

(g*p)**- CLOSED SETS IN TOPOLOGICAL SPACES

K.Ravi,

Associate Professor, Sacred Heart College (affiliate to Thiruvalluvar University), Tirupattur, Vellore. **Email:** shckravi@yahoo.co.in

M.Pauline Mary Helen,

Associate Professor, Nirmala College for Women (affiliate to Bharathiar University), Coimbatore.

Email: helvic63@yahoo.co.in

P.Anitha,

MPhil Scholar, Sacred Heart College (affiliate to Thiruvalluvar University), Tirupattur, Vellore.

Email: padmaanitha14@gmail.com

Abstract:

In this paper, we have introduced a new class of sets called (g*p)** -closed sets which is properly placed in between the class of closed sets and the class of (g*p)*-closed sets. As an application, we introduce three new spaces namely, ${}_gT * *_p$, ${}_{\alpha g}T * *_p$ and ${}_{gs}T * *_p$ -spaces.

We have also introduced $(g * p)^{**}$ -continuous and $(g * p)^{**}$ -irresolute maps and their properties are investigated.

Keywords: (g*p)**-closed sets, (g*p)**-continuous maps, (g*p)**-irresolute maps and, $_gT**_p$, $_{\alpha g}T**_p$ and $_{gs}T**_p$ -spaces..

Council for Innovative Research

Peer Review Research Publishing System

JOURNAL: JOURNAL OF ADVANCES IN MATHEMATICS

Vol. 9, No. 4

www.cirjam.com, editorjam@gmail.com

1. INTRODUCTION

Levine [10] introduced the class of g-closed sets in 1970.Maki.et.al [12] defined αg -closed sets and $g\alpha$ -closed sets in 1994...Arya and Tour [3] defined gs-closed sets in 1990.Dontchev [8] introduced gsp-closed set in 1995. Veerakumar [23] introduced and studied the concepts of g*-pre closed sets and g*-pre continuity in topological spaces in 1991. Pauline Mary Helen and Anitha [20] introduced $(g*p)^*$ -closed sets in 2014.

The purpose of this paper is to introduce the concept of $(g*p)^{**}$ -closed sets, $gT^{**}p$, $_{\alpha g}$ $T^{**}p$ and

 g_S T**p spaces. Further we have introduced (g*p)**-continuous and (g*p)**-irresolute maps.

2. PRELIMINARIES

Throughout this paper (X,τ) and (Y,σ) represents non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a (X,τ) space, cl (A) and int(A) denote the closure and the interior of A respectively.

The class of all closed subsets of a space of a space (X,τ) is denoted by $C(X,\tau)$.

Definition 2.1: A subset A of a topological space (X, τ) is called

- (1) a pre-open [15] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$.
- (2) a semi-open [11] if $A \subseteq cl$ (int (A)) and a semi-closed if int $(cl(A)) \subseteq A$.
- (3) a $semi-pre\,open$ [1] if $A\subseteq cl\,(int\,(cl\,(A)))$ and a $semi-pre\,closed$ if $int\,(cl\,(int\,(A)))\subseteq A$.
- (4) an α open [18] if $A \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$ and α closed [16] if $\operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))) \subseteq A$.

Definition 2.2: A subset A of a topological space (X, τ) is called

- (1) a generalized closed set(briefly g-closed) [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (2) a generalized semi-closed set (briefly gs-closed) [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .
- (3) a semi-generalized closed set(briefly sg-closed) [5] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X,τ) .
- (4) an α generalized closed set(briefly $\alpha g closed$) [12] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (5) an generalized α closed set(briefly $g\alpha$ closed) [13] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α open in (X, τ) .
- (6) a α -doublestar closed set (briefly α^{**} -closed) [25] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α^{*} -open in (X, τ) .
- (7) a α star closed set (briefly α * closed) [24] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ)
- (8) a Wg closed set[17] if cl (int (A)) $\subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (9) a generalized semi-pre closed set(briefly gsp-closed) [8] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .
- (10) a generalized semi –pre closed star set (briefly (gsp)*-closed) [21] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is gsp-open in (X,τ) .
- (11) a generalized -pre closed set(briefly gp-closed) [14] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .

- (12) a g*p-pre closed set (briefly g*p-closed)[23] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X,τ)
- (13) a g *-closed set (briefly g *-closed)[22] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g open in (X, τ)
- (14) a strongly g *-closed set (briefly strongly g *-closed -closed)[19] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .
- (15) a (g * p) *- closed set (briefly (g * p) *-closed) [20] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g * p- open in (X, τ) .

Definition 2.3: A function $f:(X,\tau) \to (Y,\sigma)$ is called

- 1. αg -continuous [9] if $f^{-1}(V)$ is an αg -closed set of (X,τ) for every closed set V of (Y,σ)
- **2.** gs continuous [7] if $f^{-1}(V)$ is a gs closed set of (X,τ) for every closed set V of (Y,σ) .
- 3. gp continuous [2] if $f^{-1}(V)$ is a gp closed set of (X,τ) for every closed set V of (Y,σ)
- **4.** Wg continuous [17] if $f^{-1}(V)$ is a Wg closed set of (X,τ) for every closed set V of (Y,σ) .
- **5.** gsp continuous [8] if $f^{-1}(V)$ is a gsp closed set of (X,τ) for every closed set V of (Y,σ) .

Definition: 2.4: A topological space (X, τ) is said to be

- 1. a $T_{1/}$ *- space [24] if every g *-closed set in it is closed.
- **2.** a T_h space [6] if every gs closed set in it is closed
- 3. a $_{\alpha}T_{b}$ space [4] if every αg -closed set in it is closed.

3. BASIC PROPERTIES OF (g*p)**-CLOSED SETS

We now introduce the following definition.

Definition 3.1: A subset A of a topological space (X,τ) is called a (g*p)**-closed set, if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is (g*p)*-open.

Proposition 3.2: Every closed set is (g * p) **-closed.

Proof follows from the definition but not conversely.

Example 3.3: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{c\}, \{a, c\}\}$ and let $A = \{b, c\}$. Then A is not closed but (g * p) ** - closed.

Proposition 3.4: Every (g * p)**-closed set is (1) αg -closed (2) gs-closed (3) gp-closed

(4) Wg - closed (5) gsp-closed but not conversely.

Proof: Let A be a (g * p) **-closed set. Let $A \subseteq U$ and U be open .Then U is (g * p) *-open.

Since A is (g * p)**-closed,

- (1) $\alpha cl(A) \subseteq cl(A) \subseteq U$ and hence A is αg -closed.
- (2) $scl(A) \subseteq cl(A) \subseteq U$ and hence A is gs-closed.
- (3) $pcl(A) \subseteq cl(A) \subseteq U$ and hence A is gp -closed.
- (4) $cl \subseteq U$ and which implies $cl(\operatorname{int}(A) \subseteq cl(A) \subseteq U)$ hence A is wg -closed.
- (5) $cl(A) \subseteq U$ and hence $spcl(A) \subseteq U$ therefore A is gsp-closed.

Example 3.5: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{c\}, \{a, c\}\}$ and let $A = \{a\}$. Then A is αg -closed, gs-closed, gs-closed, up-closed, up-closed

Proposition 3.6: Every α^{**} - closed set is $(g^*p)^{**}$ -closed set but not conversely.

Proof: Let A be a α^{**} -closed set. Let $A \subseteq U$ and U be $(g^*p)^*$ - open. Then U is α^* -open.

Since A is α^{**} -closed, $cl(A) \subset U$ therefore A is $(g^*p)^{**}$ -closed.

Example 3.7: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{b\}, \{a, c\}\}$ and let $A = \{a, b\}$. Then A is (g * p) **-closed but it is not $\alpha **$ -closed.

Proposition 3.8: Every $(gsp)^*$ - closed set is $(g*p)^{**}$ -closed set but not conversely.

Proof: Let A be a (gsp)*-closed set. Let $A \subseteq U$ and U be (g*p)*-open. Then U is gsp-open.

Since A is $(gsp)^*$ -closed, $cl(A) \subset U$ therefore A is $(g^*p)^{**}$ -closed.

Example 3.9: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{b\}, \{a, c\}\}$ and let $A = \{c\}$. Then A is (g * p) **- closed but it is not (gsp) *- closed.

Proposition 3.10: Every g *- closed set is (g * p) ** -closed set.

Proof: Let A be a g *-closed set. Let $A \subset U$ and U be (g * p)*-open. Then U is g-open.

Since A is g *-closed, $cl(A) \subset U$ therefore A is (g*p)**-closed.

Remark 3.11: $g\alpha$ -closedness is independent of (g*p)**-closedness.

Example 3.12: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$ and let $A = \{a, b\}$. Then A is (g * p) **-closed but it is not $g\alpha$ -closed.

Example 3.13: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{c\}, \{a, c\}\}$ and let $A = \{c\}$. Then A is $g\alpha$ - closed but it is not (g * p) ** - closed.

Remark 3.14: sg -closedness is independent of (g*p)**-closedness.

Example 3.15: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{c\}, \{a, c\}\}$ and let $A = \{a\}$. Then A is sg - closed but it is not (g * p)**- closed.

Example 3.16: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{c\}\}$ and let $A = \{a, c\}$. Then A is (g * p) ** - closed but it is not sg - closed.

Remark 3.17: strongly g^* -closedness is independent of $(g^*p)^{**}$ -closedness.

Example 3.18: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{c\}, \{a, c\}\}$ and let $A = \{a\}$. Then A is strongly g *-closed but it is not (g * p) **- closed.

Example 3.19: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$ and let $A = \{a, b\}$. Then A is (g * p) **-closed but it is not strongly g *-closed.

Remark 3.20: g * p -closedness is independent of (g * p) **-closedness.

Example 3.21: Let $X=\{a,b,c\}$ and $\tau=\{\phi,X,\{c\},\{a,c\}\}$ and let $A=\{a\}$. Then A is

g * p - closed but it is not (g * p) **- closed.

Example 3.22: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$ and let $A = \{a, c\}$. Then A is

(g*p)**- closed but it is not g*p- closed.

Proposition 3.23: If A and B are (g*p)**-closed sets, then $A \cup B$ is also a (g*p)**-closed set.

Proof follows from the fact that $cl\ (A \cup B) = cl\ (A) \cup cl\ (B)$.

The above results can be represented in the following figure.

Where A \longrightarrow B (resp A \longleftarrow B) represents A implies B and B need not imply A (resp. A and B independent)

4. (g*p)**-CONTINUOUS MAPS AND (g*p)**-IRRESOLUTE MAPS

We introduce the following definitions.

Definition: 4.1: A map $f:(X,\tau) \to (Y,\sigma)$ is called (g*p)**- continuous if the inverse image of every closed set in (Y,σ) is (g*p)**- closed in (X,τ) .

Definition: 4.2: A map $f:(X,\tau) \to (Y,\sigma)$ is said to be a (g*p)**- irresolute map if $f^{-1}(V)$ is a (g*p)**- closed set in (X,τ) for every (g*p)**- closed set V of (Y,σ) .

Theorem 4.3: Every continuous map is (g * p)**- continuous.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a continuous map and let F be a closed set in (Y,σ) . Then $f^{-1}(F)$ is closed in (X,τ) . Since every closed set is (g*p)**- closed, $f^{-1}(F)$ is (g*p)**- closed. Then f is (g*p)**- continuous.

Example 4.4: Let $X = Y = \{a,b,c\}$, $\tau = \{\phi,X,\{c\},\{a,c\}\}$, $\sigma = \{\phi,Y,\{a\}\}\}$ $f:(X,\tau) \to (Y,\sigma)$ be the identity map. The inverse image of all closed sets of (Y,σ) are (g*p)**-closed in (X,τ) . Therefore $f:(X,\tau)$ is (X,τ) -continuous but not continuous.

Theorem 4.5: Every (g * p) ** -continuous map is αg -continuous, gs -continuous, gp -continuous,

wg -continuous and gSp -continuous but not conversely.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a (g*p)**- continuous map. Let V be a closed set $\operatorname{in}(Y,\sigma)$. Since f is (g*p)**-continuous, $f^{-1}(V)$ is (g*p)**- closed $\operatorname{in}(X,\tau)$. Then $f^{-1}(V)$ is αg -closed, g g-closed, g g-closed and g g g-closed set of (X,τ) .

Example 4.6: Let $X = Y = \{a,b,c\}, \tau = \{\phi,X,\{c\},\{a,c\}\}\}$, $\sigma = \{\phi,Y,\{b,c\}\}\}$ $f:(X,\tau) \to (Y,\sigma)$ be the identity map. Then $f^{-1}(\{a\}) = \{a\}$ is not (g*p)** -closed in (X,τ) . But $\{a\}$ is, αg -closed set, gs-closed set. Then f is αg - continuous,

gs - continuous but not (g*p)**-continuous.

Example 4.7: Let $X=Y=\left\{a,b,c\right\}$, $\tau=\left\{\phi,X,\left\{c\right\},\left\{a,c\right\}\right\}$, $\sigma=\left\{\phi,Y,\left\{a,c\right\}\right\}$, is defined as f(a)=b, f(b)=c, f(c)=a. Then $f^{-1}(\left\{b\right\})=\left\{a\right\}$ is gp-closed but not (g*p)**-closed. Then f is gp-continuous but not (g*p)**-continuous.

Example 4.8: Let $X = Y = \{a,b,c\}$, $\tau = \{\phi,X,\{c\},\{a,c\}\}$, $\sigma = \{\phi,Y,\{a,b\}\}$, $f:(X,\tau) \to (Y,\sigma)$ is defined as f(a) = c, f(b) = a, f(c) = b. Then $f^{-1}(\{c\}) = \{a\}$ is wg -closed but not (g*p)**-closed in (X,τ) . Hence f is wg - continuous but not (g*p)**-continuous.

Example 4.9: Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{c\}, \{a, c\}\}\}$ $\sigma = \{\phi, Y, \{b, c\}\}.$

 $f:(X,\tau) \to (Y,\sigma)$ is defined as f(a)=a, f(b)=c, f(c)=b. Then $f^{-1}(\{a\})=\{a\}$ is not

(g*p)**-closed in (X,τ) , but it is gsp-closed .Hence f is gsp - continuous but not (g*p)** -continuous.

Theorem 4.10: Every (g * p) **- irresolute map is (g * p) **-continuous.

Proof follows from the definitions of (g*p)**- irresolute map and (g*p)**- continuous.

Theorem 4.11: Every (g * p) ** -irresolute map is αg - continuous, gs -continuous, gp - continuous,

wg - continuous and gsp - continuous .

Proof follows from theorems (4.4) and (4.11).

The converse of the above theorem need not be true in general as seen in the following examples.

Example 4.12: Let $X = Y = \{a,b,c\}$ $\tau = \{\phi,X,\{c\},\{a,c\}\}$ and $\sigma = \{\phi,Y,\{c\}\}\}$. Let $f:(X,\tau) \to (Y,\sigma)$ be the identity map. ϕ , Y, $\{a,b\}$ are closed sets of Y. $f^{-1}(\{a,b\}) = \{a,b\}$ is gs-closed, gp-closed, wg-closed, gsp-closed. Hence f is gs -continuous, gp- continuous, gg- continuous and gsp- continuous.(g*p)**-closed sets of Y are gsp- gsp- gsp- gsp- gsp- gsp- continuous gsp- continuous.gsp- continuous gsp- continuous.gsp- continuou

Hence f is not a (g * p) **-irresolute.

Example 4.13: Let $X = Y = \{a,b,c\}$ $\tau = \{\phi,X,\{a\}\}$ and $\sigma = \{\phi,Y,\{c\}\}$. Let $f:(X,\tau) \to (Y,\sigma)$ be the identity map. ϕ , Y, $\{a,b\}$ are closed sets of Y. $f^{-1}(\{a,b\}) = \{a,b\}$ is

lpha g -closed. Hence f is lpha g -continuous. (g * p) **-closed sets of

Y are $\phi, Y, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}$ $f^{-1}(\{a\}) = \{a\}$ is not (g * p) **-closed in (X, τ) .

Hence f is αg -continuous but not a (g * p)**-irresolute.

The above results can be represented in the following figure.

where A ----- B represents A implies B and B need not imply A.

5. APPLICATION OF (g*p)**-CLOSED SETS

We introduce the following definitions.

Definition: 5.1: A space (X, τ) is called a ${}_{g}T^{**}{}_{p}$ -space if every set $(g^{*}p)^{**}$ -closed set is closed.

Definition: 5.2: A space (X, τ) is called a $_{\alpha g}T^{**}_{p}$ -space if every αg - closed set is $(g*p)^{**}$ -closed.

Definition: 5.3: A space (X, τ) is called a $_{gs}T^{**}_{p}$ -space if every gs- closed set is (g*p)**-closed.

Theorem 5.4: Every ${}_{g}T^{**}{}_{p}$ -space is a $T_{1/2}$ *-space.

Proof: Let (X,τ) be a ${}_gT^{**}{}_p$ -space. Let A be a ${}_g*$ -closed set. Since every g *-closed set is (g*p)**-closed, A is (g*p)**-closed. Since (X,τ) is ${}_gT^{**}{}_p$ -space, A is closed. (X,τ) is a $T_{\frac{1}{2}}*$ -space.

Theorem 5.5: Every T_b space is a $_{\mathfrak{g}}T^{**}_{\mathfrak{p}}$ -space but not conversely.

Proof follows from the definitions of T_b space and $_{\it g}T^{**}_{\it p}$ -space.

Example 5.6: Let $X = \{a,b,c\}$ and $\tau = \{\phi,X,\{c\}\}$. Here (g*p)**-closed sets are $\phi,X,\{a\},\{b\},\{a,b\},\{a,c\},\{b,c\}$ and the

gS - closed sets are $\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}$. Since every (g * p)**-closed set is closed, the space (X, τ) is a $_{g}T^{**}_{p}$ - space. A = {a,c} is gS-closed but not closed. Therefore the space (X, τ) is not a T_{b} - space.

Theorem 5.7: Every $_{\alpha}T_{b}$ -space is a $_{v}T^{**}_{p}$ -space

Proof follows from the definitions of ${}_aT_b$ -space and ${}_eT^{**}_{p}$ -space. The converse is not true.

Example 5.8: Let $X = \{a,b,c\}$ and $_{\tau = \{\phi,X,\{c\},\{a,c\}\}}(g^*p)^{**}$ -closed sets are $_{\phi}X,\{b\},\{a,b\},\{b,c\}$ and $_{\alpha}g$ - closed sets are $_{\phi}X,\{a\},\{b\},\{a,b\},\{b,c\}$. Since every $_{(g^*p)^{**}}$ -closed set is $_{\alpha}g$ -closed, the space $_{(X,\tau)}$ is a $_{g}T^{**}_{p}$ - space. A = {a} is $_{\alpha}g$ -closed but not closed. Therefore the space $_{(X,\tau)}$ is not a $_{\alpha}T_{p}$ - space.

Theorem 5.9: Every $_{a}T **_{a}$ - space is a $_{T_{a}} **$ - space.

Proof follows from the definitions of $_{_{g}}T^{**}{_{_{n}}}$ - space and $_{T_{a}}$ ** - space. The converse is not true.

Example 5.10: Let $X = \{a,b,c\}$ and $\tau = \{\phi,X,\{b\},\{a,c\}\}\ (g*p)**$ -closed sets are all the subsets of X and αg - closed sets are $\phi,X,\{b\},\{a,c\}$. Since every $\alpha **$ -closed set is closed, the space (X,τ) is a $T_{\alpha} **$ -space. A = {b,c} is (g*p)**-closed but not closed. Therefore the space (X,τ) is not a $T_{\alpha} **$ -space.

Theorem 5.11: Every ${}_{\alpha}T_{b}$ -space is a ${}_{\alpha p}T^{**}{}_{p}$ - space.

Proof: Let (X,τ) be a $_{\alpha T_b}$ – space. Let A be αg -closed. Then A is αg -closed. Since the space is

 $_{\alpha}T_{b}$ -space, A is closed and hence A is (g*p)**-closed. Therefore the space (X,τ) is a $_{\alpha_{g}}T**_{p}$ -space.

Example 5.12: Let $X = \{a,b,c\}$ and $\tau = \{\phi,X,\{a\}\}\ (g*p)**$ -closed sets are $\phi,X,\{b\},\{c\},\{a,b\},\{a,c\}\{b,c\}$ and

 αg - closed sets are $\phi, X, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$. A = {b} is (g*p)**-closed and also αg -closed. Therefore the space (X,τ) is a $_{\alpha g}T^{**}_{p}$ - space. A = {c} is

 αg -closed but not closed. Therefore the space (X,τ) is not a ${}_{\alpha}T_{b}$ - space.

Theorem 5.13: Every T_b - space is a $_{gs}T^{**}_p$ - space but not conversely.

Proof follows from the definitions of T_b - space and T_b - space.

Example 5.14: Let $X=\{a,b,c\}$ and $\tau=\{\phi,X,\{c\},\{a,c\}\}$. Here (g*p)**-closed sets are $\phi,X,\{b,c\},\{a,b\},\{b\}$, gs-closed sets are $\phi,X,\{a\},\{b\},\{a,b\},\{b,c\}$. A = {b,c} is (g*p)**-closed and also gs-closed. Therefore the space (X,τ) is a $_{gs}T^{**}_{p}$ - space. A = {a} is gs-closed but not closed.

Therefore the space (X, τ) is not a T_b - space.

The above results can be represented in the following figure

where A ------ B represents A implies B and B need not imply A.

REFERENCES

- 1. D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1) (1986), 24-32.
- 2. Arokiarani, K.Balachandranand J.Dontchev, Some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem.Fac.Sci.Kochi.Univ.Ser.A.Math, 20(1999), 93-104.
- 3. S.P.Arya and T.Nour, Characterizations of s-normal spaces, Indian J.Pure.Appl.Math., 21(8) (1990), 717-719.
- K.Balachandran, R.Devi and H.Maki, On generlized alpha closed maps and alpha generlized closed maps, Indian J.Pure. Appl. Math., 29 (1998), 37-49.
- P.Bhattacharyaand B.K.Lahiri Semi-generalized closed sets in topology, Indian J.Math., 29(3) (1987), 375-382.
- R.Devi, K.Balachandran and H.Maki, semi generalized closed maps and generalized closed maps, Mem. Eac. Sci. Kochi Unvi. Ser. A.Math., 14(1993), 41-54.
- 7. R. Devi, K. Balachandran and H. Maki, semi- Generalized homeomorphisms and generalized semi-homeomorphism in topological spaces, Indian J. Pure. Appl. Math., 26(3) (1995), 271-284.
- 8. J. Dontchev. On generalizing semi- preopen sets, Mem. Fac. Sci. Kochi Ser. A. Math., 16 (1995), 35-48.
- Y.Gnanambal, On generalized pre regular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3) (1977), 351-360.
- 10. N.Levine, Generalized closed sets in topology, Rend .Circ. Math. Palermo, 19(2) (1970), 89-96.
- 11. N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math.Monthly, 70 (1963), 36-41.
- H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 15 (1994), 51-63.
- 13. H. Maki, R. Devi and K. Balachandran, Generalized –closed sets in topology,Bull.Fukuoka Univ.Part III,42(1993),13-21.
- ^{14.} H. Maki, J.Umehara and T.Noiri, Every topological space is pre $T_{\frac{1}{2}}$, Mem.Fac. Sci. Kochi Univ. Ser. A. Math., 17 (1996), 33-42.
- 15. A.S.Mashhour, M.E.Abd E1-Monsef and S.N.E1-Deeb, on pre-continuous and weak pre-continuous mappings, Proc.Math.and Phys.Soc.Egypt., 53(1982), 47-53.

- 16. A.S.Mashhour, I.A.Hasanein and S.N.EI-Deep, α-continuous and α-open mappings., Acta math. Hung., 41(3-4)((1983), 213-218.
- N.Nagaveni, studies on generization of Homeomorphisms in topological spaces,ph.D.Thesis-Bharathiyar University ,July 1999.
- 18. O.Njastad, on some classes of nearly open sets, Pacific J.Math., 15 (1965), 961-970.
- 19. Parimelazhagan R. and Subramania Pillai.V,strongly g*-closed sets in topological spaces, IJCA,volume 6,(30)(2012),1481-1489
- ^{20.} M.Pauline Mary Helen. andP.Anitha, (g*p)*-closed sets in tpological spaces, IJMTT-Volume 6, February 2014, ISSN No: 2231-5373, 87-97
- 21. M.Pauline Mary Helen. andA,Kulandhai Therese,(gsp)*-closed sets in tpological spaces, IJMTT-Volume 6.,February 2014,ISSN No:2231-5373,
- 22. M.K.R.S.Veerakumar,between closed sets and g-closed sets, Mem.Fac.Kochi Unvi.Ser.A, Math., 17 (1996), 33-42.
- 23. M.K.R.S.Veerakumar, g*p -closed sets, mam.fac.sci.Kochi Univ. (Math.), 21(2000), 1-19
- ^{24.} Veronica Vijayan and Priya.F, α *-closed sets in topological spaces IJCA issue 3, volume 4, (July-August 2013) ISSN: 2250-1797
- ^{25.} Veronica Vijayan and K.S.Sangeetha, α **-closed sets in topological spaces IJCA issue 3, volume 6, (November-December 2013) ISSN: 2250-1797