{n+1}/K_n\leq^{e}E/K_n$ for each n. For each n e for all $n \ge k$. Hence $A = A_n = A \cap K_n$. So $A \subseteq K_n$, but $x \in A$ which implies that $f(x) \in K_{n-1} = f^{-1}(K_{n-2} \cap f(E))$. Thus $f^2(x) \in K_{n-2}$ and so on, we have $f^n(x) = 0$. \square Now we can remove condition (b) provided R is τ -weakly noetherian: **Theorem 10.** Let M be a module over a τ -weakly noetherian ring. Then M is τ -skew injective if and only if it is invariant under M- τ -essential endomorophisms of $E_{\tau}(M)$. *Proof.* By Theorem 2 it is enough to show that M is invariant under all endomorphisms of $E = E_{\tau}(M)$ that have τ -essential kernels. Let f be such an endomorphism, thus by Theorem 9, there is a positive integer n such that $f^n(x) = 0$ for all $x \in E$. In particular, for every $m \in M$ we have $f^n(m - f(m)) = 0$. Thus $f^{n+1}(m) = f^n(m)$. Using Theorem 3, we have $f(M) \subseteq M$. \square So far, examples of modules satisfying condition (b) are: - 1. τ -nonsingular modules, - 2. Modules whose τ -injective envelopes satisfy the ascending chain condition on τ -essential submodules, and - 3. Modules over τ -weakly noetherian rings. Now we are ready to study direct sums of τ -skew injective modules. Here we give necessary and sufficient conditions for a direct sum of τ -skew injective modules to be τ -skew injective. **Theorem 11.** Let $M=M_1\oplus\cdots\oplus M_n$ be an R-module satisfying condition (b). Then M is τ -skew injective I and only if I is I-skew injective I and I is I-skew injective I in I-skew injective I in I-skew injective I in I-skew injective inje where $K_{ij} = \{ f \in \text{Hom}_R(\mathbb{E}_{\tau}(M_i), \mathbb{E}_{\tau}(M_i)) \mid f(N_i) \subseteq N_i \text{ for some } \tau\text{-essential submodules } N_i \text{ of } M_i \text{ and } N_i \text{ of } M_i \}$. *Proof.* Put $E = E_{\tau}(M)$ and $E_i = E_{\tau}(M_i)$, i = 1, 2, ..., n. Then $E = E_1 \oplus \cdots \oplus E_n$. Suppose that M is τ -skew injective and let $f_{ij} \in K_{ij}$, i.e $f_{ij} : E_i \to E_j$ is a map with $f_{ij}(N_i) \subseteq N_j$ for some τ -essential submodules N_i of M_i and N_j of M_j . Consider the direct sum $N = \bigoplus N_k'$, where $N_k' = N_k$ if k = i or k = j and otherwise $N_k' = E_k$. Now N is clearly τ -essential in E and hence $E \cap M$ is $E \cap M$ is $E \cap M$. But $E \cap M$ is an easily be extended to a map $E \cap M$ is an $E \cap M$. So that $E \cap M$ is an easily be extended to a map $E \cap M$ is an $E \cap M$ in easily in $E \cap M$. This means that $E \cap M$ is an $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap M$ is an easily extended to a map $E \cap$ **Corollary.**If M is a τ -skew injective R-module satisfying condition (b) then M^n is also τ -skew injective. \Box **Proposition 12.** Let $M = M_1 \oplus M_2$ be a τ -skew injective R-module satisfying condition (b). Then $E_{\tau}(M_1) \cong E_{\tau}(M_2)$ if and only if $M_1 \cong M_2$. *Proof.* Let $f: E_{\tau}(M_1) \to E_{\tau}(M_2)$ be an isomorphism. Then f extends to an endomorphism F of $E_{\tau}(M_1) \oplus E_{\tau}(M_2)$ by $(x,y) \mapsto (0,f(x))$. If we prove that F is M- τ -essential then, by Theorem 11 we must have $F(M_1) \subseteq M_2$. Now since M_2 is essential in $E_{\tau}(M_2)$ we have $f^{-1}(M_2)$ is essential in $E_{\tau}(M_1)$, and since M_1 is τ -essential in $E_{\tau}(M_1)$ we must have $M_1 \cap f^{-1}(M_2)$ is τ -essential in M_1 and hence $M_1 \cap f^{-1}(M_2) \cap M_2$ is T-essential in T-essential and T-essential and T-essential endomorphism end **Corollary.** Let M be a τ -skew injective module satisfying condition (b) and $E = \mathbb{E}_{\tau}(M)$. Then $M \oplus E$ is τ -skew injective if and only if M = E. *Proof.*It is obvious that E satisfies condition (b), and by Proposition 6 so does $M \oplus E$. So we can apply Theorem 11 on $M \oplus E$. Clearly $1_{E \oplus E}$ is an $M \oplus M$ - τ -essential endomorphism of $E \oplus E$. So if $M \oplus E$ is τ -skew injective then $1_E(E) \subseteq M$ by Theorem 11. But this means that M = E. The other direction is trivial. \Box **Proposition 13.** The following statements are equivalent for any ring *R*: - (1) The direct sum of any two τ -skew injective R-modules satisfying condition (b) is τ -skew injective. - (2) Every τ -skew injective*R*-module satisfying condition (b) is τ -injective. *Proof.*(1) ⇒ (2) Let M be τ -skew injective satisfying condition (b). Then $M \oplus E$ is τ -skew injective by 1. So by the above corollary, M = E. (2) ⇒ (1) is trivial. \Box **Corollary.** The following statements are equivalent for a τ -weakly noetherian ring: - (1) The direct sum of any two τ -skew injective R-modules is τ -skew injective. - (2) Every τ -skew injective R-module is τ -injective. \Box ## **ACKNOWLEDGMENTS** The authors would like to express their gratitude to Professor Edgar Enochs who has read the manuscript and provided them with his valuable remarks. ## **REFERENCES** - [1] Abbas, M. S. and Hamid, M. F. 2013. A note on singular and nonsingular modules relative to torsion theories. Mathematical Theory and Modeling, Vol.3, No.14, pp. 11-15. - [2] Bland, P. E.1998. Topics in Torsion Theory, Wiley-VCH, Berlin. - [3] Charalambides, S. 2006. Topics in Torsion Theory, Ph.D. Thesis, University of Otago, Dunedin, New Zealand. - [4] Govorov, V. E. 1963. Skew injective modules, Algebra Logika, 2, No. 6, 21-49. - [5] Tuganbaev, A. A. 1982. Semiinjective modules, Mat. Zametski, Vol 31, No. 3, pp. 447-456.