A Class Of Diameter Six Graceful Trees
 Debdas Mishra ${ }^{1}$, Amaresh Chandra Panda ${ }^{2} 1$
 Department of Mathematics
 C.V. Raman College Of Engineering,Bhubaneswar ${ }^{1},{ }^{2}$
 Email: amaresh471980@gmail.com ,debdasmishra@gmail.com ,

Abstract

In this paper we give graceful labelings to diameter six trees $\left(a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right)$ satisfying the following property: $m+n$ is odd, degree of each neighbour of a_{0} is even, and the centers of the branches incident on the center a_{i} of diameter four trees are either all odd branches or all even branches. Keywords: graceful labeling; n distant tree; component moving transformation; transfer of the first type; BD8TF AMS classification: 05C78

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS
Vol. 9, No. 5
www.cirjam.com, editorjam@gmail.com

[^0]
1 Introduction

Definition 1.1

A diameter six tree is a tree which has a representation of the form ($a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}$), where a_{0} is the center of the tree; $a_{i}, i=1,2, \ldots, m, b_{j}, j=1,2, \ldots, n$, and $c_{k}, k=1,2, \ldots, r$ are the vertices of the tree adjacent to a_{0}; each a_{i} is the center of a diameter four tree, each b_{j} is the center of a star, and each c_{k} is a pendant vertex. We observe that in a diameter six tree with above representation $m \geq 2$, i.e. there should be at least two (vertices) a_{i} s adjacent to c which are the centers of diameter four trees. In this we use the notation D_{6} to denote a diameter six tree.

Figure1:-A diameter six tree.

In the year 1964 the famous " Graceful Tree Conjecture" of Ringel (1964) got published. The conjecture is yet to be resolved. Some specific type of trees are known to be graceful. One may refer to Gallian (2012), Robeva (2011), Edward and Howard (2006) to have an idea on the progress made so far in resolving the graceful tree conjecture. In 1966 Rosa proved that if a tree with n vertices is graceful then $K_{2 n+1}$ decomposes into $2 n+1$ isomorphic copies of that tree. From the surveys of Gallian (2012), Robeva (2011), Edward and Howard (2006) and the work of Hrnčiar and Havier (2001), we know that all trees up to diameter five are graceful. As far as diameter six trees are concerned only banana trees are graceful. A banana tree is a tree obtained by connecting a vertex v to one leaf of each of any number of stars (v is not in any of the stars). Sethuraman and Jesintha (2009a, 2009b) and Jesintha (2005) proved that all banana trees and extended banana trees (graphs obtained by joining a vertex to one leaf of each of any number of stars by a path of length of at least two) are graceful. Figure 1 is an example of a banana tree.

Figure2:-A banana tree.

Here we give graceful labelings to diameter six trees $\left(a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right)$ satisfying the following property:
$m+n$ is odd, degree of each neighbour of a_{0} is even, and the centers of the branches incident on the center a_{i} of diameter four trees are either all odd branches or all even branches.

2 Preliminaries

In order to prove our results we require some existing terminologies and results which are given below.

Lemma 2.1

If g is a graceful labeling of a tree T with n edges then the labeling g_{n} defined as $g_{n}(x)=n-g(x)$, for all $x \in V(T)$, called the inverse transformation of g is also a graceful labeling of T.

Definition 2.2

For an edge $e=\{u, v\}$ of a tree T, we define $u(T)$ as that connected component of $T-e$ which contains the vertex u. Here we say $u(T)$ is a component incident on the vertex v. If a and b are vertices of a tree $T, u(T)$ is a component incident on a and $b \notin u(T)$ then deleting the edge $\{a, u\}$ from T and making b and u adjacent is called the component moving transformation. Here we say the component $u(T)$ has been transferred or moved from a to b. Throughout the paper we write "the component u " instead of writing "the component $u(T)$ ". Whenever we wish to refer u as a vertex, we write "the vertex u ". By the label of the component " $u(T)$ " we mean the label of the vertex u.

Notation 2.3

For any two vertices a and b of a tree T, the notation $a \rightarrow b$ transfer means that we move some components incident on the vertex a to the vertex b. If we consider successive transfers $a \rightarrow b, b \rightarrow c, c \rightarrow d, \ldots$, we simply write $a \rightarrow b \rightarrow c \rightarrow d \ldots$ transfer. In a transfer $a_{1} \rightarrow a_{2} \rightarrow a_{3} \rightarrow \ldots \rightarrow a_{n}$, we call each vertex except a_{n} a vertex of the transfer.

Lemma 2.4

[Hrnčiar and Havier (2001)] Let f be a graceful labeling of a tree T; let a and b be two vertices of T; let $u(T)$ and $v(T)$ be two components incident on a, where $b \notin u(T) \cup v(T)$. Then the following hold:
(i) if $f(u)+f(v)=f(a)+f(b)$ then the tree T^{*} obtained from T by moving the components $u(T)$ and $v(T)$ from a to b is also graceful.
(ii) if $2 f(u)=f(a)+f(b)$ then the tree $T^{* *}$ obtained from T by moving the component $u(T)$ from a to b is also graceful.

Definition 2.5

Let T be a labelled tree and a and b be two vertices of T, and a be attached to some components. The $a \rightarrow b$ transfer is called a transfer of the first type if the labels of the transferred components constitute a set of consecutive integers. The $a \rightarrow b$ transfer is called a transfer of the second type if the labels of the transferred components can be divided into two segments, where each segment is a set of consecutive integers.

Figure3 :-The tree in (a) is a tree with a graceful labeling. The trees in (b) and (c) are obtained from (a) by applying a transfer of the first type $16 \rightarrow 2$ and a transfer of the second type $16 \rightarrow 2$, respectively.

In the following result i.e. Lemma 2.6 we state the conditions under which we can carry out a sequence of transfers of the first and second type so as form new graceful trees from given one.

Lemma 2.6 [Mishra and Panigrahi (2007)] In a graceful labeling f of a tree T, let $a, a-1, a-2, \ldots, a-p_{1}$, $b, b+1, b+2, \ldots, b+p_{2}$ (respectively, $a, a+1, a+2, \ldots, a+r_{1}, b, b-1, b-2, \ldots, b-r_{2}$) be some vertex labels. Let the vertex a be attached to a set A of vertices (or components) having labels $n, n+1, n+2, \ldots, n+p$ (different from the above vertex labels) in f and satisfying either $(n+i+1)+(n+p-i)=a+b$ or $(n+i)+(n+p-1-i)=a+b, 0 \leq i \leq\left[\frac{p+1}{2}\right]$, then the following hold.
1.By making a sequence of transfers of the first type $a \rightarrow b \rightarrow a-1 \rightarrow b+1 \rightarrow a-2 \rightarrow b+2 \rightarrow \ldots \rightarrow x$ (respectively, $a \rightarrow b \rightarrow a+1 \rightarrow b-1 \rightarrow a+2 \rightarrow b-2 \rightarrow \ldots \rightarrow x$), where $z=a-p_{1}$ or $b+p_{2}$ (respectively, $z=a+r_{1}$ or $b-r_{2}$), an odd number of elements from A can be kept at each vertex of the transfer and the resultant tree thus formed will be graceful.
2. If A contains an even number of elements, then by making a sequence of transfers of second type $a \rightarrow b \rightarrow a-1 \rightarrow b+1 \rightarrow a-2 \rightarrow b+2 \rightarrow \ldots \rightarrow z$ (respectively,
$a \rightarrow b \rightarrow a+1 \rightarrow b-1 \rightarrow a+2 \rightarrow b-2 \rightarrow \ldots \rightarrow z$), where $z=a-p_{1}$ or $b+p_{2}$ (respectively, $z=a+r_{1}$ orb $-r_{2}$
), an even number of elements from A can be kept at each vertex of the trasfer,such that the resultant tree thus formed will be graceful.
3. Let A contain an odd number of elements.By making a transfer $a \rightarrow b$ of the first type followed by a transfer $b \rightarrow a-1$ (respectively, $b \rightarrow a+1$) of the second type, we can keep from A an odd number of elements at a and an even number of elements at b and move the rest to $a-1$ (respectively, $a+1$), that the resultant tree thus formed will be graceful.

3 Results

Theorem 3.1

$D_{6}=\left\{a_{0} ; a_{1}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n}\right\}$ with $m+n$ odd and degree of a_{i} and b_{j} are even, for $i=1,2,3, \ldots, m ; j=1,2,3, \ldots, n$. If the branches incident on the center a_{i} of the diameter four tree are either all odd branches or all even branches, then D_{6} has a graceful labeling.

Proof: Let $\left|E\left(D_{6}\right)\right|=q$ and $\operatorname{deg}\left(a_{0}\right)=m+n=2 k+1$. Consider the graceful tree G as represented in Figure4.

Figure4:Starting graceful tree for giving graceful labeling to diameter six trees in Theorem 3.1.

Let $A=\{k+1, k+2, \ldots, q-k-1\}$. Observe that $(k+i)+(q-k-i)=q$. Consider the sequence of transfer $T_{1}: q \rightarrow 1 \rightarrow q-1 \rightarrow 2 \rightarrow q-2 \rightarrow \ldots \rightarrow k \rightarrow q-k \rightarrow k+1$ of the first type of the vertex levels in the set A. Observe that the transfer T_{1} and the set A satisfy the properties of Lemma 2.6. We execute the transfer T_{1} by keeping an odd number of elements of A at each vertex of the transfer. In the transfer T_{1}, the first m vertices are designated as the vertices $a_{1}, a_{2}, \ldots, a_{m}$, respectively, and the remaining n vertices are designated as the vertices $b_{1}, b_{2}, \ldots, b_{n}$. Observe that

$$
a_{i}=\left\{\begin{array}{l}
q-\frac{i-1}{2} \text { if } \text { i is odd } \\
\frac{i}{2} \quad \text { if } i \text { is even }
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
q-\frac{m+j-1}{2} \text { if } j \text { is odd } \\
\frac{m+j}{2} \quad \text { if } i \text { is even }
\end{array} \quad \text { if } m\right. \text { is even } \\
\left\{\begin{array}{l}
\frac{m+j}{2} \quad \text { if } j \text { is odd } \\
q-\frac{m+j-1}{2} \text { if } j \text { is even if } m \text { is odd }
\end{array}\right.
\end{array}\right.
$$

Let A_{1} be the set of vertex labels of A which have come to the vertex $k+1$ after the transfer T_{1}. Since each transfer in T_{1} is a transfer of 1 st type, the elements of A are the consecutive integers. Next consider the transfer $T_{2}: k+1 \rightarrow q-k-1 \rightarrow k+2 \rightarrow q-k-2 \rightarrow k+3 \rightarrow q-k-3 \rightarrow \ldots, \rightarrow r$, where

$$
r=\left\{\begin{array}{ll}
k+k_{1}+1 ; & \text { if } m \text { is odd } \\
q-k-k_{1} ; & \text { if } m \text { is even }
\end{array} \quad, k_{1}=\sum_{i=1}^{m} \operatorname{deg}\left(a_{i}\right)\right.
$$

Observe that the vertices of transfer T_{2} and the elements of A_{1} satisfy the properties of the transfer and the set A of vertex label in Lemma 2.6. If the branches incident on each a_{i} are all even branches then each transfer in T_{2} is a transfer of second type, else each transfer in T_{2} is a transfer of 1st type and keep the required number of vertices of A_{1} at each vertex of T_{2} so that we form the tree D_{6}. By virtue of Lemma 2.6, the resultant tree thus formed has a graceful labeling.

Example 3.2

Figure 5 represents graceful lableing of a diameter six tree of the type in Theorem 3.1. Here $q=52$, $m=4, n=3, \operatorname{deg}\left(a_{0}\right)=7$. So $k=3 A=\{k+1, k+2, \ldots, q-k-1\}=\{4,5, \ldots, 48\}$. The vertices 52, 1, 51, and 2 are the centers of diameter four trees and the vertices 50,3 , and 49 are the centers of stars. T_{1} is the transfer $52 \rightarrow 1 \rightarrow 51 \rightarrow 2 \rightarrow 50 \rightarrow 3 \rightarrow 49 \rightarrow 4$. Here the branches incident on the centers of diameter four trees are even branches. T_{2} is the transfer $4 \rightarrow 48 \rightarrow 5 \rightarrow 47 \rightarrow 6 \rightarrow 46 \rightarrow 7 \rightarrow 45 \rightarrow 8 \rightarrow 44$, where each transfer is a transfer of the second type.

If m is odd, degree of each $a_{i}, i=1,2, \ldots, m$, is even and the branches incident on the centers $a_{i}, i=1,2, \ldots, m$, of the diameter four trees are either all odd branches or all even branches. Then
(a) $D_{6}=\left\{a_{0} ; a_{1}, a_{2} \ldots, a_{m}\right\}$ has a graceful labeling.
(b) $D_{6}=\left\{a_{0} ; a_{1}, \ldots, a_{m} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$ has a graceful labeling.

Proof: (a) The proof follows immediately from the same involving Theorem 3.1 by setting $n=0$.
(b) Let us construct a tree G_{6} from D_{6} by removing the pendant vertices $c_{1}, c_{2},, \ldots, c_{r}$. Obviously G_{6} is a diameter six tree with center a_{0} having odd degree. Let $\left|E\left(G_{6}\right)\right|=q_{1}$. Repeat the procedure in the proof involving part (a) of this corollary by replacing q with $q-r$ and give a graceful labeling to G_{6}. Observe that the vertex a_{0} in the graceful tree G_{6} gets the label 0 . Attach the pendant vertices $c_{1}, c_{2}, \ldots, c_{r}$ and assign the labels $q-r+1, q-r+2, \ldots, q$ to them. Obviously, the tree $G_{6} \cup\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ is graceful and is seen to be the tree D_{6}.

Theorem 3.4

(a) $D_{6}=\left\{a_{0} ; a_{1}, \ldots, a_{m}\right\}$ with m even and degree of a_{i} are even , $i=1,2,3, \ldots, m$. If the branches incident on the center a_{i} of the diameter four tree are either all odd branches or all even branches then D_{6} has a graceful labeling.
(b) $D_{6}=\left\{a_{0} ; a_{1}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n}\right\}$ with $m+n$ even and degree of a_{i} and b_{j} are even,
$i=1,2,3, \ldots, m ; j=1,2,3, \ldots, n$. If the branches incident on the center a_{i} of the diameter four tree are either all odd branches or all even branches then D_{6} has a graceful labeling.
(c) $D_{6}=\left\{a_{0} ; a_{1}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$ degree of a_{i} and b_{j} are even, $i=1,2,3, \ldots, m ; j=1,2,3, \ldots, n$. If the branches incident on the center a_{i} of the diameter four tree are either all odd branches or all even branches then D_{6} has a graceful labeling.
(d) $D_{6}=\left\{a_{0} ; a_{1}, \ldots, a_{m} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$ with m even, degree of a_{i} are even $i=1,2,3, \ldots, m-1$ and that of a_{m} is odd. If the branches incident on the center a_{i} of the diameter four trees are either all odd branches or all even branches, then D_{6} has a graceful labeling.

Proof: (a) Let us designate the vertices $a_{1}, a_{2}, \ldots, a_{m}$ such that $\operatorname{deg}\left(a_{1}\right) \leq \operatorname{deg}\left(a_{2}\right) \geq \operatorname{deg}\left(a_{3}\right) \geq \ldots \geq \operatorname{deg}\left(a_{m}\right)$, i.e. the degree a_{m} is minimum among all the neighbours of a_{0}. Excluding a_{0} let there be $2 p_{i}+1$ neighbours of $a_{i}, i=1,2, \ldots, m$ in D_{6}. Remove a_{m} and all the components incident on it, i.e. construct the tree $D_{6} /\left\{a_{m}\right\}$. Make any $2 p_{m}$ neighbours of a_{m} adjacent to the vertex a_{2}. The resultant tree thus formed from D_{6} is obviously a diameter six tree and let it be denoted by G_{6}. Let $\left|G_{6}\right|=q_{1}$. Repeat the procedure in the proof involving Corollary 3.3 (Theorem 3.1 with $n=0$) by replacing m with $m-1$ and q with q_{1} and give a graceful labeling to G_{6}. We observe that the vertex a_{2} gets label 1 , and the $2\left(p_{2}+p_{m}\right)+1$ neighbours of a_{2} get the labels $q_{1}-x, x+1+i, q_{1}-x-i, x=k+p_{1}+1, i=1,2, \ldots, p_{2}+p_{m}$. While labeling G_{6} we allot labels $x+i+2, q_{1}-x-i, i=1,2, \ldots, p_{m}$ to $2 p_{m}$ neighbours of a_{m} that were shifted to a_{2} while constructing G_{6}. Next we attach the vertex a_{m} to a_{0} and assign label $q_{1}+1$ to a_{m}. Now we move the vertices $x+i+2, q_{1}-x-i, i=1,2, \ldots, p_{m}$, to $\quad a_{m}$. Since $\quad(x+i+2)+\left(q_{1}-x-i\right)=q_{1}+2=1+\left(q_{1}+1\right)$, for $i=1,2, \ldots, p_{m}$, by Lemma 2.4 the resultant tree, say G_{1} thus formed is graceful with a graceful labeling, say g. Apply inverse transformation $g_{q_{1}+1}$ to G_{1} so that the label of the vertex a_{m} becomes 0 . By Lemma 2.1, $g_{q_{1}+1}$ is a graceful labeling of G_{1}. Now attach one remaining vertex to a_{m} and assign the label $q_{1}+2$ to it. Let this graceful labeling of the new tree, say G_{2} thus formed be g_{1}. Let there be p neighbours of $q_{1}+2$ in D_{6}. Apply inverse transformation $g_{1_{1}+2}$ to G_{2} so that the label of the vertex $q_{1}+2$ of G_{2} becomes 0 . By Lemma 2.1, $g_{q_{1}+2}$ is a graceful labeling of G_{2}. Now attach the p pendant vertices adjacent to the vertex labelled 0 and assign them the labels $q_{1}+3, q_{1}+4, \ldots, q_{1}+p+2$. Observe that we finally form the tree D_{6} and the labeling mentioned above is a graceful labeling of D_{6}.
(b) Let us construct a tree G_{6} from D_{6} by removing the vertex b_{n} and pendant vertices incident on it. Obviously G_{6} is a diameter six tree with center a_{0} having odd degree. Let $\mid E\left(G_{6} \mid=q_{1}\right.$. Repeat the procedure in the proof involving Theorem 3.1 by replacing n with $n-1$ and q with q_{1} and give a graceful labeling to G_{6}. Observe that the vertex a_{0} in the graceful tree G_{6} gets the label 0 . Attach b_{n} to a_{0} and assign the label $q_{1}+1$ to it. Obviously, the tree $G_{6} \cup\left\{b_{n}\right\}$ is graceful with a graceful labeling, say g. Apply inverse transformation $g_{q_{1}+1}$ to $G_{6} \cup\left\{b_{n}\right\}$ so that the label of the vertex b_{n} becomes 0 . By Lemma 2.1, $g_{q_{1}+1}$ is a graceful labeling of $G_{6} \cup\left\{b_{n}\right\}$. Let there be p pendant vertices adjacent to b_{n} in D_{6}. Now attach these vertices to b_{n} and assign labels $q_{1}+2, q_{1}+3, \ldots, q_{1}+p+1$ to them. Observe that we finally form the tree D_{6} and the labeling mentioned above is a graceful labeling of D_{6}.
(c) Case - I Let $m+n$ be even. Let us construct a tree G_{6} from D_{6} by removing the vertices $b_{n}, c_{1}, c_{2}, \ldots, c_{r}$ incident on a_{0}. Obviously G_{6} is a diameter six tree with center a_{0} having odd degree. Let $\mid E\left(G_{6} \mid=q_{1}\right.$. Repeat the procedure in the proof involving Theorem 3.1 by replacing n with $n-1$ and q with q_{1} and give a graceful labeling to G_{6}. Observe that the vertex a_{0} in the graceful tree G_{6} gets the label 0 . Attach $c_{1}, c_{2}, \ldots, c_{r}$ and b_{n} to a_{0} and assign the labels $q_{1}+1, q_{1}+2, \ldots, q_{1}+r$, and $q_{1}+r+1$, respectively. Obviously, the tree $G_{6} \cup\left\{c_{1}, c_{2}, \ldots, c_{r}, b_{n}\right\}$ is graceful with a graceful labeling, say g. Apply inverse transformation $g_{q_{1}+r+1}$ to $G_{6} \cup\left\{c_{1}, c_{2}, \ldots, c_{r}, b_{n}\right\}$ so that the label of the vertex b_{n} becomes 0 . By Lemma 2.1, $g_{q_{1}+r+1}$ is a graceful labeling of $G_{6} \cup\left\{c_{1}, c_{2}, \ldots, c_{r}, b_{n}\right\}$. Let there be p pendant vertices adjacent to b_{n} in D_{6}. Now attach these vertices to b_{n} and assign labels $q_{1}+r+2, q_{1}+r+3, \ldots, q_{1}+r+p+1$ to them. Observe that we finally form the tree D_{6} and the labeling mentioned above is a graceful labeling of D_{6}.
(c) Case - II Let $m+n$ be odd. Let us construct a tree G_{6} from D_{6} by removing the pendant vertices c_{1}, c_{2}, \ldots, c_{r} incident on a_{0}. Obviously G_{6} is a diameter six tree with center a_{0} having odd degree. Let $\mid E\left(G_{6} \mid=q_{1}\right.$. Repeat the procedure in the proof involving Theorem 3.1 by replacing q with q_{1} and give a graceful labeling to G_{6}. Observe that the vertex a_{0} in the graceful tree G_{6} gets the label 0 . Attach c_{1}, c_{2}, \ldots, and c_{r} to a_{0} and assign the labels $q_{1}+1$, $q_{1}+2, \ldots$, and $q_{1}+r$, respectively. Obviously, the tree $G_{6} \cup\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ is graceful.
(d) Let us designate the vertices $a_{1}, a_{2}, \ldots, a_{m}$ such that $\operatorname{deg}\left(a_{1}\right) \leq \operatorname{deg}\left(a_{2}\right) \geq \operatorname{deg}\left(a_{3}\right) \geq \ldots \geq \operatorname{deg}\left(a_{m}\right)$, i.e. the degree a_{m} is minimum among all the non pendant vertices adjacent to a_{0}. Excluding a_{0} let there be $2 p_{i}+1$ neighbours of $a_{i}, i=1,2, \ldots, m-1$ and $2 p_{m}$ neighbours of a_{m} in D_{6}. Remove the vertices $c_{1}, c_{2}, \ldots, c_{r}, a_{m}$ and all the components incident on a_{m}, i.e. construct the tree $D_{6}\left\{c_{1}, c_{2}, \ldots, c_{r}, a_{m}\right\}$. Make $2 p_{m}$ neighbours of a_{m} adjacent to the vertex a_{2}. The resultant tree thus formed from D_{6} is obviously a diameter six tree and let it be denoted by G_{6}. Let $\left|G_{6}\right|=q_{1}$. Repeat the procedure in the proof involving Corollary 3.3 (Theorem 3.1 with $n=0$) by replacing m with $m-1$ and q with q_{1} and give a graceful labeling to G_{6}. We observe that the vertex a_{2} gets label 1 , and the $2\left(p_{2}+p_{m}\right)+1$ neighbours of a_{2} get the labels $q-x, x+1+i, q_{1}-x-i, x=k+p_{1}+1, i=1,2, \ldots, p_{2}+p_{m}$. While labeling G_{6} we allot labels $x+i+2, q_{1}-x-i, i=1,2, \ldots, p_{m}$ to $2 p_{m}$ neighbours of a_{m} that were shifted to a_{2} while constructing G_{6}. Next we attach the vertices $a_{m}, c_{1}, c_{2}, \ldots, c_{r}$ to a_{0} and assign labels $q_{1}+1, q_{1}+2, \ldots, q_{1}+r, q_{1}+r+1$, respectively. Now we move the vertices $x+i+2, q_{1}-x-i, i=1,2, \ldots, p_{m}$, to a_{m}. Since $(x+i+2)+\left(q_{1}-x-i\right)=q_{1}+2=1+\left(q_{1}+1\right)$, for $i=1,2, \ldots, p_{m}$, by Lemma 2.6 the resultant tree, say G_{1} thus formed is graceful.

Example 3.5

The diameter six tree in Figure 3 (a) is a diameter six of the type in Theorem 3.4(a). Here $q=76$ and $m=6$. We first form the graceful diameter six tree G_{6} as in Figure (b) by removing the vertex adjacent to a_{0} with minimum degree and attaching two of its three components to another neighbour of a_{0}. In the graceful labeling of G_{6} the neighbour of a_{0} to which additional components have been added gets the label 1 . Figure (c) represents the tree obtained from the graceful tree in (b) by attaching a vertex to a_{0}, assigning to it the label 74 and shifting two components incident on the vertices 68 and 7 from the vertex with label 1. The graceful tree in Figure (d) is obtained by applying inverse transformation to the graceful tree in Figure (c). The graceful tree in Figure (e) is obtained when we attach a vertex with label 75 to the vertex labelled 0 of the graceful tree in Figure (d). The graceful tree in Figure (f) is obtained by applying inverse
transformation to the graceful tree in Figure (e). Finally, he graceful tree D_{6} in Figure (g) is obtained when we attach a vertex with label 76 to the vertex labelled 0 of the graceful tree in Figure (f).

References

1. Edwards, M. and Howard, L.(2006), A survey of graceful trees, Atlantic Electronic Journal of Mathematics, Vol. 1, pp. 5-30.
2. Gallian, J. A. (2012) A dynamic survey of graph labeling, Electronic Journal of Combinatorics, DS6, Fifteenth edition, url: http://www.combinatorics.org/Surveys/.
3. Hrnčiar, P. and Havier, A. (2001), All trees of diameter five are graceful, Discrete Mathematics, Vol. 233, pp. 133-150.
4. Jesintha, J. J. (2005) New Classes of Graceful Trees, Ph. D. Thesis, Anna University, Chennai, India.
5. D. Mishra, P. Panigrahi, Some Graceful Lobsters with Both Odd and Even Degree Vertices on The Central Path , Utilitus Mathematica, 74(2007), pp. 155-177.
6. Ringel, G. (1964) Problem 25 in theory of graphs and applications, Proceedings of Symposium Smolenice 1963, Prague Publishing House of Czechoslovak Academy of Science, pp. 162.
7. Robeva, E. (2011) An Extensive Survey of Graceful Trees, Undergraduate Honors Thesis, Stanford University.
8. Rosa, A. (1968), On certain valuations of the vertices of a graph, in Theórie des Graphes, (ed. P. Rosenstiehl), Dunod, Paris, pp. 349-355.
9. Sethuraman, G. and Jesintha, J. (2009a), All extended banana trees are graceful, Proc. Internat. Conf. Math. Comput. Sci., Vol. 1, pp. 4-8.
10. Sethuraman, G. and Jesintha, J. (2009b), All banana trees are graceful, Advances Appl. Disc. Math., Vol. 4, pp. 53-64

[^0]: ${ }^{1}$ The authors are grateful to Prof. Pratima Panigrahi, Associate Professor, Department of Mathematics, Indian Institute of Technology, Kharagpur, West Midnapore, West Bengal, India, for her support and guidance while preparing this article.

