

Coincidence and common fixed points of Greguš type weakly biased mappings

Y. Mahendra Singh¹, M. R. Singh²

¹ Department of Humanities and Sciences Manipur Institute of Technology, Takyelpat - 795004, Manipur, India ymahenmit@rediffmail.com

> ² Department of Mathematics, Manipur University Canchipur-795003, Manipur, India mranjitmu@rediffmail.com

ABSTRACT

In this note, common fixed point theorem of compatible mappings of type(A) due to Murthy et al.[P. P. Murthy, Y. J. Cho and B. Fisher, Common fixed points of GreguŠ type mappings, Glasnik Maematicki, Vol.30(50), (1995), 335-341] has extended to weakly biased mappings. Our result also extends the results of Sessa and Fisher [S. Sessa and B. Fisher, Common fixed points of two mappings on Banach spaces, J. Math. Phys. Sci. 18(1984), 353-360] and, Fisher and Sessa[B. Fisher and S. Sessa, On a fixed point theorem of GreguŠ, Internat. J. Math. Math. Sci. 9, (1986), 22-28].

Keywords: Compatible maps; weakly compatible maps; biased maps and fixed point.

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol.9, No.6

www.cirjam.com, editorjam@gmail.com

1. INTRODUCTION

In 1996, Jungck[5], introduced the concept of compatible maps which is a generalization of commuting mappings[3] and used to extend a theorem of Park and Bae[4]. A pair of self mappings $\{A, S\}$ of a metric space (X, d) is said to be compatible[5] iff $\lim_{n\to\infty} d(SAx_n, ASx_n) = 0$ whenever, $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = t$ for

some $t\in X$. Noted that A and S are non-compatible if there exists at least one sequence $\{x_n\}$ in X such that $\lim_{n\to\infty}Ax_n=\lim_{n\to\infty}Sx_n=t$, for some $t\in X$ but $\lim_{n\to\infty}d(SAx_n,ASx_n)$ is either non-zero or non existence (also see [1], [15], [16] etc.). Murthy et al.[13] introduced the concept of compatible of type (A). A pair of self mappings $\{A,S\}$ of a metric space (X, d) is said to be compatible of type (A) if $\lim_{n\to\infty}d(ASx_n,S^2x_n)=\lim_{n\to\infty}d(SAx_n,A^2x_n)=0$ whenever,

 $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty}Ax_n=\lim_{n\to\infty}Sx_n=t$ for some $t\in X$. A pair of self mappings $\{A,S\}$ of a metric space (X,d) is said to be weakly compatible[8] if they commute at their coincidence points, i.e. At=St for some $t\in X$, then SAt=ASt. Jungck and Pathak[6] introduced the concepts of weakly biased mappings. A pair of self mappings $\{A,S\}$ of a metric space (X,d) is said to be weakly S-biased iff At=St implies $d(SAt,St)\leq d(ASt,At)$. In [18], it has shown that weakly biased is more general then the concept of weakly compatible of two mappings. On the other hand, common fixed point theorems of Greguš type[3] has been obtained by many authors viz. Deviccaro et al. [2],

Murthy et al.[13] proved the following theorem for compatible mappings of type(A).

Fisher and Sessa[3], Jungck[6], Mukherjee and Verma[12], Sessa and Fisher[17], etc.

Theorem 1.1 [13]. Let A, B, S and T be mappings of a Banach space X into itself satisfying the following conditions:

(i)
$$A(X) \subset T(X)$$
 and $B(X) \subset S(X)$;

(ii)
$$||Ax - By||^p \le \varphi \left(\alpha ||Sx - Ty||^p + (1 - \alpha) \max \left\{ ||Sx - Ax||^p, ||Ty - By||^p \right\} \right)$$
;

for all $x,y\in X$, $p\geq 1$, $0<\alpha<1$ and φ is a mapping of $[0,+\infty)$ into itself such that φ non decreasing, upper semi continuous and $\varphi(t)< t$ for t>0. Suppose that one of the mappings A,B,S and T is continuous and that $\{A,S\}$ and $\{B,T\}$ are compatible pairs of type (A). Then A,B,S and T have a unique common fixed point in X.

Moreover, in [13], it has raised an open question on Theorem 1.1 that "under what conditions the sequence $\{y_n\}$ given in (1) converges if φ is removed from condition (ii) of Theorem 1.1 ?". The right answer corresponding to this open question is that if we replace the factor $(1-\alpha)$ by another constant say β such that $0<\alpha+\beta<1$, in Theorem 1.1, then the sequence $\{y_n\}$ converges.

Now, we give the following theorem without prove.

Theorem 1.2. Let A, B, S and T be mappings of a Banach space X into itself satisfying the following conditions:

(i)
$$A(X) \subset T(X)$$
 and $B(X) \subset S(X)$;

(ii)
$$||Ax - By||^p \le \alpha ||Sx - Ty||^p + \beta \max \{||Sx - Ax||^p, ||Ty - By||^p\};$$

for all $x,y\in X$, $p\geq 1$, $0<\alpha+\beta<1$. for all $x,y\in X$, $p\geq 1$, $0<\alpha<1$ and φ is a mapping of $[0,+\infty)$ into itself such that φ non decreasing, upper semi continuous and $\varphi(t)< t$ for t>0. Suppose that one of the mappings A,B,S and T is continuous and that $\{A,S\}$ and $\{B,T\}$ are compatible pairs of type (A). Then A,B,S and T have a unique common fixed point in X.

To prove our theorem we need the following lemma.

Lemma 1.3[11]. Suppose that φ is a mapping of $[0, +\infty)$ into itself such that φ non decreasing, upper semi continuous and $\varphi(t) < t$ for all t > 0. Then, $\lim_{n \to \infty} \varphi^n(t) = 0$.

2. MAIN RESULTS

We prove the following theorem.

Theorem 2.1. Let A, B, S and T be mappings of a Banach space X into itself satisfying the following conditions:

(i)
$$A(X) \subseteq T(X)$$
 and $B(X) \subseteq S(X)$;

(ii)
$$||Ax - By||^p \le \varphi \Big(\alpha ||Sx - Ty||^p + (1 - \alpha) \max \frac{1}{2^p} \Big\{ ||Sx - Ax||^p, ||Ty - By||^p, ||Sx - By||^p, ||Ty - Ax||^p \Big\} \Big);$$

for all $x, y \in X$, $p \ge 1$, $0 < \alpha < 1$ and $\varphi: [0, +\infty) \to [0, +\infty)$ is non decreasing, upper semi continuous, $\varphi(t) < t$ for $t \in (0, +\infty)$ and $\varphi(0) = 0$.

Then, the pairs $\{A,S\}$ and $\{B,T\}$ have coincidence points. Further, if the pairs $\{A,S\}$ and $\{B,T\}$ are weakly S- and T- biased, then A, B, S and T have a unique common fixed point in X.

Proof. Let x_0 be an arbitrary point in X. Then by virtue of (i), it is guaranteed to choose the points x_1 , $x_2 \in X$ such that $Ax_0 = Tx_1$ and $Bx_1 = Sx_2$. Similarly, we choose x_3 , $x_4 \in X$ such that $Ax_1 = Tx_2$ and $Bx_2 = Sx_3$. Continuing in this process, we obtain a sequence $\{y_n\} \subseteq X$ such that

$$y_{2n} = Sx_{2n} = Bx_{2n-1}, \ y_{2n+1} = Tx_{2n+1} = Ax_{2n}, \text{ for } n = 1, 2, 3, ...$$
 (1)

Now, we show that $\{y_n\}$ is Cauchy sequence in X . By (ii) and (1), we obtain

$$\|y_{2n+1} - y_{2n}\|^{p} = \|Ax_{2n} - Bx_{2n-1}\|^{p}$$

$$\leq \varphi \left(\alpha \|Sx_{2n} - Tx_{2n-1}\|^{p} + (1-\alpha) \max \frac{1}{2^{p}} \left\{ \|Sx_{2n} - Ax_{2n}\|^{p}, \|Tx_{2n-1} - Bx_{2n-1}\|^{p} \right\} \right)$$

$$\|Sx_{2n} - Bx_{2n-1}\|^{p}, \|Tx_{2n-1} - Ax_{2n}\|^{p} \right\}$$

$$= \varphi \left(\alpha \|y_{2n} - y_{2n-1}\|^{p} + (1-\alpha) \max \frac{1}{2^{p}} \left\{ \|y_{2n} - y_{2n+1}\|^{p}, \|y_{2n-1} - y_{2n}\|^{p}, \|y_{2n-1} - y_{2n+1}\|^{p} \right\} \right)$$

$$\leq \varphi \left(\alpha \|y_{2n} - y_{2n-1}\|^{p} + (1-\alpha) \max \frac{1}{2^{p}} \left\{ \|y_{2n} - y_{2n+1}\|^{p}, \|y_{2n-1} - y_{2n}\|^{p}, \|y_{2n-1} - y_{2n}\|^{p}, \|y_{2n-1} - y_{2n}\|^{p}, \|y_{2n-1} - y_{2n}\|^{p} \right\}$$

$$\leq \varphi \left(\alpha \|y_{2n} - y_{2n-1}\|^{p} + (1-\alpha) \max \frac{1}{2^{p}} \left\{ \|y_{2n} - y_{2n+1}\|^{p}, \|y_{2n-1} - y_{2n}\|^{p}, \|y_{2n-1} - y_{2n}\|^{p}, \|y_{2n-1} - y_{2n}\|^{p} \right\}$$

$$\leq \varphi \left(\alpha \|y_{2n} - y_{2n-1}\|^{p} + (1-\alpha) \max \frac{1}{2^{p}} \left\{ \|y_{2n} - y_{2n+1}\|^{p}, \|y_{2n-1} - y_{2n}\|^{p}, \|y_{2n} - y_{2n}\|^{p}, \|y_$$

Suppose that $\left\|y_{2n+1}-y_{2n}\right\|>\left\|y_{2n}-y_{2n-1}\right\|$, then from (2) we obtain

$$||y_{2n} - y_{2n+1}|| \le \left(\varphi\left(\alpha ||y_{2n} - y_{2n+1}||^p + \frac{(1-\alpha)}{2^p} \cdot 2^p ||y_{2n} - y_{2n+1}||^p\right)\right)^{1/p}$$

$$< ||y_{2n} - y_{2n+1}||$$

This is a contradiction. Thus, $\left\|y_{2n+1}-y_{2n}\right\|>\left\|y_{2n}-y_{2n-1}\right\|$. Similarly, we can show that

$$\|y_{2n+2} - y_{2n+1}\| > \|y_{2n+1} - y_{2n}\|$$
. Consequently, we obtain

$$||y_{n+1} - y_n||^p \le \varphi(||y_n - y_{n-1}||^p)$$

$$\le \varphi^n(||y_0 - y_1||^p), \quad n = 1, 2, 3, ...$$

By Lemma 1.3, we obtain

$$\lim_{n \to \infty} \|y_{n+1} - y_n\| = 0. \tag{3}$$

In order to show that $\{y_n\}$ is Cauchy sequence, it is sufficient to show that $\{y_{2n}\}$ is a Cauchy sequence. Suppose not, then there exists $\varepsilon > 0$, $\{n(k)\}$ a sequence of even integers defined inductively with n(1) = 2 and n(k+1) is the smallest even integers greater than n(k) such that

$$\left\| y_{n(k+1)} - y_{n(k)} \right\| > \varepsilon \tag{4}$$

so that
$$\left\|y_{n(k+1)-2} - y_{n(k)}\right\| \le \varepsilon$$
 (5)

Using (4), we obtain

$$\varepsilon < \|y_{n(k+1)} - y_{n(k)}\| \le \|y_{n(k+1)} - y_{n(k+1)-1}\|$$

$$+ \|y_{n(k+1)-1} - y_{n(k)-2}\| + \|y_{n(k)-2} - y_{n(k)}\|, \text{ for } k = 1, 2, 3, \dots$$

By (3) and (5), we obtain

$$\lim_{n \to \infty} \left\| y_{n(k+1)} - y_{n(k)} \right\| = \varepsilon \tag{6}$$

Also, by triangular inequality, we have

$$\left| \left\| y_{n(k+1)} - y_{n(k)} \right\| - \left\| y_{n(k+1)-1} - y_{n(k)} \right\| \right| \le \left\| y_{n(k+1)} - y_{n(k+1)-1} \right\|$$

$$\qquad \qquad \left| \left\| y_{n(k+1)-1} - y_{n(k)+1} \right\| - \left\| y_{n(k+1)} - y_{n(k)} \right\| \right| \leq \left\| y_{n(k+1)} - y_{n(k+1)-1} \right\| + \left\| y_{n(k)+1} - y_{n(k)} \right\|$$

It follows from (3) and (6), we obtain

$$\lim_{n \to \infty} \left\| y_{n(k)} - y_{n(k+1)-1} \right\| = \lim_{n \to \infty} \left\| y_{n(k+1)-1} - y_{n(k)+1} \right\| = \varepsilon \tag{7}$$

Now, we have

$$\|y_{n(k+1)} - y_{n(k)}\| \le \|y_{n(k+1)} - y_{n(k)+1}\| + \|y_{n(k)+1} - y_{n(k)}\|$$

$$\le \|Ax_{n(k)} - Bx_{n(k+1)-1}\| + \|y_{n(k)+1} - y_{n(k)}\|$$
(8)

By (ii), we obtain

$$\begin{split} \left\|Ax_{n(k)} - Bx_{n(k+1)-1}\right\|^{p} &\leq \varphi \bigg(\alpha \left\|Sx_{n(k)} - Tx_{n(k+1)-1}\right\|^{p} + (1-\alpha) \max \frac{1}{2^{p}} \bigg\{ \left\|Sx_{n(k)} - Ax_{n(k)}\right\|^{p}, \\ \left\|Tx_{n(k+1)-1} - Bx_{n(k+1)-1}\right\|^{p}, \left\|Sx_{n(k)} - Bx_{n(k+1)-1}\right\|^{p}, \left\|Tx_{n(k+1)-1} - Ax_{n(k)}\right\|^{p} \bigg\} \bigg) \\ \left\|y_{n(k)+1} - y_{n(k+1)}\right\|^{p} &\leq \varphi \bigg(\alpha \left\|y_{n(k)} - y_{n(k+1)-1}\right\|^{p} + (1-\alpha) \max \frac{1}{2^{p}} \bigg\{ \left\|y_{n(k)} - y_{n(k)+1}\right\|^{p}, \\ \left\|y_{n(k)-1} - y_{n(k+1)}\right\|^{p}, \left\|y_{n(k)} - y_{n(k+1)}\right\|^{p}, \left\|y_{n(k)-1} - y_{n(k)+1}\right\|^{p} \bigg\} \bigg) \end{split}$$

Using (5), (6), (8) and letting $n \rightarrow \infty$, we obtain

$$\varepsilon \leq \left(\varphi\left(\alpha\varepsilon^{p} + (1-\alpha)\frac{1}{2^{p}}.\varepsilon^{p}\right)\right)^{1/p}$$

$$= \left(\varphi\left(\alpha + \frac{(1-\alpha)}{2^{p}}\right)\varepsilon^{p}\right)^{1/p}, 0 < \alpha + (1-\alpha).\frac{1}{2^{p}} < 1$$

$$< \left(\varphi(\varepsilon^{p})\right)^{1/p} < \varepsilon$$

This is a contradiction. Therefore, $\{y_{2n}\}$ is Cauchy sequence and hence $\{y_n\}$ is also Cauchy sequence in X. Since, X is Banach space, the sequence $\{y_n\}$ converges to a point $t\in X$. Moreover, $\{Sx_{2n}\},\{Bx_{2n-1}\}$, $\{Tx_{2n+1}\}$ and $\{Ax_{2n}\}$ are subsequences of $\{y_n\}$ so that $Sx_{2n},Bx_{2n-1},Tx_{2n+1},Ax_{2n}\to t\in X$.

Since $B(X)\subseteq S(X)$, there is a point $u\in X$ such that $Su=t\in X$. We claim that Au=Su=t. Suppose not, then there exists $\varepsilon>0$ such that $\|Au-Su\|>\varepsilon$.

Now by (ii), we have

$$\begin{aligned} \|Au - Su\| &= \|Au - t\| \\ &\leq \|Au - Bx_{2n-1}\| + \|Bx_{2n-1} - t\| \\ &\leq \varphi \left(\alpha \|Su - Tx_{2n-1}\|^p + (1 - \alpha) \max \frac{1}{2^p} \left\{ \|Su - Au\|^p, \|Tx_{2n-1} - Bx_{2n-1}\|^p, \|Su - Bx_{2n-1}\|^p, \|Tx_{2n-1} - Au\|^p \right\} \right)^{1/p} + \|Bx_{2n-1} - t\| \end{aligned}$$

Letting $n \to \infty$, we obtain

$$||Au - Su|| \le \left(\varphi\left(\frac{(1-\alpha)}{2^{p}}||Su - Au||^{p}\right)\right)^{1/p}$$

$$< \left((1-\alpha) \cdot \frac{1}{2^{p}}||Su - Au||^{p}\right)^{1/p}, \ 0 < (1-\alpha) \cdot \frac{1}{2^{p}} < 1$$

$$< ||Su - Au||$$

Thus, $Au=Su=t\in X$ and hence u is the coincidence point of the pair $\{A,S\}$. Therefore, $u\in C(A,S)$. Since, $A(X)\subseteq T(X)$, there exists a point $v\in X$ such that $Tv=t\in X$. We claim that $Bv=Tv=t\in X$. By (ii), we obtain

$$||Tv - Bv|| \le ||Au - Bv||$$

$$\le \left(\varphi\left((1 - \alpha) \cdot \frac{1}{2^{p}} ||Tv - Bv||^{p}\right)\right)^{1/p}$$

$$< \left(\varphi\left(||Tv - Bv||^{p}\right)\right)^{1/p}, (1 - \alpha) < 2^{p}$$

$$< ||Tv - Bv||$$

This is contradiction if $Bv \neq Tv$ and hence v is the coincidence point of the pair $\{B,T\}$. So that $v \in C(B,T)$. Therefore, $Au = Su = Bv = Tv = t \in X$.

Since $u \in C(A,S)$ and $v \in C(B,T)$ for some $u,v \in X$. Consequently, weakly S-biased of the pair $\{A,S\}$ implies that

$$||SAu - Su|| \le ||ASu - Au||. \tag{9}$$

Similarly, by weakly T- biased of $\{B,T\}$ implies that

$$||TBv - Tv|| \le ||BTv - Bv||. \tag{10}$$

On the other hand, $u \in C(A, S)$ follows that Au = Su, then AAu = ASu and SAu = SSu.

Similarly, $v \in C(B,T)$ follows that Bv = Tv, then BBv = BTv and TBv = TTv. Now, we claim that Au is a common fixed point of A,B,S and T.

By (ii) and (9), we obtain

$$||AAu - Au|| = ||AAu - Bv|| \le \left(\varphi\left(\alpha ||SAu - Tv||^{p} + (1 - \alpha) \max \frac{1}{2^{p}} \left\{ ||SAu - AAu||^{p}, \right\} \right)^{1/p}$$

$$= \left(\varphi\left(\alpha ||SAu - Su||^{p} + (1 - \alpha) \max \frac{1}{2^{p}} \left\{ ||SAu - ASu||^{p}, \right\} \right)^{1/p}$$

$$= \left(\varphi\left(\alpha ||SAu - Su||^{p} + (1 - \alpha) \max \frac{1}{2^{p}} \left\{ ||SAu - Su||^{p} \right\} \right)^{1/p}$$

$$\le \left(\varphi\left(\alpha ||SAu - Su||^{p} + (1 - \alpha) \max \frac{1}{2^{p}} \left\{ \left(||SAu - Su|| + ||ASu - Au|| \right)^{p}, \right\} \right)^{1/p}$$

$$\le \left(\varphi\left(||ASu - Au||^{p} \right) \right)^{1/p}$$

$$\le \left(\varphi\left(||ASu - Au||^{p} \right) \right)^{1/p}$$

$$< ||ASu - Au|| = ||AAu - Au||.$$

This is a contradiction and hence AAu = Au. Since, the pair $\{A, S\}$ is weakly S-biased. It follows that

$$||SAu - Au|| = ||SAu - Su|| \le ||ASu - Au|| = ||AAu - Au|| = 0.$$

Hence, AAu = SAu = Au.

Now, by (ii) and (10), we obtain

$$||Au - BAu|| = ||Au - BBv|| \le \left(\varphi\left(\alpha ||Su - TBv||^{p} + (1 - \alpha) \max \frac{1}{2^{p}} \left\{ ||Su - Au||^{p}, \right.\right.$$

$$||TBv - BBv||, ||Su - BBv||^{p}, ||TBv - Au||^{p} \right\} \right)^{1/p}$$

$$= \left(\varphi\left(\alpha ||TBv - Tv||^{p} + (1 - \alpha) \max \frac{1}{2^{p}} \left\{ ||TBv - BTv||, ||BTv - Bv||^{p}, ||TBv - Tv||^{p} \right\} \right) \right)^{1/p}$$

$$\leq \left(\varphi \left(\alpha \| TBv - Tv \|^{p} + (1 - \alpha) \max \frac{1}{2^{p}} \left\{ \left(\| TBv - Tv \| + \| BTv - Bv \| \right)^{1/p}, \right. \\
\left. \| BTv - Bv \|^{p}, \| TBv - Tv \|^{p} \right\} \right) \right)^{1/p} \\
\leq \left(\varphi \left(\| BTv - Bv \|^{p} \right) \right)^{1/p} \\
< \| BTv - Bv \| = \| BAu - Au \|$$

This is a contradiction and hence, BAu = Au. Further, weakly T-biased of $\{B,T\}$ follows that $\|TAu - Au\| = \|TBv - Tv\| \le \|BTv - Bv\| = \|BAu - Au\| = 0$ and hence TAu = Au. Therefore, $AAu = BAu = SAu = TAu = Au = t \in X$. This shows that $Au = t \in X$ is a common fixed point of A,B,S and T.

Now, we show that Au = t is a unique common fixed point of A, B, S and T.

Suppose that t and t' be two points in X such that At = St = Bt = Tt = t and At' = St' = Bt' = Tt' = t', then by (ii), we have

$$||t - t'|| = ||At - Bt'|| \le \left(\varphi\left(\alpha ||St - Tt'||^{p} + (1 - \alpha) \max \frac{1}{2^{p}} \left\{ ||St - At||^{p}, ||Tt' - Bt'||^{p}, ||St - Bt'||^{p}, ||Tt' - At||^{p} \right\} \right) \right)^{1/p}$$

$$\le \left(\varphi\left(\alpha + (1 - \alpha)/2^{p}\right) ||t - t'||^{p}\right)^{1/p}$$

$$< ||t - t'||.$$

This is a contradiction. This completes the proof.

—

Corollary 2.2. Let A,B,S and T be mappings of a Banach space X into itself satisfying the following conditions (i) and (ii) of Theorem 2.1. Then, the pairs $\{A,S\}$ and $\{B,T\}$ have coincidence points. Further, if the pairs $\{A,S\}$ and $\{B,T\}$ are weakly compatible, then A,B,S and T have a unique common fixed point in X.

Proof: It can be proof as in Theorem 2.1...

REFERENCES

- [1] Aamri M. and Moutawakil D. El, Some new common fixed point theorems under strict contractive conditions, J. Math. Appl., 270(2002), 181-188.
- [2] Diviccaro M. L., Fisher B. and Sessa S., A common fixed point theorem of Greguš type, Publ. Math. (Debercen), 34(1987), 83 - 89.
- [3] Fisher B. and Sessa S., On a fixed point theorem of GreguŠ, Internat. J. Math. Math. Sci. 9, (1986), 22-28.
- [4] GreguŠ M., A fixed point theorem in Banach spaces, Bull. Un. Mat. Ital. 17(A)(1980),193-198.
- [5] Jungck G., Compatible mappings and common fixed points, Internat. J. Math. and Math. Sci., 9(1986), 771-779.
- [6] Jungck G., On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci. 13(1990), 497-500.
- [7] Jungck G. and Pathak H. K., Fixed point via "Biased maps", Proc. Amer. Math. Soc. 123(1995), 2049-2060.
- [8] Jungck G. and Rhoades B. E., Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (3) (1998),

227-238.

- [9] Jungck G., Commuting mappings and fixed points. Amer. Math Monthly 83, (1976), 261-263.
- [10] Kang S. M. and Rhoades B. E., Fixed points for four mappings, Math. Japon. 37(1992), 1053-1059.
- [11] Matkowski J., Fixed point theorems for mappings with contractive iterate at a point, Proc. Amer. Math. Soc. 62(1977), 344-348.
- [12] Mukherjee R. N. and Verma V., A note on a fixed point theorem of GreguŠ, Math. Japon. 33(1988), 745-749.
- [13] Murthy P.P., Cho Y.J. and Fisher B., Common fixed points of GreguŠ type mappings Glasnik Maematicki, Vol.30(50), (1995),

335-341.

- [14] Park S.and Bae J., Extension of a fixed point theorem of Mier-Keeler, Ark. Mat. 19(1981), 223-228.
- [15] Pant R. P. and Pant V., Common fixed points under strict contractive conditions, J. Anal. Appl. 248 (2000), 327-332.
- [16] Sastry K. P. R. and Murthy I. S. R. K., Common fixed points of two partially commuting tangential self maps on a metric space, J.

Math. Anal. Appl. 250 (2000), 731-737.

- [17] Sessa S. and Fisher B., Common fixed points of two mappings on Banach spaces, J. Math. Phys. Sci. 18(1984), 353-360.
- [18] Singh M. R. and Mahendra Singh Y., Fixed points for biased maps on metric space, Int. J. Contemp. Math. Sciences, Vol.4,

no. 16(2009), 769 - 778.

