

On rank one λ*-commuting operators

Nuha H. Hamada

Al Ain University of Science and Technology, UAE

Nuha.Hamada@aau.ac.ae

Abstract

Let λ be a non zero complex number. An operator A is a rank one λ *-commutes with B if $AB-\lambda BA^*$ has rank one. If, moreover, B is compact operator then A is called to belong to $\Delta^*_{\lambda}(\mathsf{H})$. In other words, $\Delta^*_{\lambda}(\mathsf{H}) = \{A \in \mathbf{B}(\mathsf{H}) \mid AB - \lambda BA^* \text{ has rank one for some compact operator } B\}$. We study the basic properties of $\Delta^*_{\lambda}(\mathsf{H})$. We prove that if $A \in \mathbf{B}(\mathsf{H})$ has an eigenvalue different than λ , and A has a fixed point then $A \in \Delta^*_{\lambda}(\mathsf{H})$.

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol. 9, No. 5

www.cirjam.com, editorjam@gmail.com

Introduction

Let H be a complex, separable, infinite dimensional Hilbert space, and let $\mathbf{B}(H)$ denote the algebra of all linear bounded operators on H. The " λ -commuting" property has its history related to the Invariant Subspace Problem of operators on Hilbert space. It was proved by V. Lomonosov [9] that any nonscalar operator $A \in \mathbf{B}(H)$ that commutes with a nonzero operator $B \in \mathbf{B}(H)$ has a nontrivial hyperinvariant subspace. Subsequently, the result was improved by Lomonosov and many other authors to operators that λ -commute, that is $AB = \lambda BA$, see for instance [3], [4], [10]. In [7] it was proved that if $A \in \mathbf{B}(H)$ is a normal operator with empty point spectrum and B is a compact operator such that $AB = \lambda BA$ for some complex number λ , then B = 0. This result was extended to hyponormal operators. For more details see [8].

On the other hand, It was proved that all operators A in $\mathbf{B}(\mathsf{H})$ with the property that there exists a compact operator B such that AB-BA has rank one, have a nontrivial hyperinvariant subspace [5]. This class of operators was extensively studied in [6]. In [2], Hamada proved that every nonscalar operator with the property that there exists a finite rank operator B such that $AB-BA^*$ has rank one, has a nontrivial hyperinvariant subspace.

This paper is devoted to study a new class of operators, named $\Delta_{\lambda}^*(\mathsf{H})$. Let λ be a compex number. An operator $A \in \Delta_{\lambda}^*(\mathsf{H})$ if $AB - \lambda BA^*$ has rank one for some compact operator B. In other word, A is rank one λ *-commutes with a compact operator B. We construct some basic properties of $\Delta_{\lambda}^*(\mathsf{H})$, giving different examples of operators. However, we couldn't prove that the nonscalar elements in $\Delta_{\lambda}^*(\mathsf{H})$ have nontrivial hyperinvariant subspaces.

Remember that for $f, g \in H$, $f \otimes g$ is the rank one operator defined by,

$$(f \otimes g)x = \langle x, g \rangle f$$
 for each $x \in H$

1 Main Results

Definition 1.1

Let $0 \neq \lambda \in \mathbb{C}$. An operator A is a rank one λ *-commutes with B if $AB - \lambda BA^*$ has rank one. By $\Delta_{\lambda}^*(H)$ we mean the set of all operators A in $\mathbf{B}(H)$ with the property that there exists a compact operator B such that $AB - \lambda BA^*$ has rank one. Note that the existence of B depends on A.

Remark 1.2

One can easily prove that $\Delta_{\lambda}^*(H)$ is not empty. In fact $iI \in \Delta_{\lambda}^*(H)$, for let $B = x \otimes y$ be the rank one operator that sends y to x provided that x and y are nonzero unit vectors, then clearly B is compact. For A = iI, $AB - \lambda BA^* = Ax \otimes y - \lambda(x \otimes Ay) = ix \otimes y + i\lambda x \otimes y = i(1+\lambda)x \otimes y$ which is of rank one.

We start with some basic properties of the class of operators $\Delta^*_{\lambda}(H)$.

Proposition 1.3

- 1. For any non zero scalar operator λI , $\lambda I \in \Delta^*_{\lambda}(\mathsf{H})$ iff $\lambda \neq 1$
- 2. $A \in \Delta^*_{\lambda}(H)$ iff $\alpha A \in \Delta^*_{\lambda}(H)$ for each non zero real number α .
- 3. If $A \in \Delta_{\lambda}^*(H)$, then $A \in \Delta_{1/\overline{\lambda}}^*(H)$

Proof.

1. Let $A = \lambda I$ be a non zero scalar operator. If B is an operator of rank one, then

$$AB - \lambda BA^* = (\lambda I)B - \lambda B(\overline{\lambda}I) = (\lambda - |\lambda|^2)B$$

has rank one iff $\lambda \neq 1$.

2. Suppose that $A \in \Delta_{\lambda}^*(H)$, then there exists a compact operator B such that $AB - \lambda BA^*$ has rank one. Let α be a non zero real number and $\beta \in \mathbb{C}$ s.t. $\beta = \lambda \overline{\beta}$, then

$$(\alpha A)B - \lambda B(\alpha A)^* = \alpha AB - \alpha \lambda BA^*$$

$$= \alpha AB - \alpha \lambda BA^*$$

$$= \alpha (AB - \lambda BA^*)$$

which has rank one. Thus, $\alpha A \in \Delta_{\lambda}^*(H)$. The converse is trivial, just put $\alpha = 1$.

3. If $A \in \Delta_{\lambda}^*(H)$ then there exists a compact operator B such that $AB - \lambda BA^* = f \otimes g$ for some nonzero vectors $f,g \in H$. Thus $(AB - \lambda BA^*)^* = (f \otimes g)^*$ but $(f \otimes g)^* = g \otimes f$. Therefore

$$(AB - \lambda BA^*)^* = B^*A^* - \overline{\lambda}AB^* = -\overline{\lambda}(AB^* - (1/\overline{\lambda})B^*A^*)$$

has rank one, and $AB^*-(1/\overline{\lambda})B^*A^*$ is so. Note that B^* is also compact. Thus $A\in\Delta_{1/\overline{\lambda}}^*(H)$

Now, we go through some examples of operators that belong to $\ \Delta_{\lambda}^{*}(H)$.

Proposition 1.4

Let A be any nonzero operator which is not 1-1, then $A \in \Delta_{\lambda}^{*}(H)$.

Proof.

By assumption, there exist nonzero vectors $x, y \in H$ such that $Ax \neq 0$ and Ay = 0. Let $B = x \otimes y$, then B is of rank one hence compact and

$$AB - \lambda BA^* = A(x \otimes y) - \lambda(x \otimes y)A^* = Ax \otimes y - \lambda x \otimes Ay = Ax \otimes y$$

which has rank one. Thus $A \in \Delta_{\lambda}^*(H)$.

Corollary 1.5

Any nonzero nilpotent operator belongs to $\ \Delta_{\lambda}^{*}(H)$

Proof.

Let A be a nonzero nilpotent operator, then there exists $n\in \mathbb{N}$ such that $A^n=0$ and $A^{n-1}\neq 0$. Let $f\in \mathsf{H}$ be such that $A^{n-1}f\neq 0$ then $A(A^{n-1}f)=A^nf=0$ so A is not 1-1. Hence by (1.4), $A\in \Delta^*_\lambda(\mathsf{H})$.

One can easily prove that:

Corollary 1.6

Any nonzero finite rank operator belongs to $\ \Delta_{\lambda}^{*}(H)$.

We turn now to results related to invertible operators.

Proposition 1.7

Let A be an invertible operator. If $A\in\Delta^*_{\lambda}(\mathsf{H})$ then $A^{-1}\in\Delta^*_{1/\lambda}(\mathsf{H})$.

Proof.

Let B be a compact operator such that $AB - \lambda BA^*$ has rank one. Now,

$$AB - \lambda BA^* = (ABA^*)(A^*)^{-1} - \lambda A^{-1}(ABA^*) = A^{-1}(ABA^*) - (1/\lambda)(ABA^*)(A^*)^{-1}.$$

Since (ABA^*) is compact, the result follows.

Recall that an operator A is called algebraic if p(A)=0 for some non zero polynomial p. The following theorem gives a condition on an algebraic operator to be rank one λ *-commutes with a compact operator.

Theorem 1.8

Let A be a nonzero algebraic operator. If A is non invertible then $A \in \Delta_{\lambda}^*(H)$.

Proof.

Let $p(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_o$ be a polynomial such that p(A)=0. If $a_o\neq 0$ then $a_nA^n+a_{n-1}A^{n-1}+\ldots+a_1A=-a_oI$, So $A(a_nA^{n-1}+a_{n-1}A^{n-2}+\ldots+a_1)=-a_oI$

which contradicts the non invertiblity of $\,A\,.$

Let $q(A)=a_nA^{n-1}+a_{n-1}A^{n-2}+\ldots+a_1$, then Aq(A)=0. One can assume that the degree of p is the smallest one among those polynomials that annihilate A. Thus, $q(A)\neq 0$ and there exists non zero vectors f and g such that $q(A)f\neq 0$ and $Ag\neq 0$ (since $A\neq 0$). Let $B=q(A)f\otimes g$ then

$$AB - \lambda BA^* = Aq(A)f \otimes g - \lambda q(A)f \otimes Ag = -\lambda q(A)f \otimes Ag$$

which is of rank one. Thus $A \in \Delta^*_{\lambda}(H)$.

The following theorem find a relation between operators that have eigenvalues and the $\Delta^*_{\lambda}(H)$.

Theorem 1.9

Let $A \in \mathbf{B}(H)$ satisfies the following conditions:

- 1. A has an eigenvalue different than λ , and
- 2. A has a fixed point,

then $A \in \Delta^*_{\lambda}(H)$

Proof. Let $\lambda \neq \mu \in \mathbb{C}$ such that $Af = \mu f$ for some $0 \neq f \in \mathbb{H}$, μ is the eigenvalue of A. Let $0 \neq g \in \mathbb{H}$ be the fixed point of A, hence Ag = g. Define $B = f \otimes g$, then

$$AB - \lambda BA^* = A(f \otimes g) - \lambda (f \otimes g)A^*$$

$$= Af \otimes g - \lambda f \otimes Ag$$

$$= \mu \otimes g - \lambda f \otimes g$$

$$= (\mu - \lambda)f \otimes g$$

has rank one as $\mu \neq \lambda$. Consequently, $A \in \Delta_{\lambda}^{*}(H)$

Corollary 1.10 Let $0 \neq \lambda \in \mathbb{C}$. If $A \in \mathbf{B}(H)$ has an eigenvalue 1, then there exists a compact operator B such that $AB - \lambda BA^*$ has rank at most 1.

Proof. If $\lambda \neq 1$ then A has an eigenvalue and fixed point of 1. Hence by theorem (1.9), $A \in \mathbf{B}(\mathsf{H})$. If $\lambda = 1$ then there exists a non zero vector g in \mathbf{H} such that Ag = g. Define $B = g \otimes g$, then

$$AB - \lambda BA^* = A(g \otimes g) - (g \otimes g)A^*$$

$$= Ag \otimes g - g \otimes Ag$$

$$= g \otimes g - g \otimes g$$

$$= 0$$

Consequently, $AB = \lambda BA^*$.

Open Question: Does an operator in $\Delta_{\lambda}^*(H)$ have a nontrivial hyperinvariant subspace?

References

- [1] Cho, L., Ohwada, T. and Zhang, L. 2011. On λ -commuting operators, International Math. Forum 6 , no. 34, 1685-1690.
- [2] Hamada, N. 2002. Jordan*-derivations on B(H), PhD. Thesis, University of Baghdad.
- [3] Kim, H., Moore, R. and Pearcy, C. 1979. A variation of Lomonosovs theorem, J. Operator Theory 2, 131-140.
- [4] Kim, H., Moore, R. and Pearcy, C. 1981. A variation of Lomonosovs theorem, II, J. Operator Theory 5, 283-287.
- [5] Kim, H., Pearcy, C. and Shields, A. 1975. Rank-one commutators and hyperinvariant subspaces, Michigan Math. J., 22, 193-194.
- [6] Kim, H., Pearcy, C. and Shields, A. 1976. Sufficient conditions for rank-one commutators and hyperinvariant subspaces, Michigan Math. J., 23, 235-243.
- [7] Lauric, V. 1997. Operators α -commuting with a compact operator, Proc. Amer. Math. Soc. 125, 2379-2384.
- [8] Lauric, V. 2013. On λ -Commuting Hyponormal Operators, Int. Journal of Math. Analysis, Vol. 7, no. 49, 2441 2444.
- [9] Lomonosov, V. 1973. Invariant subspaces for operators commuting with compact operators, Funkcional Anal. i Prilozen 7, 55-56 (Russian).
- [10] Pearcy, C. and Shields, A. 1974. A survey of the Lomonosov technique in the theory of invariant subspaces, Mathematical Surveys, Amer. Math. Soc. 13, 219-229.