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1  Introduction 

 The real revolution in mathematical physics in the second half of twentieth century (and in pure mathematics 
itself) was algebraic topology and algebraic geometry [1]. In the nineteenth century, Mathematical physics was essentially 
the classical theory of ordinary and partial differential equations. The variational calculus, as a basic tool for physicists in 
theoretical mechanics, was seen with great reservation by mathematicians until Hilbert set up its rigorous foundation by 
pushing forward functional analysis. This marked the transition into the first half of twentieth century, where under the 
influence of quantum mechanics and relativity, mathematical physics turned mainly into functional analysis, complemented 
by the theory of Lie groups and by tensor analysis. All branches of theoretical physics still can expect the strongest 
impacts from use of the unprecedented wealth of results of algebraic topology and algebraic geometry of the second half 
of twentieth century [1]. 

Today, the concepts and methods of topology and geometry have become an indispensable part of theoretical 
physics. They have led to a deeper understanding of many crucial aspects in condensed matter physics, cosmology, 
gravity, and particle physics. Moreover, several intriguing connections between only apparently disconnected phenomena 
have been revealed based on these mathematical tools [2]. 

Topology enters General Relativity through the fundamental assumption that spacetime exists and is organized 
as a manifold. This means that spacetime has a well-defined dimension, but it also carries with it the inherent possibility of 
modified patterns of global connectivity, such as distinguish a sphere from a plane, or a torus from a surface of higher 
genus. Such modifications can be present in the spatial topology without affecting the time direction, but they can also 
have a genuinely spacetime character in which case the spatial topology changes with time [4]. The topology change in 
classical general relativity has been discussed in [7]. See [9] for some applications of differential topology in general 
relativity. 

In general relativity, boundaries that are 
1S -bundles over some compact manifolds arise in gravitational 

thermodynamics [19]. The trivial bundle 
21= SS   is a classic example. Manifolds with complete Ricci-flat metrics 

admitting such boundaries are known; they are the Euclideanised Schwarzschild metric and the flat metric with periodic 
identification. York [21] shows that there are in general two or no Schwarzschild solutions depending on whether the 

squashing (the ratio of the radius of the 
1S -fibre to that of the 

2S -base) is below or above a critical value. York’s results 

in 4-dimension extend readily to higher dimensions.  

The simplest example of non-trivial bundles arises in quantum cosmology in which the boundary is a compact 
3S , i.e., a non-trivial 

1S  bundle over 
2S . In the case of zero cosmological constant, regular 4-metrics admitting such an 

3S  boundary are the Taub-Nut [22] and Taub-Bolt [23] metrics having zero and two-dimensional (regular) fixed point sets 

of the (1)U  action respectively. 

1.1 Deformation Retract – Definitions 

 The theory of deformation retract is very interesting topic in Euclidean and non-Euclidean spaces. It has been 
investigated from different points of view in many branches of topology and differential geometry. A retraction is a 
continuous mapping from the entire space into a subspace which preserves the position of all points in that subspace [8]. 

(i) Let M  and N  be two smooth manifolds of dimensions m  and n  respectively. A map f  : NM   is said to be an 

isometric folding of M  into N  if and only if for every piecewise geodesic path MJ : , the induced path 

NJfo :  is a piecewise geodesic and of the same length as   [3]. If f  does not preserve the lengths, it is called 

topological folding. Many types of foldings are discussed in [11, 12, 13, 14, 15, 16]. Some applications are discussed in [6, 
10]. 

(ii) A subset A  of a topological space X  is called a retract of X , if there exists a continuous map AXr :  such 

that [17]  

(a) X  is open  

(b) aar =)( , Aa .  

(iii) A subset A  of a topological space X  is said to be a deformation retract if there exists a retraction AXr : , and 

a homotopy XIXf :  such that [17]  

 xxf =,0)( , Xx , 

 )(=,1)( xrxf , Xr , 

 ataf =),( , [0,1],  tAa . 
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The deformation retract is a particular case of homotopy equivalence, two spaces are homotopy equivalent if and only if 
they are both deformation retracts of a single larger space.  

Deformation retracts of Stein spaces has been studied in [5] .The deformation retract of the 4D Schwarzchild metric has 
been discussed in [25] where it was found that the retraction of the Schwarzchild space is spacetime geodesic. The 5 
dimensional case has been discussed in [18]. in this paper we are going to discuss the retraction for the six dimensional 
case. 

1.2  Schwarzchild metric in 6 dimensions 

 For the Schwarzchild metric in 1)( n  dimensions we can write [19]  
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Figure  1: The ratio 
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 against   for 4,5 and 6 dimensions. 
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 increases monotonically from zero and approaches unity as   (Figure 1).  

A D6  flat metric can be written as  

 
2

5

1=

22 = i

i

o dxdxds   (9) 

 So the coordinates of the D6  Schwarzchild space can be written as  

                                                                         1
3

4
= 23

2

3 oo C
r

x 







 


 (10) 

               )
2

1
(

6

1
)(1ln

3

1
)(1ln

3

1

3

1

2

1
= 3

2

3

1

3

2

3

1

3

1

3

1

3

2

2

1 





  rrrx  



                                                                                       ISSN 2347-1921                                                           

 

2519 | P a g e            O c t o b e r  2 8 ,  2 0 1 4  
 

 

2

1

1

3

2

3

2

3

1

2

3

2

3

1

3

1

13

1

3

2

3

2

3

1

2

3

)4(
ln

4

1

3

2
tanh)(

3

1
)(ln













































  C
rrr

rrr









  (11) 

                                                                                           = 2

22

2 Crx    (12) 

                                                                                    sin= 3
222

3 Crx    (13) 

                                                                             sinsin= 4
2222

4 Clrx    (14) 

                                                                      sinsinsin= 5
22222

5 Clrx    (15) 

 where oC , 1C , 2C , 3C , 4C  and 5C  are constants of integration. 

2  Euler-Lagrange equations of D6  Schwarzchild field 

In general relativity, the geodesic equation is equivalent to the Euler-Lagrange equations  
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To find a geodesic which is a subset of the 6D Schwarzchild space, the Lagrangian of the D6  Schwarzchild field can be 

written as 
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From hlr =)sinsinsin( 2222   , if 0=h  we have four cases:(1) 0=  or B= . If 0=B  we get the 

coordinates as: 
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This is the geodesic hyperspacetime 2S  of the Schwarzchild space S . This is a retraction. 0>2ds . 
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This is the geodesic hyperspacetime 3S  of the Schwarzchild space S . This is a retraction. 0>2ds . 

(3) 0=  and in this case we get  
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 This is the geodesic hyperspacetime 4S  of the Schwarzchild space S . This is a retraction. 0>2ds . 

(4) 0=l  and in this case we get 
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 This is the geodesic hyperspacetime 5S  of the Schwarzchild space S . This is a retraction. 0>2ds . 
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Theorem1: 

The retraction of 6D Schwarzchild space is a 6D spacetime geodesic. 

3  deformation retract of 6D Schwarzchild space 

The deformation retract of the 6D Schwarzchild space is defined as  

 ScISc :  (56) 

 where Sc  is the 6-dimensional Schwarzchild space and I  is the closed interval [0,1] . The retraction of D6  

Schwarzchild space Sc  is defined as  

 .  ,,,: 54321 SandSSSSScR   (57) 

 The deformation retract of the 6D Schwarzchild space Sc  into a geodesic ScS 1  is defined as 
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The deformation retract of the 6D Schwarzchild space Sc  into a geodesic ScS 2  is defined as 
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The deformation retract of the 6D Schwarzchild space Sc  into a geodesic ScS 3  is defined as 
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The deformation retract of the 6D Schwarzchild space Sc  into a geodesic ScS 4  is defined as 
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The deformation retract of the 6D Schwarzchild space Sc  into a geodesic ScS 5  is defined as 
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Now we are going to discuss the folding f  of the 6D Schwarzchild space Sc . Let ScScf :  where 
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An isometric folding of the 6D Schwarzchild space into itself may be defined as: 
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 The deformation retract of the folded 6D Schwarzchild space Sc  into the folded 1S  is defined as 
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with 
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Also, for 2S , 3S , 4S  and 5S . Then the following theorem has been proved.  

Theorem2: 

Under the defined folding and any folding homeomorphic to this type of folding, the deformation retract of the folded 6D 
Schwarzchild space into the folded geodesics is different from the deformation retract of the 6D Schwarzchild space into 
the geodesics.  

Now, let the folding be defined by 

 ScScf :*
 

where 

 ),,,,,(=),,,,,( 5432154321

* xxxxxxxxxxxxf oo  

 

An isometric folding of the 6D Schwarzchild space into itself may be defined as: 
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The deformation retract of the folded 6D Schwarzchild space Sc into the folded 1S  is defined as: 
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Also, for 2S , 3S , 4S  and 5S . then the following theorem has been proved. 

Theorem3: 

Under the defined folding and any folding homeomorphic to this type of folding, the deformation retract of the 
folded 6D Schwarzchild space into the folded geodesics is the same as the deformation retract of the 6D Schwarzchild 
space into the geodesics. 

4  Energy Conservation 

For the case of /2)===(  l , the equations to be solved are 
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making use of (70) and (72) in (71) and after some manipulations we get 
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For the potential in higher dimensions, we recall the familiar Newton law in 4n  dimensions [24]  
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 represents the 6D potential and the equation (73) is the Energy conservation formula in 5D. Equation (73)  is the D6  

analogy of the 4D one for the case of 4D Schwarzchild field 
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 which expresses energy conservation in 4D with potential  
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5  Conclusion 

The deformation retract of the six dimensional Schwarzchild space has been investigated by making use of 
Lagrangian equations. The retraction of this space into itself and into geodesics has been presented. The deformation 
retraction of the six dimensional Schwarzchild space is six dimensional space-time geodesics which found to be a great 
circle. The folding of this space has been discussed and it was found that this folding, and any folding homeomorphic to 
that folding, have the same or different deformation retract of the six dimensional Schwarzchild space into a geodesic. A 
relation for energy conservation in 6D, similar to the one for 4D, has been derived. 
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