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ABSTRACT 

In this paper we have proved some results of fixed point on p-quasi cone metric spaces. The p-quasi cone metric space is  
a generalization cone metric space. Kiany and Amini-Harandi[1] have given a generalization of Ciric contraction[2]. In this 
paper we give a generalization of result [2] for p-quasi-cone metric space. 
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INTRODUCTION 

There has been a number of generalizations of metric space. One such generalization is a cone metric space. Huang and 
Zhang [3] have introduced the concept of cone metric spaces replacing the set of real numbers by an ordered Banach 
space. Abdeljaward and Karapinar [5] and Sonmez [6] have given a definition of quasi-cone metric spaces. Shaddadand 
Noorani [4] have established four kinds of Cauchy sequences in this space and proved some fixed point theorems in 
quasi-cone metric spaces without using normality condition. 

In this paper, we have introduced the concept ofp-quasi-cone metric space forp ≥1 which is a generalization of quasi-
metric spaces where p=1. Also we have proved some new fixed point results in p-quasi-metric spaces using contractive 

conditions which generalize the results of Kiany and Amini-Harandi[1] and Lj.B. Ciric[2]. We don’t take the cone normal 
and we don’t use the continuity of the function.  

Now we recall some known notions, definitions and results which are used in this paper. 

PRELIMINARIES  

Definition 1.[3] Let 𝐸 be a real Banach space and 𝑃 be a subset of 𝐸. 𝑃 is called a cone if and only if 

(i) 𝑃 is closed, P , P {0}; 

(ii) for all 𝑥, 𝑦P⇒𝛼𝑥 + 𝛽𝑦P, where 𝛼, 𝛽∈R
+
; 

(iii) 𝑥P  and–𝑥P𝑥 = 0. 

For a given cone 𝑃⊂𝐸, we can define a partial ordering with respect to P by xy if and only if yxP. The denotex<y will 

stand for xy and xy, while xy will stand for yxintP, where intP denotes the interior of P. 

The cone P is called normal if there is a number k> 0 such that 0 xy ||x|| k||y||, for all 𝑥, 𝑦E. The least positive k 
satisfying this is called the normal constant of P. The cone P is called regular if every increasing sequence which is 

bounded above is convergent; that is if xn is a sequence such that x1x1x2xny, for some yE, then there is xE 

such that ||xnx||  0 as n. Equivalently, the cone P is regular if every sequence which is bounded below is 
convergent. 

Definition 2.[3] Let Xbe a nonempty set. Suppose the mapping    d :XXE satisfies 

(i) 0 d(𝑥, 𝑦) for all 𝑥, 𝑦P, and d(𝑥, 𝑦) = 0 iff𝑥 = 𝑦; 

(ii) d(𝑥, 𝑦) = d(𝑦, 𝑥) for all 𝑥, 𝑦𝑋; 

(iii) d(𝑥, 𝑦) d(𝑥, 𝑧) + 𝑑(𝑧, 𝑦), for all 𝑥, 𝑦, 𝑧𝑋. 

Then, d is called a cone metric on X and (X, d) is called a cone metric space. 

Definition 3.[5], [6] Let X be a nonempty set. Suppose the mapping q :XXE  satisfies  

(i) 0 q(𝑥, 𝑦) for all 𝑥, 𝑦X,   

(ii) q(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 ; 

(iii) q(𝑥, 𝑦) q(𝑥, 𝑧) + q(𝑧, 𝑦) for all  𝑥, 𝑦, 𝑧𝑋. 

Then q is called a quasi-cone metric on X, and (X, q) is called a quasi-cone metric space.  

Now, we state our definition which is more general than quasi-cone metric space. 

Definition 4. Let Xbe a nonempty set and p 1. Suppose the mapping qp :XXE satisfies 

(i) 0 qp(𝑥, 𝑦) for all 𝑥, 𝑦, 𝑋,   

(ii) qp(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 , 

(iii) qp(𝑥, z) p(qp(𝑥, y) + qp(y, z)) for all  𝑥, 𝑦, 𝑧𝑋. 

Then qp is called a p-quasi-cone metric on X, and (X, qp) is called a p-quasi-cone metric space.  

Example 1. LetLetX = (0, ), E = R2, P = {(x, y), x, yR+}and q1 : XXE defined by
 

1

( , ( )),
( , )

(0,0),

x y x y x y
q x y

x y

  
 


, where𝛼∈R

+
;. 

Remark1. Note that any cone metric space is a p-quasi-cone metric space. Some of definitions in p-quasi-cone metric 

space  are restrictions of definition in cone metric space. 

Now we introduce the appropriate generalization in p-quasi-cone metric spaces by considering the established notions in 
quasi metric spaces. 



ISSN 2347-1921                                                           

2536 | P a g e                                                    N o v e m b e r  0 4 ,  2 0 1 4  

Definition 5. [4] Let Let (X, qp) be a p-quasi-cone metric space. A sequence {xn} in X is called 

(i) p-bi Cauchy if for each cintP, there is n0N such that qp(𝑥n, xm) c for all m, nn0.  

(ii) p-right (left) Cauchy if for each cintP, there is n0N such that qp(𝑥n, xm) c (qp(𝑥m, xn) c resp.) for all n mn0; 

(iii) p-weakly right (left) Cauchy if for each cintP, there is n0N such that qp(𝑥n, xn0
) c  (qp(𝑥n0

, xn) c  resp.) for all  n 

n0; 

(iv) p-right (left) qp-Cauchy if for each cintP, there exist xX and n0N such that qp(𝑥n, x) c (qp(𝑥, xn) c resp.) for all  n 

n0. 

Remark 2. These notions in p-quasi-cone metric space are related in this way: 

(i) p-bi-Cauchy p-right (left) Cauchy p-weakly right (left) Cauchy p-right (left) qp-Cauchy 

(ii) a sequence is p-bi-Cauchy if and only if it is both p- left and p-right Cauchy. 

 We use the notion of p-right Cauchy in this paper. 

Definition 6. Let (X, qp) be a p-quasi-cone metric space. Let {xn}nN be a sequence in X. We say that the sequence 

{xn}nNp-right converges to xX if qp(𝑥, xn)  0. We denote this by lim
n

n

x x


  or xnx. 

Definition 7. A p-quasi-cone metric space (X, qp) is called p- complete if every p- Cauchy sequence in X converges. 

Definition 8. Let (X, qp) be a p-quasi-cone metric space. A function T :XX is called  

(i) continuous if for any p-right convergent sequence {xn}nN in X with lim
n

n

x x


 , the sequence {Txn}nN is right 

convergent and lim
n

n

x TxT


 . 

Definition 9. Let O(x) = {x, Tx, T
2
x, …} where xX. The set O(x) is called orbit of x. 

Definition 10. Let MX.  (M) = sup{qp(𝑥, y), 𝑥, yM} is called diameter of M. 

The orbit O(x) is called bounded if there exist a cP, (O(x)) c.  

MAIN RESULTS 

In this section, we prove some fixed point results in p-quasi-cone metric space. Firstly we have given a theorem which is a 
generalization of Kiany and Amini-Harandi [1] due to p-quasi-cone metric space. In this theorem we don’t use the 

normality of cone and we don’t take the function T :XX continuous. 

Lemma 1.Let (X, qp) be a p-quasi-cone metric space and {xn}nN a sequence in X. Suppose there exist a sequence 

{[(c)]
n
}nN, where: P  1

0,
p

such that lim[ ( )] 0
n

n

c


 in which
1

( , ) [ ( )]
n

p n n
q x x c M


  for some MP, and for all nN. 

Then the sequence {xn}nN is p-right Cauchy in (X, qp).

 Proof. For nN we get 

1 2

1 1 2 2 3 1

1 1 2 1

1 1 2 2 1

( , ) ( , ) ( , ) ( , ) ... ( , )

[ ( )] [ ( )] [ ( )] [ ( )]

( [ ( )] [ ( )] [ ( )] [ ( )]

k k k

p n k n p n k n k p n k n k p n k n k p n n

k n k k n k n n

k n k k n k n

q x x p q x x p q x x p q x x pq x x

p c M p c M p c M p c M

M p c p c p c p c

   

   

 

            

    

     

     

    

    





1

1

1 2 1

1

1

)

{( [ ( )]) ( [ ( )]) ( [ ( )]) ( [ ( )]) }

( [ ( )]) (1 ( [ ( )]) )
[ ( )] [ ( )]

1 ( ) 1 ( )

n

n

n

n k n k n n

n

n k

n n

n

p

p

M
p c p c p c p c

p

M p c p c Mp
c A c

p p c p c

   

 
 

 





    





    


  

 



 

where
1 ( )

Mp
A

p c



. 

Let aintP and choose > 0 such that a + N(0) P, whereN(0) = {yE, ||y|| <}. Since, lim
𝑛→∞

 [(c)]
n
 = 0 there exist a 

natural number n0 such that fornn0,  A[(c)]
n
N(0), also A[(c)]

n
N(0).  
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Since a + N(0) is open, thereforea + N(0) P,  that is aA[(c)]
n
intP. ThusA[(c)]

nafor nn0and so qp(xn+k, xn) a for 

nn0. Thus, {xn}nN is p-right Cauchy sequence. 

Definition7. A p-quasi-cone metric space (X, qp)is Hausdorff if for each pair x1, x2 of distinct points of X, there exist 
neighborhoods V1 ,V2 of x1, x2 respectively, they are disjoint. 

Now we state a fixed point theorem using a nonlinear contraction condition. 

Theorem1.Let (X, qp) be a p- complete Hausdorffp-quasi-cone metric space and letXXbe a function that satisfies the 

nonlinear contraction condition: 

 (1)  ( ( ), ( )) ( ( , )) max ( , ), ( ( ), ), ( ( ), ), ( ( ), ), ( , ( )
p p p p p p p

q T x T y q x y q x y q T x x q T y y q T x y q x T y  

for allx, yX,where: P  1
0,

p
such that: 

1. lim[ ( )] 0
n

n

c


 , for everycP, p 1. 

Let x0Xsuch thatO(x0) is bounded. Then T has a unique fixed pointx
*
X and the sequence

0
{ }

n

n N
T x


 is convergent tox

*
. 

Proof.We have that the orbit O(x0) is bounded. So(O(x0)) cP. We prove now that 
1

0 0
( ( ), ( )) [ ( )]

n n n

p
q T x T x c c



 .  

For n=1,        
2

0 0 0 0
( , ) ( ( ( )), ( ))

p p
q T x Tx q T T x T x  

 2 2

0 0 0 0 0 0 0 0 0 0 0 0
( ( , )) max ( , ), ( , ), ( , ), ( , ), ( , )

p p p p p p
q Tx x q Tx x q T x Tx q Tx x q T x x q Tx Tx  

2 2

0 0 0 0 0 0 0 0
( ( , )) max{ ( , ), ( , ), ( , )}

p p p p
q Tx x q Tx x q T x Tx q T x x . 

Due to O(x0) is bounded,we have that: 

2 2

0 0 0 0 0 0
max{ ( , ), ( , ), ( , )}

p p p
q Tx x q T x Tx q T x x c . 

Also, as 
0 0 0 0

( , ) ( ( , )) ( )
p p

q Tx x c q Tx x c    . So 
2 1

0 0
( , ) [ ( )]

p
q T x Tx c c . 

Suppose it is true for k<n, 
1

0 0
( , ) [ ( )]

k k k

p
q T x T x c c



 . 

Let it prove for n. 

1 1

0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1

0 0 0 0 0 0

( , ) ( ( ), ( ))

( ( , )) max{ ( , ), ( , ), ( , ), ( , ), ( , )}

( ( , )) max{ ( , ), ( , ), (

n n n n

p p

n n n n n n n n n n n n

p p p p p p

n n n n n n n

p p p p

q T x T x q T T x T T x

q T x T x q T x T x q T x T x q T x T x q T x T x q T x T x

q T x T x q T x T x q T x T x q T





 

     

  






1 1

0 0
, )}

n

x T x
 

 

Case 1.
1 1 1 1 1

0 0 0 0 0 0 0 0
max{ ( , ), ( , ), ( , )} ( , )

n n n n n n n n

p p p p
q T x T x q T x T x q T x T x q T x T x

    

 . 

1 1 1 1 1

0 0 0 0 0 0 0 0
( , ) ( ( , )) ( , ) ( ( , )) [ ( )] [ ( )]

n n n n n n n n n n

p p p p
q T x T x q T x T x q T x T x q T x T x c c c c   

    

   . 

Case2.
1 1 1 1 1

0 0 0 0 0 0 0 0
max{ ( , ), ( , ), ( , )} ( , )

n n n n n n n n

p p p p
q T x T x q T x T x q T x T x q T x T x

    

  

1 1 1 1

0 0 0 0 0 0 0 0
( , ) ( ( , )) ( , ) ( , )

n n n n n n n n

p p p p
q T x T x q T x T x q T x T x q T x T x

   

  . 

Case3.
1 1 1 1 1 1

0 0 0 0 0 0 0 0
max{ ( , ), ( , ), ( , )} ( , )

n n n n n n n n

p p p p
q T x T x q T x T x q T x T x q T x T x

     

 . 
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1 1 2

0 0 0 0

2 2 1 1 2 1 2 1

0 0 0 0 0 0 0 0 0 0 0 0

( , ) ( ( ), ( ))

( ( , )) max{ ( , ), ( , ), ( , ), ( , ), ( , )}

n n n n

p p

n n n n n n n n n n n n

p p p p p p

q T x T x q T T x T T x

q T x T x q T x T x q T x T x q T x T x q T x T x q T x T x

  

       





 

Case3/1. 2 1 1 2 1 2 1 1

0 0 0 0 0 0 0 0 0 0 0 0
max{ ( , ), ( , ), ( , ), ( , ), ( , )} ( , )

n n n n n n n n n n n n

p p p p p p
q T x T x q T x T x q T x T x q T x T x q T x T x q T x T x

       

  

Case3/2. 

2 1 1 2 1 2 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0
max{ ( , ), ( , ), ( , ), ( , ), ( , )} ( , )

n n n n n n n n n n n n

p p p p p p
q T x T x q T x T x q T x T x q T x T x q T x T x q T x T x

        

  

These two cases are trivial. 

Case3/3. 2 1 1 2 1 2 1 1

0 0 0 0 0 0 0 0 0 0 0 0
max{ ( , ), ( , ), ( , ), ( , ), ( , )} ( , )

n n n n n n n n n n n n

p p p p p p
q T x T x q T x T x q T x T x q T x T x q T x T x q T x T x

       

  

1 1

0 0
( , ) [ ( )]

n n n

p
q T x T x c c

 


1 1

0 0
( , ) [ ( )] [ ( )]

n n n n

p
q T x T x c c c c 

 

   . 

Case3/4. 

2 1 1 2 1 2 1 2

0 0 0 0 0 0 0 0 0 0 0 0
max{ ( , ), ( , ), ( , ), ( , ), ( , )} ( , )

n n n n n n n n n n n n

p p p p p p
q T x T x q T x T x q T x T x q T x T x q T x T x q T x T x

       

  

Case3/5 

2 1 1 2 1 2 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0
max{ ( , ), ( , ), ( , ), ( , ), ( , )} ( , )

n n n n n n n n n n n n

p p p p p p
q T x T x q T x T x q T x T x q T x T x q T x T x q T x T x

        

  

The cases 3/4 and 3/5 can be proved in the same iterative manner. 

So by lemma1 the sequence
0

{ }
n

T x  is right Cauchy. We see that since by the space is complete and Hausdorff, we have

*

0
lim

n

x

T x x


 . 

Now we prove that x
*
is a fixed point ofT: XX. 

1

0 0

1 1 1 1

0 0 0 0 0 0

1 1

0 0

( , ) ( , ( ))

( ( , )) max{ ( , ), ( , ), ( , ), ( , ), ( , )}

( ( , )) max{ ( , ), ( , )}

n n

p p

n n n n n n

p p p p p p

n n

p p p

q Tx T x q Tx T T x

q x T x q x T x q Tx x q T x T x q Tx T x q x T x

q x T x q Tx T x q Tx x





  

         

     







 

If 
1 1

0 0
max{ ( , ), ( , )} ( , )

n n

p p p
q Tx T x q Tx x q Tx T x

     

 , we have  

1 2 2 1

0 0 0 0
( , ) ( ) ( , ) [ ( )] ( , ) [ ( )] ( , )

n n n n

p p p p
q Tx T x c q Tx T x c q Tx T x c q Tx x  

      

    . 

Taking the limit of both sides whenn, we have ( , ) 0
p

q Tx x Tx x
   

   . 

If 
1

0
max{ ( , ), ( , )} ( , )

n

p p p
q Tx T x q Tx x q Tx x

     

 then 

0
( , ) ( ) ( , ) ( , ) ( ) ( , ) ( , ) 0

n

p p p p p
q Tx T x c q Tx x q Tx x c q Tx x q Tx x Tx x 

          

       . 

Now we prove the uniqueness of the fixed point for T. Suppose there is another pointy
*
thatTy

*
 = y

*
. 

( , ) ( , ) ( ( , ) ( , )
p p p p

q x y q Tx Ty q x y q x y
       

  . 

Since  0<(c) < 1, we have ( , ) 0
p

q x y x y
   

   . 
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Example2.Let
2

[0,1], , {( , ) , , 0}X E R P x y E x y     .  

Define

(0, 0),

( , ) 1
( , ),
2

x y

q x y
y y x y











. We take the function

1
, [0, ]

4 2
: ,

1 1
, ( ,1]

10 2

x
x

T X X Tx

x



 









 and 

4
: (0,1), ( , )

1 8

y x
P x y

y x
 


 

 
. 

Case1. 

For every
1

, 0,
2

x y 
 
  

, x y  we have ( , ) ( , ) ( , )
4 4 8 4

x y y y
q Tx Ty q  ,

2
( ( , )) ( , )

2 1 4

y y
q x y y

y
  


. 

max{ ( , ), ( , ), ( , ), ( , ), ( , )} ( , )
4 4 4 4 2

x y x y y
q x y q x q y q y q x y 

2
( , ) ( , )
8 4 1 4 2

y y y y
y

y



. So we are in conditions of theorem. 

Case2. 

For every  1
, ,1

2
x y 




, x y  we have
1 1 1 1

( , ) ( , ) ( , )
10 10 20 10

q Tx Ty q  . 

1 1 1 1
max{ ( , ), ( , ), ( , ), ( , ), ( , )} ( , )

10 10 10 10 2

y
q x y q x q y q y q x y 

1 1 2
( , ) ( , )
20 10 1 4 2

y y
y

y



. 

So we are in conditions of theorem. 

Case3. 

For every
1

0,
2

x 
 
  

and  1
,1

2
y 




. It is clear that the conditions of theorem true in this case. 

So, the function

1
, [0, ]

4 2
: ,

1 1
, ( ,1]

10 2

x
x

T X X Tx

x



 









 has a fixed pointx = 0. 

The following result is a generalization Theorem of Ciric in metric space. 

Corollary 1.Let (X, qp) be a p-complete, Hausdorff, p-quasi-cone metric space and letT: XXbe a  function that satisfies 

the  nonlinear contraction condition: 

 ( ( ), ( )) max ( , ), ( ( ), ), ( ( ), ), ( ( ), ), ( , ( )
p p p p p p

q T x T y h q x y q T x x q T y y q T x y q x T y
 

forall ,x y X , where 
1

(0, )h
p

 .  Let x0Xsuch that O(x0) is bounded.  Then T has a unique fixed point x
*
X and

0
lim ( )

n

n

T x x





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Proof.If we take 

1
( ) 0,t h

p
  

 
  

for t P , we are in condition of Theorem1. So the Corollary1 is true. 

The following result is a generalization of Banach contraction metric space. 

Corollary2.Let (X, qp) be a p-complete, Hausdorff, p-quasi-cone metric space and letT: XXbe a function that satisfies 

the  nonlinear contraction condition: 

( , ) ( , )
p p

q Tx Ty hq x y for all ,x y X ,  where 
1

(0, )h
p

 . 

Let x0Xsuch that O(x0) is bounded.  Then T has a unique fixed pointx
*
X and

0
lim ( )

n

n

T x x




  

Proof. We take(x, y) = hand we have  

( , ) ( , ) ( ( , )) max{ ( , ), ( , ), ( , ), ( , ), ( , )}
p p p p p p p p

q Tx Ty hq x y q x y q x y q Tx x q Ty y q Tx y q x Ty 
 

So we are in condition of our theorem and the corollary 2 is true. 

CONCLUSIONS  

In this paper, we have given some generalization of some important results. Theorem 1 is a generalization of result [1], 
because a p-cone metric space is a generalization of a metric space.  Corollary 1 is a generalization of [2] and Corollary2 
is a generalization of Banach contraction for p-cone metric space because of [7].  
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