ISSN 2347-1921

Coincidence and common fixed points of Greguš type weakly biased mappings

Y. Mahendra Singh ${ }^{1}$, M. R. Singh ${ }^{2}$
${ }^{1}$ Department of Humanities and Sciences
Manipur Institute of Technology, Takyelpat - 795004,Manipur, India
ymahenmit@rediffmail.com
${ }^{2}$ Department of Mathematics, Manipur University Canchipur-795003, Manipur, India
mranjitmu@rediffmail.com

Abstract

In this note, common fixed point theorem of compatible mappings of type (A) due to Murthy et al.[P. P. Murthy, Y. J. Cho and B. Fisher, Common fixed points of GreguŠ type mappings, Glasnik Maematicki, Vol.30(50), (1995), 335-341] has extended to weakly biased mappings. Our result also extends the results of Sessa and Fisher [S. Sessa and B. Fisher, Common fixed points of two mappings on Banach spaces, J. Math. Phys. Sci. 18(1984), 353-360] and, Fisher and Sessa[B. Fisher and S. Sessa, On a fixed point theorem of GreguŠ , Internat. J. Math. Math. Sci. 9, (1986), 22-28].

Keywords: Compatible maps; weakly compatible maps; biased maps and fixed point.
Subject Classication: 47H10, 54H25.

Council for Innovative Research

Peer Review Research Publishing System
Journal: JOURNAL OF ADVANCES IN MATHEMATICS
Vol .9, No. 6
www.cirjam.com , editorjam@gmail.com

1. INTRODUCTION

In 1996, Jungck[5], introduced the concept of compatible maps which is a generalization of commuting mappings[3] and used to extend a theorem of Park and Bae[4]. A pair of self mappings $\{A, S\}$ of a metric space (X, d) is said to be compatible[5] iff $\lim _{n \rightarrow \infty} d\left(S A x_{n}, A S x_{n}\right)=0$ whenever, $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=t$ for some $t \in X$. Noted that A and S are non-compatible if there exists atleast one sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=t$, for some $t \in X$ but $\lim _{n \rightarrow \infty} d\left(S A x_{n}, A S x_{n}\right)$ is either non-zero or non existence (also see [1], [15], [16] etc.). Murthy et al.[13] introduced the concept of compatible of type (A). A pair of self mappings $\{A, S\}$ of a metric space (X, d) is said to be compatible of type (A) if $\lim _{n \rightarrow \infty} d\left(A S x_{n}, S^{2} x_{n}\right)=\lim _{n \rightarrow \infty} d\left(S A x_{n}, A^{2} x_{n}\right)=0$ whenever, $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=t$ for some $t \in X$. A pair of self mappings $\{A, S\}$ of a metric space (X, d) is said to be weakly compatible[8] if they commute at their coincidence points, i.e. $A t=S t$ for some $t \in X$, then $S A t=A S t$. Jungck and Pathak[6] introduced the concepts of weakly biased mappings. A pair of self mappings $\{A, S\}$ of a metric space (X, d) is said to be weakly S-biased iff $A t=S t$ implies $d(S A t, S t) \leq d(A S t, A t)$. In [18], it has shown that weakly biased is more general then the concept of weakly compatible of two mappings. On the other hand, common fixed point theorems of Greguš type[3] has been obtained by many authors viz. Deviccaro et al. [2], Fisher and Sessa[3], Jungck[6], Mukherjee and Verma[12], Sessa and Fisher[17], etc.
Murthy et al.[13] proved the following theorem for compatible mappings of type (A).
Theorem 1.1 [13]. Let A, B, S and T be mappings of a Banach space X into itself satisfying the following conditions:
(I) $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$;
(ii) $\|A x-B y\|^{p} \leq \varphi\left(\alpha\|S x-T y\|^{p}+(1-\alpha) \max \left\{\|S x-A x\|^{p},\|T y-B y\|^{p}\right\}\right)$;
for all $x, y \in X, p \geq 1,0<\alpha<1$ and φ is a mapping of $[0,+\infty)$ into itself such that φ non decreasing, upper semi continuous and $\varphi(t)<t$ for $t>0$. Suppose that one of the mappings A, B, S and T is continuous and that $\{A, S\}$ and $\{B, T\}$ are compatible pairs of type (A). Then A, B, S and T have a unique common fixed point in X

Moreover, in [13], it has raised an open question on Theorem 1.1 that "under what conditions the sequence $\left\{y_{n}\right\}$ given in (1) converges if φ is removed from condition (ii) of Theorem 1.1 ?". The right answer corresponding to this open question is that if we replace the factor $(1-\alpha)$ by another constant say β such that $0<\alpha+\beta<1$, in Theorem 1.1, then the sequence $\left\{y_{n}\right\}$ converges.

Now, we give the following theorem without prove.
Theorem 1.2. Let A, B, S and T be mappings of a Banach space X into itself satisfying the following conditions:
(I) $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$;
(ii) $\|A x-B y\|^{p} \leq \alpha\|S x-T y\|^{p}+\beta \max \left\{\|S x-A x\|^{p},\|T y-B y\|^{p}\right\}$;
for all $x, y \in X, p \geq 1,0<\alpha+\beta<1$. for all $x, y \in X, p \geq 1,0<\alpha<1$ and φ is a mapping of $[0,+\infty)$ into itself such that φ non decreasing, upper semi continuous and $\varphi(t)<t$ for $t>0$. Suppose that one of the mappings A, B, S and T is continuous and that $\{A, S\}$ and $\{B, T\}$ are compatible pairs of type (A). Then A, B, S and T have a unique common fixed point in X.

To prove our theorem we need the following lemma.
Lemma 1.3[11]. Suppose that φ is a mapping of $[0,+\infty)$ into itself such that φ non decreasing, upper semi continuous and $\varphi(t)<t$ for all $t>0$. Then, $\lim _{n \rightarrow \infty} \varphi^{n}(t)=0$.

2. MAIN RESULTS

We prove the following theorem.
Theorem 2.1. Let A, B, S and T be mappings of a Banach space X into itself satisfying the following conditions:
(i) $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$;
(ii) $\|A x-B y\|^{p} \leq \varphi\left(\alpha\|S x-T y\|^{p}+(1-\alpha) \max \frac{1}{2^{p}}\left\{\|S x-A x\|^{p},\|T y-B y\|^{p}\right.\right.$,

$$
\left.\left.\|S x-B y\|^{p},\|T y-A x\|^{p}\right\}\right)
$$

for all $x, y \in X, p \geq 1,0<\alpha<1$ and $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ is non decreasing, upper semi continuous,$\varphi(t)<t$ for $t \in(0,+\infty)$ and $\varphi(0)=0$.

Then, the pairs $\{A, S\}$ and $\{B, T\}$ have coincidence points. Further, if the pairs $\{A, S\}$ and $\{B, T\}$ are weakly S - and T - biased, then A, B, S and T have a unique common fixed point in X.

Proof. Let x_{0} be an arbitrary point in X. Then by virtue of (1), it is guaranteed to choose the points $x_{1}, x_{2} \in X$ such that $A x_{0}=T x_{1}$ and $B x_{1}=S x_{2}$. Similarly, we choose $x_{3}, x_{4} \in X$ such that $A x_{1}=T x_{2}$ and $B x_{2}=S x_{3}$. Continuing in this process, we obtain a sequence $\left\{y_{n}\right\} \subseteq X$ such that

$$
\begin{equation*}
y_{2 n}=S x_{2 n}=B x_{2 n-1}, y_{2 n+1}=T x_{2 n+1}=A x_{2 n}, \text { for } n=1,2,3, \ldots \tag{1}
\end{equation*}
$$

Now, we show that $\left\{y_{n}\right\}$ is Cauchy sequence in X. By (ii) and (1), we obtain

$$
\begin{aligned}
&\left\|y_{2 n+1}-y_{2 n}\right\|^{p}=\left\|A x_{2 n}-B x_{2 n-1}\right\|^{p} \\
& \leq \varphi\left(\alpha\left\|S x_{2 n}-T x_{2 n-1}\right\|^{p}+(1-\alpha) \max \frac{1}{2^{p}}\left\{\left\|S x_{2 n}-A x_{2 n}\right\|^{p},\left\|T x_{2 n-1}-B x_{2 n-1}\right\|^{p}\right.\right. \\
&\left.\left.\left\|S x_{2 n}-B x_{2 n-1}\right\|^{p},\left\|T x_{2 n-1}-A x_{2 n}\right\|^{p}\right\}\right)
\end{aligned}
$$

$$
=\varphi\left(\alpha\left\|y_{2 n}-y_{2 n-1}\right\|^{p}+(1-\alpha) \max \frac{1}{2^{p}}\left\{\left\|y_{2 n}-y_{2 n+1}\right\|^{p},\left\|y_{2 n-1}-y_{2 n}\right\|^{p}\right.\right.
$$

$$
\left.\left.\left\|y_{2 n}-y_{2 n}\right\|^{p},\left\|y_{2 n-1}-y_{2 n+1}\right\|^{p}\right\}\right)
$$

$$
\leq \varphi\left(\alpha\left\|y_{2 n}-y_{2 n-1}\right\|^{p}+(1-\alpha) \max \frac{1}{2^{p}}\left\{\left\|y_{2 n}-y_{2 n+1}\right\|^{p},\left\|y_{2 n-1}-y_{2 n}\right\|^{p}\right.\right.
$$

$$
\begin{equation*}
\left.\left.\left[\left\|y_{2 n-1}-y_{2 n}\right\|+\left\|y_{2 n}-y_{2 n+1}\right\|\right]^{p}\right\}\right) \tag{2}
\end{equation*}
$$

Suppose that $\left\|y_{2 n+1}-y_{2 n}\right\|>\left\|y_{2 n}-y_{2 n-1}\right\|$, then from (2) we obtain

$$
\begin{aligned}
\| y_{2 n}-y_{2 n+1} & \| \leq\left(\varphi\left(\alpha\left\|y_{2 n}-y_{2 n+1}\right\|^{p}+\frac{(1-\alpha)}{2^{p}} \cdot 2^{p}\left\|y_{2 n}-y_{2 n+1}\right\|^{p}\right)\right)^{1 / p} \\
< & \left\|y_{2 n}-y_{2 n+1}\right\|
\end{aligned}
$$

This is a contradiction. Thus, $\left\|y_{2 n+1}-y_{2 n}\right\|>\left\|y_{2 n}-y_{2 n-1}\right\|$. Similarly, we can show that $\left\|y_{2 n+2}-y_{2 n+1}\right\|>\left\|y_{2 n+1}-y_{2 n}\right\|$. Consequently, we obtain

$$
\begin{aligned}
\left\|y_{n+1}-y_{n}\right\|^{p} & \leq \varphi\left(\left\|y_{n}-y_{n-1}\right\|^{p}\right) \\
& \leq \varphi^{n}\left(\left\|y_{0}-y_{1}\right\|^{p}\right), n=1,2,3, \ldots
\end{aligned}
$$

By Lemma 1.3, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n+1}-y_{n}\right\|=0 . \tag{3}
\end{equation*}
$$

In order to show that $\left\{y_{n}\right\}$ is Cauchy sequence, it is sufficient to show that $\left\{y_{2 n}\right\}$ is a Cauchy sequence. Suppose not, then there exists $\varepsilon>0,\{n(k)\}$ a sequence of even integers defined inductively with $n(1)=2$ and $n(k+1)$ is the smallest even integers greater than $n(k)$ such that

$$
\begin{equation*}
\left\|y_{n(k+1)}-y_{n(k)}\right\|>\varepsilon \tag{4}
\end{equation*}
$$

so that $\left\|y_{n(k+1)-2}-y_{n(k)}\right\| \leq \varepsilon$
Using (4), we obtain

$$
\begin{aligned}
\varepsilon<\left\|y_{n(k+1)}-y_{n(k)}\right\| \leq & \left\|y_{n(k+1)}-y_{n(k+1)-1}\right\| \\
& +\left\|y_{n(k+1)-1}-y_{n(k)-2}\right\|+\left\|y_{n(k)-2}-y_{n(k)}\right\|, \text { for } k=1,2,3, \ldots
\end{aligned}
$$

By (3) and (5), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n(k+1)}-y_{n(k)}\right\|=\varepsilon \tag{6}
\end{equation*}
$$

Also, by triangular inequality, we have
and $\quad\left|\left\|y_{n(k+1)-1}-y_{n(k)+1}\right\|-\left\|y_{n(k+1)}-y_{n(k)}\right\|\right| \leq\left\|y_{n(k+1)}-y_{n(k+1)-1}\right\|+\left\|y_{n(k)+1}-y_{n(k)}\right\|$
It follows from (3) and (6), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n(k)}-y_{n(k+1)-1}\right\|=\lim _{n \rightarrow \infty}\left\|y_{n(k+1)-1}-y_{n(k)+1}\right\|=\varepsilon \tag{7}
\end{equation*}
$$

Now, we have

$$
\begin{align*}
\left\|y_{n(k+1)}-y_{n(k)}\right\| & \leq\left\|y_{n(k+1)}-y_{n(k)+1}\right\|+\left\|y_{n(k)+1}-y_{n(k)}\right\| \\
& \leq\left\|A x_{n(k)}-B x_{n(k+1)-1}\right\|+\left\|y_{n(k)+1}-y_{n(k)}\right\| \tag{8}
\end{align*}
$$

By (i), we obtain

$$
\begin{aligned}
&\left\|A x_{n(k)}-B x_{n(k+1)-1}\right\|^{p} \leq \varphi\left(\alpha\left\|S x_{n(k)}-T x_{n(k+1)-1}\right\|^{p}+(1-\alpha) \max \frac{1}{2^{p}}\left\{\left\|S x_{n(k)}-A x_{n(k)}\right\|^{p},\right.\right. \\
&\left.\left.\left\|T x_{n(k+1)-1}-B x_{n(k+1)-1}\right\|^{p},\left\|S x_{n(k)}-B x_{n(k+1)-1}\right\|^{p},\left\|T x_{n(k+1)-1}-A x_{n(k)}\right\|^{p}\right\}\right) \\
&\left\|y_{n(k)+1}-y_{n(k+1)}\right\|^{p} \leq \varphi\left(\alpha\left\|y_{n(k)}-y_{n(k+1)-1}\right\|^{p}+(1-\alpha) \max \frac{1}{2^{p}}\left\{\left\|y_{n(k)}-y_{n(k)+1}\right\|^{p},\right.\right. \\
&\left.\left.\left\|y_{n(k+1)-1}-y_{n(k+1)}\right\|^{p},\left\|y_{n(k)}-y_{n(k+1)}\right\|^{p},\left\|y_{n(k+1)-1}-y_{n(k)+1}\right\|^{p}\right\}\right)
\end{aligned}
$$

Using (5), (6), (8) and letting $n \rightarrow \infty$, we obtain

$$
\begin{aligned}
& \varepsilon \leq\left(\varphi\left(\alpha \varepsilon^{p}+(1-\alpha) \frac{1}{2^{p}} \cdot \varepsilon^{p}\right)\right)^{1 / p} \\
& =\left(\varphi\left(\alpha+\frac{(1-\alpha)}{2^{p}}\right) \varepsilon^{p}\right)^{1 / p}, 0<\alpha+(1-\alpha) \cdot \frac{1}{2^{p}}<1, \\
& <\left(\varphi\left(\varepsilon^{p}\right)\right)^{1 / p}<\varepsilon
\end{aligned}
$$

This is a contradiction. Therefore, $\left\{y_{2 n}\right\}$ is Cauchy sequence and hence $\left\{y_{n}\right\}$ is also Cauchy sequence in X. Since, X is Banach space, the sequence $\left\{y_{n}\right\}$ converges to a point $t \in X$. Moreover, $\left\{S x_{2 n}\right\},\left\{B x_{2 n-1}\right\}$, $\left\{T x_{2 n+1}\right\}$ and $\left\{A x_{2 n}\right\}$ are subsequences of $\left\{y_{n}\right\}$ so that $S x_{2 n}, B x_{2 n-1}, T x_{2 n+1}, A x_{2 n} \rightarrow t \in X$.
Since $B(X) \subseteq S(X)$, there is a point $u \in X$ such that $S u=t \in X$. We claim that $A u=S u=t$. Suppose not, then there exists $\varepsilon>0$ such that $\|A u-S u\|>\varepsilon$.
Now by (ii), we have

$$
\begin{aligned}
&\|A u-S u\|=\|A u-t\| \\
& \leq\left\|A u-B x_{2 n-1}\right\|+\left\|B x_{2 n-1}-t\right\| \\
& \leq \varphi\left(\alpha\left\|S u-T x_{2 n-1}\right\|^{p}+(1-\alpha) \max \frac{1}{2^{p}}\left\{\|S u-A u\|^{p},\left\|T x_{2 n-1}-B x_{2 n-1}\right\|^{p},\right.\right. \\
&\left.\left.\left\|S u-B x_{2 n-1}\right\|^{p},\left\|T x_{2 n-1}-A u\right\|^{p}\right\}\right)^{1 / p}+\left\|B x_{2 n-1}-t\right\|
\end{aligned}
$$

Letting $n \rightarrow \infty$, we obtain

$$
\begin{aligned}
\|A u-S u\| & \leq\left(\varphi\left(\frac{(1-\alpha)}{2^{p}}\|S u-A u\|^{p}\right)\right)^{1 / p} \\
& <\left((1-\alpha) \cdot \frac{1}{2^{p}}\|S u-A u\|^{p}\right)^{1 / p}, 0<(1-\alpha) \cdot \frac{1}{2^{p}}<1 \\
& <\|S u-A u\|
\end{aligned}
$$

Thus, $A u=S u=t \in X$ and hence u is the coincidence point of the pair $\{A, S\}$. Therefore, $u \in C(A, S)$. Since, $A(X) \subseteq T(X)$, there exists a point $v \in X$ such that $T v=t \in X$. We claim that $B v=T v=t \in X$. By (ii), we obtain

$$
\begin{aligned}
\|T v-B v\| & \leq\|A u-B v\| \\
& \leq\left(\varphi\left((1-\alpha) \cdot \frac{1}{2^{p}}\|T v-B v\|^{p}\right)\right)^{1 / p} \\
& <\left(\varphi\left(\|T v-B v\|^{p}\right)\right)^{1 / p},(1-\alpha)<2^{p} \\
& <\|T v-B v\|
\end{aligned}
$$

This is contradiction if $B v \neq T v$ and hence v is the coincidence point of the pair $\{B, T\}$. So that $v \in C(B, T)$.
Therefore, $A u=S u=B v=T v=t \in X$.
Since $u \in C(A, S)$ and $v \in C(B, T)$ for some $u, v \in X$. Consequently, weakly S-biased of the pair $\{A, S\}$ implies that

$$
\begin{equation*}
\|S A u-S u\| \leq\|A S u-A u\| \tag{9}
\end{equation*}
$$

Similarly, by weakly T - biased of $\{B, T\}$ implies that

$$
\begin{equation*}
\|T B v-T v\| \leq\|B T v-B v\| \tag{10}
\end{equation*}
$$

On the other hand, $u \in C(A, S)$ follows that $A u=S u$, then $A A u=A S u$ and $S A u=S S u$.
Similarly, $v \in C(B, T)$ follows that $B v=T v$, then $B B v=B T v$ and $T B v=T T v$. Now, we claim that $A u$ is a common fixed point of A, B, S and T.

By (ii) and (9), we obtain

$$
\begin{aligned}
&\|A A u-A u\|=\|A A u-B v\| \leq\left(\varphi \left(\alpha\|S A u-T v\|^{p}+(1-\alpha) \max \frac{1}{2^{p}}\left\{\|S A u-A A u\|^{p},\right.\right.\right. \\
&\left.\left.\left.\|T v-B v\|,\|S A u-B v\|^{p},\|T v-A u\|^{p},\right\}\right)\right)^{1 / p} \\
&=\left(\varphi \left(\alpha\|S A u-S u\|^{p}+(1-\alpha) \max \frac{1}{2^{p}}\left\{\|S A u-A S u\|^{p},\right.\right.\right. \\
&\left.\left.\left.\|S A u-S u\|^{p}\right\}\right)\right)^{1 / p} \\
& \leq\left(\varphi \left(\alpha\|S A u-S u\|^{p}+(1-\alpha) \max \frac{1}{2^{p}}\left\{(\|S A u-S u\|+\|A S u-A u\|)^{p},\right.\right.\right. \\
& \leq\left.\left.\left.\|S A u-S u\|^{p}\right\}\right)\right)^{1 / p} \\
& \leq\left(\varphi\left(\|A S u-A u\|^{p}\right)\right)^{1 / p} \\
&<\|A S u-A u\|=\|A A u-A u\| .
\end{aligned}
$$

This is a contradiction and hence $A A u=A u$. Since, the pair $\{A, S\}$ is weakly S-biased. It follows that

$$
\|S A u-A u\|=\|S A u-S u\| \leq\|A S u-A u\|=\|A A u-A u\|=0 .
$$

Hence, $A A u=S A u=A u$.
Now, by (ii) and (10), we obtain

$$
\begin{aligned}
\|A u-B A u\|=\|A u-B B v\| \leq & \left(\varphi \left(\alpha\|S u-T B v\|^{p}+(1-\alpha) \max \frac{1}{2^{p}}\left\{\|S u-A u\|^{p},\right.\right.\right. \\
& \left.\left.\left.\|T B v-B B v\|,\|S u-B B v\|^{p},\|T B v-A u\|^{p}\right\}\right)\right)^{1 / p} \\
= & \left(\varphi \left(\alpha\|T B v-T v\|^{p}+(1-\alpha) \max \frac{1}{2^{p}}\{\|T B v-B T v\|,\right.\right. \\
& \left.\left.\left.\|B T v-B v\|^{p},\|T B v-T v\|^{p}\right\}\right)\right)^{1 / p}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(\varphi \left(\alpha\|T B v-T v\|^{p}+(1-\alpha) \max \frac{1}{2^{p}}\left\{(\|T B v-T v\|+\|B T v-B v\|)^{1 / p},\right.\right.\right. \\
&\left.\left.\left.\|B T v-B v\|^{p},\|T B v-T v\|^{p}\right\}\right)\right)^{1 / p} \\
& \leq\left(\varphi\left(\|B T v-B v\|^{p}\right)\right)^{1 / p} \\
&<\|B T v-B v\|=\|B A u-A u\|
\end{aligned}
$$

This is a contradiction and hence, $B A u=A u$. Further, weakly T-biased of $\{B, T\}$ follows that $\|T A u-A u\|=\|T B v-T v\| \leq\|B T v-B v\|=\|B A u-A u\|=0 \quad$ and \quad hence $\quad T A u=A u$. Therefore, $A A u=B A u=S A u=T A u=A u=t \in X$. This shows that $A u=t \in X$ is a common fixed point of A, B, S and T.

Now, we show that $A u=t$ is a unique common fixed point of A, B, S and T.
Suppose that t and t^{\prime} be two points in X such that $A t=S t=B t=T t=t$ and $A t^{\prime}=S t^{\prime}=B t^{\prime}=T t^{\prime}=t^{\prime}$, then by (ii), we have
$\left\|t-t^{\prime}\right\|=\left\|A t-B t^{\prime}\right\| \leq\left(\varphi\left(\alpha\left\|S t-T t^{\prime}\right\|^{p}\right.\right.$

$$
\begin{aligned}
& \left.\left.+(1-\alpha) \max \frac{1}{2^{p}}\left\{\|S t-A t\|^{p},\left\|T t^{\prime}-B t^{\prime}\right\|^{p},\left\|S t-B t^{\prime}\right\|^{p},\left\|T t^{\prime}-A t\right\|^{p}\right\}\right)\right)^{1 / p} \\
& \leq\left(\varphi\left(\alpha+(1-\alpha) / 2^{p}\right)\left\|t-t^{\prime}\right\|^{p}\right)^{1 / p} \\
& <\left\|t-t^{\prime}\right\| .
\end{aligned}
$$

This is a contradiction. This completes the proof.
Corollary 2.2. Let A, B, S and T be mappings of a Banach space X into itself satisfying the following conditions (i) and (ii) of Theorem 2.1. Then, the pairs $\{A, S\}$ and $\{B, T\}$ have coincidence points. Further, if the pairs $\{A, S\}$ and $\{B, T\}$ are weakly compatible, then A, B, S and T have a unique common fixed point in X.
Proof: It can be proof as in Theorem 2.1...

REFERENCES

[1] Aamri M. and Moutawakil D. El, Some new common fixed point theorems under strict contractive conditions, J. Math. Appl., 270(2002), 181-188.
[2] Diviccaro M. L., Fisher B. and Sessa S., A common fixed point theorem of Greguš type, Publ. Math. (Debercen), 34(1987), 83-89.
[3] Fisher B. and Sessa S., On a fixed point theorem of GreguŠ , Internat. J. Math. Math. Sci. 9, (1986), 22-28.
[4] GreguŠ M., A fixed point theorem in Banach spaces, Bull. Un. Mat. Ital. 17(A)(1980),193-198.
[5] Jungck G., Compatible mappings and common fixed points, Internat. J. Math. and Math. Sci., 9(1986), 771-779.
[6] Jungck G., On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci. 13(1990), 497-500.
[7] Jungck G. and Pathak H. K., Fixed point via "Biased maps", Proc. Amer. Math. Soc. 123(1995), 2049-2060.
[8] Jungck G. and Rhoades B. E., Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (3) (1998),

227-238.
[9] Jungck G., Commuting mappings and fixed points. Amer. Math Monthly 83, (1976), 261-263.
[10] Kang S. M. and Rhoades B. E., Fixed points for four mappings, Math. Japon. 37(1992), 1053-1059.
[11] Matkowski J., Fixed point theorems for mappings with contractive iterate at a point, Proc. Amer. Math. Soc. 62(1977), 344-348.
[12] Mukherjee R. N. and Verma V., A note on a fixed point theorem of Greguš, Math. Japon. 33(1988), 745-749.
[13] Murthy P.P., Cho Y.J. and Fisher B., Common fixed points of GreguŠ type mappings Glasnik Maematicki, Vol.30(50), (1995),

335-341.
[14] Park S.and Bae J., Extension of a fixed point theorem of Mier-Keeler, Ark. Mat. 19(1981), 223-228.
[15] Pant R. P. and Pant V., Common fixed points under strict contractive conditions, J. Anal. Appl. 248 (2000), 327-332.
[16] Sastry K. P. R. and Murthy I. S. R. K., Common fixed points of two partially commuting tangential self maps on a metric space, J.

Math. Anal. Appl. 250 (2000), 731-737.
[17] Sessa S. and Fisher B., Common fixed points of two mappings on Banach spaces, J. Math. Phys. Sci. 18(1984), 353360.
[18] Singh M. R. and Mahendra Singh Y., Fixed points for biased maps on metric space, Int. J. Contemp. Math. Sciences, Vol.4,
no. 16(2009), $769-778$.

