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1 Introduction

The real revolution in mathematical physics in the second half of twentieth century (and in pure mathematics
itself) was algebraic topology and algebraic geometry [1]. In the nineteenth century, Mathematical physics was essentially
the classical theory of ordinary and partial differential equations. The variational calculus, as a basic tool for physicists in
theoretical mechanics, was seen with great reservation by mathematicians until Hilbert set up its rigorous foundation by
pushing forward functional analysis. This marked the transition into the first half of twentieth century, where under the
influence of quantum mechanics and relativity, mathematical physics turned mainly into functional analysis, complemented
by the theory of Lie groups and by tensor analysis. All branches of theoretical physics still can expect the strongest
impacts from use of the unprecedented wealth of results of algebraic topology and algebraic geometry of the second half
of twentieth century [1].

Today, the concepts and methods of topology and geometry have become an indispensable part of theoretical
physics. They have led to a deeper understanding of many crucial aspects in condensed matter physics, cosmology,
gravity, and particle physics. Moreover, several intriguing connections between only apparently disconnected phenomena
have been revealed based on these mathematical tools [2].

Topology enters General Relativity through the fundamental assumption that spacetime exists and is organized
as a manifold. This means that spacetime has a well-defined dimension, but it also carries with it the inherent possibility of
modified patterns of global connectivity, such as distinguish a sphere from a plane, or a torus from a surface of higher
genus. Such modifications can be present in the spatial topology without affecting the time direction, but they can also
have a genuinely spacetime character in which case the spatial topology changes with time [4]. The topology change in
classical general relativity has been discussed in [7]. See [9] for some applications of differential topology in general
relativity.

In general relativity, boundaries that are S*-bundles over some compact manifolds arise in gravitational
thermodynamics [19]. The trivial bundle Z =5'%S? is a classic example. Manifolds with complete Ricci-flat metrics

admitting such boundaries are known; they are the Euclideanised Schwarzschild metric and the flat metric with periodic
identification. York [21] shows that there are in general two or no Schwarzschild solutions depending on whether the

squashing (the ratio of the radius of the S* Sfibre to that of the Sz-base) is below or above a critical value. York’s results
in 4-dimension extend readily to higher dimensions.

The simplest example of non-trivial bundles arises in quantum cosmology in which the boundary is a compact
SS, i.e., a non-trivial S* bundle over SZ. In the case of zero cosmological constant, regular 4-metrics admitting such an
s® boundary are the Taub-Nut [22] and Taub-Bolt [23] metrics having zero and two-dimensional (regular) fixed point sets
of the U (1) action respectively.
1.1 Deformation Retract — Definitions

The theory of deformation retract is very interesting topic in Euclidean and non-Euclidean spaces. It has been
investigated from different points of view in many branches of topology and differential geometry. A retraction is a
continuous mapping from the entire space into a subspace which preserves the position of all points in that subspace [8].

(i) Let M and N be two smooth manifolds of dimensions M and N respectively. Amap f :M — N is said to be an
isometric folding of M into N if and only if for every piecewise geodesic path ¥:J — M, the induced path

ij/: J — N is a piecewise geodesic and of the same length as Y [3]If f does not preserve the lengths, it is called

topological folding. Many types of foldings are discussed in [11, 12, 13, 14, 15, 16]. Some applications are discussed in [6,
10].

(i) A subset A of a topological space X is called a retract of X , if there exists a continuous map I : X —> A such
that [17]

(@ X isopen
() r(a)=a, VaeA.

(iii) A subset A of a topological space X is said to be a deformation retract if there exists a retraction r: X — A, and
ahomotopy f : X x| — X such that [17]

f(x,0)=x, ¥xe X,
f(x,1)=r(x), Vre X,
f(a,t)=a, Vae Ate[0,1].
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The deformation retract is a particular case of homotopy equivalence, two spaces are homotopy equivalent if and only if
they are both deformation retracts of a single larger space.

Deformation retracts of Stein spaces has been studied in [5] .The deformation retract of the 4D Schwarzchild metric has
been discussed in [25] where it was found that the retraction of the Schwarzchild space is spacetime geodesic. The 5

dimensional case has been discussed in [18]. in this paper we are going to discuss the retraction for the six dimensional
case.

1.2 Schwarzchild metric in 6 dimensions

For the Schwarzchild metricin (N+1) dimensions we can write [19]

-1
ds® = _[1— r’:fz}dtz +(1— /fz) dr? +r2dQ? )

n

where ¢ gives the black hole mass M which for M, = S"is [20]

162Gm 2
u= =T
(n—1)Vol (S" 1)
The bolt singularity at K2 = M4 can be removed by periodically identifying the coordinate t with a period
Ar -
L. =——u"2 ®3)

n-2
1
the coordinates I then takes values from ,u“’3 to infinity and defines a complete metric over a manifold with

R? x M, , tolpology possessing an (N —2) -dimensional fixed point set of the Killing vector d/dt, i.e., a bolt. For

M n1 — S™ the metric is asymptotically Euclidean [19]. in—l represents all the angular parts of an Sn_l sphere and
defined as

n-1

dQ; , = dy; +sin’ z,d7; +..+] [sin® 2,077 (@)

m=2

in arbitrary dimensions for a boundary X = St x MH, the ratio of the two radii (of the bundle and the base) as a

1
P16 o 1 (5)
0.’2 n_2p pn—Z e

function of p =r/u"? €[1,) is:
This ratio is called squashing, it generally starts from zeroand grows monotonically to a a maximum value and then
2
decreases and approaches zero at infinity. The exact shape of the curve of — against O depends on dimension. In six
(04

dimensions N =5 and we have:

2 -1
ds? :—[1—%)%7z2y3drz+(l—r—!éj dl’2+I’2dQ‘21 (6)
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Figure 1: The ratio —- against p for 4,5 and 6 dimensions.
a

Where
dQ2; = d6? +sin? g’ +sin’Osin’ gdl* +sin’ Osin’ psin’ld °

1

()

The coordinate t has been identified with a period Eﬂ,ugr to remove the bolt singularity at r¥= M . The squashing

increases monotonically from zero and approaches unity as © —> o0 (Figure 1).

A 6D flat metric can be written as
2 _ 2 2
ds® = —dx; + E dx;

So the coordinates of the 6D Schwarzchild space can be written as

-4 7] %2
X, =t— || 1= " +C,
r

3
1, 1 2 1 ¢ 1 1 12 11 2
=H or + =+t In(A— B —=In(Q— g3 2 == (Pr+ =12
X (2 34 g (1-4°) 3( M3 p 6(# Zu)x

2518 |Page October 28,

(8)

9)

(10)

2014



g

ISSN 2347-1921

1 1 2 2
In(r® + rﬂ% +ﬂ§)—%(ﬂ§ + rﬂ%)tanh’l M +%ﬂ§ In A +r”; ) +C, 11)
NEYE 3u’
X, = £/r’6> +C, (12)
X, = +,/r2¢? sin? 0+ C, (13)
X, :i\/l‘2|zsin295in2¢+C4 (14)
X5 = i\/rzﬂz sin®&sin’ ¢sin’l +C; (15)

where C,,C;,C,,C,, C, and C; are constants of integration.

2 Euler-Lagrange equations of 6D Schwarzchild field

In general relativity, the geodesic equation is equivalent to the Euler-Lagrange equations

L a,L j— & =0, i=1234 (16)
dilox” ) ox“
associated to the Lagrangian
L(x*,x*) = % g, XX 17

To find a geodesic which is a subset of the 6D Schwarzchild space, the Lagrangian of the 6D Schwarzchild field can be
written as

2 = . :
L= —%ﬂ'z(l— 'ujlu%"z +[1—rﬁ3j r+ r2(02 +¢°sin?0+1%sin?Osin’ ¢ +1° sinzﬁsin2¢sin2|)(18)

r3
A . oL o
No explicit dependence on either 7 or 77, and thus — and —— are constants of motion, i.e.
or on
1 il
3:— 2( : ’ . _
(LFJ”/’ST =k, r“(sin°@sin’gsin’l)7 =h (19)

with K and h are constants. h can be regarded as an equivalent of angular momentum per unit mass in the 6D . using
the Euler-Lagrange equations we get the full set of components as

d r + 8/1 2.2 3/,lr

d_l 1 3 2
-5 2r4(1—/'lj

(20)
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r(é?2 +¢?sin?0+17sin?Osin’ ¢+ 17° sinzé’sin2¢sinz|)]: 0

%(zrzé)_ r?sin 20(¢* + 1% sin?¢+n* sin#sinl) = 0 1)
;(Zr%i”zg) ~r25in’0(I%sin 24+ 7 sin%lsin 24) = 0 22)

;—/1 (2r2|'sin205in2¢) - rzfyz sin?@sin’gsin2l =0

(23)

d u)_ i

—|1-= |mu*7 =0 24

: l( rsj ” @
irzf'lsinzﬁsin2¢sin2| =0. (25)
dA

1
From [l—ﬁsjﬂ;usz‘ =k, setting k =0 gives two cases: (1) Z=0 or = A.If A=0 we get the following
r

coordinates

X, =+,/C, (26)

i 1 2 3 1 1, 8 2 el e 2
=t or+ =3+ In(- B —=In(L—g3) 12 — = (pPr += p3) x
X (2 34 TR =pe®) - (I-p)u 6(# 2#)
1
N Y ks 2r+,u% 1 2 4(r2+r,u%+y§) \
In(r® +rp? +,u3)—ﬁ(,u3 +ru®)tanh™ . Z,u3 In i +C, 27)
NEVE 3u?
X, =+,/r’6° +C, (28)
X, = £,/r?¢ sin2 0+ C, (29)
X, = i\/r2|zsin295in2¢+C4 (30)
Xg = +/r?5% sin?Osinpsin’l +C, (31)

Since X12 +X22 +X§ +X§ +X52 —X§ >0 which is the great circle S, in the 6D Schwarzchild spacetime S . These

geodesic is a retraction in Schwarzchild space. ds® > 0. H= 0 is not allowed as it leads to undefined coordinate.
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From I‘Z(sinzﬁsin2¢sin2|)77 =h,if h=0 we have four cases:(1) 77 =0 or 7 =B .1f B=0 we get the
coordinates as:

2
X, = i4—7[\/(1—ﬁ3j,u372 +C, (32)
3 r
2 1 l 1 2 1 2
K= 0 S I ) - I Y 2 (T )
2 37 '3 2

1

S N - ! 2r +y% 1 2 4(r2+r,u%+y§) 2
In(r® +ru® + u) - \/—(ﬂ +ru?)tanh™ - +Z/J3 In 3 +C, (33)

\/_,u 3,u5

X, = +,/r’6° +C, (34)
X, = +,/r2¢? sin? 0+ C, (35)
X = i\/r2|zsin295in2¢+c4 (36)

X, = +,/Cq 37)

This is the geodesic hyperspacetime 32 of the Schwarzchild space S . This is a retraction. ds? >0.

(2) ¢ =0 and in this case we get

X, =% + \/(1—&)# 7’ +C, (38)

3
1 2 1 2 1 1 1 il 2 1 1 1 2
= + +=u2In(1- r——In 1- 18 —=(ulr+ X
X, (2 3u o (1-p°) (A=p®)p? (/J SH ®)
1
) : 2 1, 2 : k) 2I’+,u% 1 % 4(r2+r,u%+,u§) 2
In(r +ry3+y3)—ﬁ(y3+ru3)tanh T +Zu In P +C, (39)
\/§ﬂ3 3u°
X, = +,/r’6° +C, (40)
X, = +/Cy (41)
X, :i\/C—4 42)
X, = +,/Cy (43)
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This is the geodesic hyperspacetime 83 of the Schwarzchild space S . This is a retraction. ds? >0.

(8) @ =0 and in this case we get

X, =i4?ﬂ\/(1——j,u 7’ +C, (44)
1, 1212 ! I I

=4 =r°+ += 3 In(1- r——In 1— 13 u® == (1Br += u®) x

X (2 3u 3H (1- 1) (-4 6(# 2#)

1

, o2 o1 22 2r+ﬂ% 1 2 4(r2+r,u%+,u§) 2
In(r +ry3+y3)—ﬁ(y3+ru3)tanh T +Zy3 In 3 +C, (45)

\/§ﬂ3 3u°

X, = +,/C, (46)
X, 388 /CJ 47)
X, .. [} (48)
pd — N (49)

This is the geodesic hyperspacetime 54 of the Schwarzchild space S . This is a retraction. ds? >0.

(4) I =0 and in this case we get

X = + 4;\/(1— j,u 72 +C, (50)

2 1 1 py 2 1 2
% = i{irz #p S I~ I ) — (r )

2 3 3
1
1 P 2 2
1 2 2 1 3 2 2 3 3
In(r?+rud+ u®)— j_(ﬂ +ru®) tanh™ 2"% +%,u3 |20 +I’,ug+,u ) +C, (51)
NEYE 3ud

X, = +,/r26% +C, (52)
= i\/l’2¢2 sin®0+C, (53)
x, =+,/C, (54)
X; = +/Cq (55)

This is the geodesic hyperspacetime Ss of the Schwarzchild space S . This is a retraction. ds? >0.
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Theorem1.:
The retraction of 6D Schwarzchild space is a 6D spacetime geodesic.
3 deformation retract of 6D Schwarzchild space

The deformation retract of the 6D Schwarzchild space is defined as

@:Scx| —Sc (56)
where SC is the 6-dimensional Schwarzchild space and | is the closed interval [0,1]. The retraction of 6D
Schwarzchild space SC is defined as

R:Sc—S,,S,,S,,S,and S.. (57)

The deformation retract of the 6D Schwarzchild space SC into a geodesic Sl C SC is defined as

2

2 1 1
p(m,t) = (1—t){i4§\/[1—r—’ij,u3rz LC ,i(l r +%,u3 +%,u3 In(1—3)r—

2
1 2 1 2 1 2 2 1 1
= = = . = i = E 3
B0 )~ L T YN e+ 8) -+ 1) ) 2
3 6 2 NE !
V3u
A | .
IS 2 g 3
Lo A +r'u2+ﬂ ) +C, | £r?6?+C,, £/r’¢?sin’6+C;,

+_
& z

g

3u

: i\/r2|2 sin“fsin*¢+C,, i‘\/l’znz sin®@sin’#sin’l +C, }+ tan%&\/c_o,

L. 1050 ; By L A ARY. T W
+ Er +§,u +§,u In(1- u )r—gln(l—y ) u —E(,u r+§,u )In(re+rud + u®)
2 1 3 2 5 : %
< < 3 4 2 3 3
—%(ﬂ?”rr,us)tanh‘1 Zr# +lﬂ3 in| 2 +r#2+ﬂ ) R,
\/§ﬂ3 3u°

+/r?6? +C,, £1[r?¢?sin?6+C,, £1/r*1?sin’ sin’ ¢+ C,

A\r?n? sin?Osin’ gsin’ +C5} (58)

where

2 2 1 1
#(m,0) = (1—t){i4§\/[1—%),u3r2 +C, ,i(%rz +%,u3 +%,u3 In(1—3)r—
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1 12 19 2 1 2 1 2 1 o + 143
gln(l—/f)ﬂ?’—g(ﬂ3r+§u3)|n(r2+m3+/¢3)—E(u3+ru3)tanh‘1 ”
NEYE
1
1 2 2
2 2 3 3
+%,u3ln ar WL Ve, | £ rg7+C, +r’¢ sin?6+C,,
3u3
+/r21%sin’ Osin? ¢+ C, , £/r*;? sin?Osin® $sin’l + C; } (59)
l 2
s =14C, [ 2 vt Ly u3)r—1|n(1 )
2 3 3
1
1 N - A W 2r + p°
TSI 1+ ) = (0 1) tanh” =
NEVE
1
1 2 2
2 2 3 3
+E,u3 In (" +rﬂg+ﬂ ) +C, ,i\/r292+C2,_\/r #*sin0+C,,
3ud
+./r21%sin’ Osin®p+C, , + /77 sin? Osin® gsin’l + C; } (60)

The deformation retract of the 6D Schwarzchild space SC into a geodesic S2 C SC is defined as

| 4r Y7, 2 9 1 .41 v 2 .
m,t)=cos—J4+— [|1-5 (B +C ,+| =r*+= 13 += 13 In(1— w®)r —
g(m,t) 2{ 2 \/( rgjﬂ " +C, {2 X t3H (1-x2)

1

12 1 2 1 2 2 1 3
I ) =G I ) = () tanh | S
3 6 2 NG Y
3u

1

1 2 2

2 2 3 3
+%,u3 in| 2 LA Vsc,| £ re?+C, + P@sin‘6+C,,

3

3u

i\/rzl2 sin?@sin?¢+C,, _\/r 7% sin?0sin® #sin®l +C, }+sin%x
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AN DR 6 NSO S %In(l— %)r-lln(l— %) ;
3 & o E| ST U GH #r =3I
1 Y 1 2 1 2 1 2 1 2I‘+,u%
—g(ﬂ3r+§ﬂ3)ln(r2+w3Jr/tg)—ﬁ(/ﬁ+ru3)tanh*l .
NEYE
12 2
2 2 3 3
Lo A2 0) | e | 2 reP4C, 4\ r¢ sinf0+C,,
4 3
i\/rzlzsinzﬁsin2¢+C4,_\/—} (61)

The deformation retract of the 6D Schwarzchild space SC into a geodesic 33 c SC is defined as

A(m,t) = (1—t){i4§\/(l—rﬁ3jyirz . o

1 | & 1 ey 2 - KB 1 2
i(—r2+—,u3+—,u3|n(1—y3)r—§|n(1—y3)y3—g(,u3r+5,u3)|n(r2+r,u3+,u3)

2 3 3
: L2 2
2 1 3 2 2 3 3
2r+p3 | 1 AT el
\/_(,u +ru®)tanh™ ;i +Z,u3|n ( ﬂz 20 +C, |,
\/5/15 3,u5

+./r26% +C,, +/r2¢? sin?6+C,, =/r21? sin’ Osin® ¢+ C,

2
r

1, 12 1: IR el - 2
(—r +3,u +3,u In(1— ,u3)r——ln(1 w3l ——(,u3r+§,u3)|n(l‘2+r,u3+,u3)

2
1 - .
2 1 3 2 2 3 3
\/—(ﬂ +ru)tanh™ ar ;i +1/,¢3|n A +w2+ﬂ) +C |,
\/_ 3 4 3u

+./r?6* +C,,+./C,, +,/C 4,_\/—} (62)
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The deformation retract of the 6D Schwarzchild space SC into a geodesic S4 C SC is defined as

2
p(m,t) = cos%{i%z\/(l—r—léjy%z +C,,

1, 12 1: > 2 12 > 2
(—r +3,u +3,u In(1- ,u3)r——ln(1 w3l —g(,u3r+§,u3)|n(r2+r,u3+,u3)

2
1 L 3
2 3 2 N S
\/—(ﬂ +Tu )tanh ar ‘i +lﬂ3ln A Hﬂzﬂl) +C |
J3u? 3u?

+./r26% +C,, +/r2¢? sin’ 6+ C,, /2% sin’ Osin® 4 +C,

2
,i\/l’zn2 sin’Osin’#sin’l +C }+ tan%{+4?ﬂ\/[l—%)y3rz +C,,

1 i 1 L (L 1 L Z N 1 1 2
S+ S+ 8 In(1—,u3)r—§In(1—,u3)y3 —g(,u3r+§,u3)|n(r2+r,u3+,u3)

2 3 3
2 L ) L ol 2
2r+p% | 1 2 A%+l
\/_(,u +r,u3)tanh’l —’Li +Z'u3 in| 4 ﬂz &) n ik ¥
V3u? 3u?

C, £4C, £,/C, ©3)

The deformation retract of the 6D Schwarzchild space SC into a geodesic S5 < SC is defined as

2
A(m,t) = cos%{i%z\/(l—r—/éjy%z e

1, 12 1: I I - 2
(—r +3,u +3,u In(1— ,u3)r——ln(1 w13l ——(,u3r+§,u3)|n(l‘2+r,u3+,u3)

2
1 - .
2 1 3 2 2 3 3
\/—(ﬂ +ru)tanh™ ar ;i +1/,¢3|n A +w2+ﬂ) +C |,
\/_ 3 4 3u

+,/r20? +C,, £/r?¢? sin?0+C,, +/r215in*Osin’¢+ C,
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2

1’ sin’ Osin gsin’l +Cs }“a”%{i%ﬂ\/[l_ﬁs)u%z +C,,
r

1, 12 1: > 2 12 > 2
(—r +3,u +3,u In(1- ,u3)r——ln(1 TR )75 ——(,u3r+§,u3)|n(r2+r,u3+,u3)

2
1 - :
2 3 2 2 rd a3
\/—(ﬂ +Tu )tanh ar ‘i +lﬂ3ln A Hﬂzﬂl) +C |
\/—7 4 3u

+./r262 +C, , +,/r?¢sin’+C,, +./C, + \/c_s} (64)

Now we are going to discuss the folding f of the 6D Schwarzchild space SC . Let f :Sc — SC where

f(Xo X0 Xa1 Xgs X4 X5) = (Xg, Xy, X[ Xs|s X0 X5)

An isometric folding of the 6D Schwarzchild space into itself may be defined as:

| 4x L 22 1, 1 LT 1 1 12
foid— |1-F5 |uPc" +C | Zr+ - +-p® |n(1—,u3)r—§|n(1—,u3),u3
r

3 2 3 3
1 S E 1 2 A 2 1 or + %
— = (Br+= 13 In(r® +rpd + p®) ——=(u® +ru) tanh™ Aﬁ
6 2 J3 J3ud
3u

AE 3 4(r2+r,u%+,u§) ’

YT , +C, | £[r?602+C,, £4/r?¢? sin?6+C;,
318

4 2
+/r¥12sin?Osin?¢+C, , £/r’n* sin>Osin’#sin’l + C } {+§\/(l—ﬁ3jﬂ3rz+00,

1, 121 : 2 12 2
(Er +3,u +3,u In(1- ,u3)r——ln(1 JTa VAR (,u3r+§,u3)|n(r2+r,u3+,u3)
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1 1 2

N |-

2 3 2 2 ¢, 3,3
\/_(,u +r,u3)tanh’l Zr# +Ey3 In ar +w2+/“l ) +C, | ,+4/r?0*+C,,
NEVE 3u?

‘\/r2¢2 sin26’+C3‘, +/r21%sin2@sin® +C, , £ /rn? sin*Osin dsinl + C, }

The deformation retract of the folded 6D Schwarzchild space SC into the folded S is defined as

4 M 3 2 1,13 13 : 1 B8
t— 11-5 |3 +C | S+ 2 B+ 2 B In(1— 12)r =S In(1— p®)
R e [ r"’jﬂ i (2 g Tyt gt
1,1 2 3 ol 5 “‘%
L r+ 2 VI 1 a2) = et} 2
6 2 V3 NEVE
7

4
1 2 2

2 2 3 3
1/,1 in| 4 +fﬂ2+#) +C, | ,£4/r?6% +C,,

3

i\/r2¢2 sin2¢9+C3‘,

3

3u

+Jr?1? sin?0sin® ¢+ C,, £/r’n’ sin’ Osin? gsin’l + C, }X' '«

A7 U 2 g, M 1 1 1 o 2
+ 77 N1 322 +C £ Sr2 42 1%+ = 1 In(L- 28)r — = In(L— ) e
3\/( rsjﬂ 0 (2 37 + e (1- AE -l - S
1 2 1 2 2 1 -
= 5 = E 4 S 3
—%(ﬂ3r+%ﬂ3)|n(r2+r#3+ﬂ3)—%(ﬂ3+|’ﬂ3)tanh1 ”i
NEYE
]
2 2 W o § .
+%,u3ln Al +r,u2+,u) 5 ,J_r\/r202+C2,\/r2¢zsin26’+C3‘,
3u’
+./r?125in20sin?$+C, , £:/r’n sin295in2¢sin2|+Cs} (65)

with

| 4r u) 2, 1, 1 2 1 °: :
mit)=cos—<t— . [|1-= (37" +C, | =r"+ =+ =2 In(1— p3)r—
gf (m, 1) 2{ 3\/( rgjﬂ (2 4 TgH (1-#2)
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1
102 1 2 1 2 2 1

1 g 2 oz 2 2r + 118
gln(l—ﬂs)ﬂa—g(ﬂ3r+§ﬂ3)|n(r2+rﬂ3+ﬂ3)—ﬁ(ﬂ3+rﬂ3)tanh_1 ﬁ
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Also, for S,, S;, S, and S;. Then the following theorem has been proved.

Theorem?2:

Under the defined folding and any folding homeomorphic to this type of folding, the deformation retract of the folded 6D

Schwarzchild space into the folded geodesics is different from the deformation retract of the 6D Schwarzchild space into
the geodesics.

Now, let the folding be defined by

f":Sc—Sc

where

f*(Xo’Xl’XZ’)(31)(4’)(5) = (Xo’|X1|1X21X3’X4’X5)

An isometric folding of the 6D Schwarzchild space into itself may be defined as:

«. |, 4 y7, %2
fi? 1—FIUT+CO

1, 1 2 q ¢t 1 1 12
=+ =t In(U=pB)r —=In(1—p3) 1
[2 M M (1-4°) 3 (-4

1

1, > 12 o201 ¢ 2r + 18
—g(ﬂ3r+§ﬂ3)ln(r2+w3+ﬂ3) \/—(ﬂ +ru )tanh*l ﬁ
NEYE
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The deformation retract of the folded 6D Schwarzchild space Sc into the folded S, is defined as:
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+ /1242 5in20+Cy, +/r?1% sin?Osin® -+ C, . ++/r?n* sin? Osin® ¢sin’l +Cy } (68)

with

ff “(m,t) = (1t){+%"\/[1r—‘§jﬂ§r2 +C,
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Also, for S,, S;, S, and S;. then the following theorem has been proved.

Theorem3:

Under the defined folding and any folding homeomorphic to this type of folding, the deformation retract of the
folded 6D Schwarzchild space into the folded geodesics is the same as the deformation retract of the 6D Schwarzchild
space into the geodesics.

4 Energy Conservation

For the case of (0 = ¢ = | = 712) , the equations to be solved are

(1— %)t =k (70)
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r’n=nh (72)

2 2
1r'2+h—(l—ﬁsj+c—/::c2(1—k2) (73)
r 2r

For the potential in higher dimensions, we recall the familiar Newton law in N+ 4 dimensions [24]

V . Gn+4M (74)

n+4s n+l
rn

So, for 5 dimensions the potential is inversely proportional to r3.

GM
Vs; % (75)
The term
h? i\ cu
Wl [+ 76
2r2( r3) 2r® e

represents the 6D potential and the equation (73) is the Energy conservation formula in 5D. Equation (73) is the 6D
analogy of the 4D one for the case of 4D Schwarzchild field

2 2
1r'2+h— N3 —C—ﬂ:cz(kz—l) 77)
2 2r r 2r
which expresses energy conservation in 4D with potential
h2 ,U CZIU
A, — SR 78
oor? ( r j 2r e

5 Conclusion

The deformation retract of the six dimensional Schwarzchild space has been investigated by making use of
Lagrangian equations. The retraction of this space into itself and into geodesics has been presented. The deformation
retraction of the six dimensional Schwarzchild space is six dimensional space-time geodesics which found to be a great
circle. The folding of this space has been discussed and it was found that this folding, and any folding homeomorphic to
that folding, have the same or different deformation retract of the six dimensional Schwarzchild space into a geodesic. A
relation for energy conservation in 6D, similar to the one for 4D, has been derived.
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