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ABSTRACT 

Consider an affine system )(ABA  with composite dilations ba DD , , in which )(,,, RnGLBABbAa   and 

)(2 nL R . It can be made an orthonormal AB -multiwavelet   or a parsval frame AB -wavelet  , by choosing 

appropriate sets A  and B . In this paper, we constructe an orthonormal AB -multiwavelet that arises from AB -

multiresolution analysis . Our construction is useful since the group B  is shear group. More generally, we give a parsval 

frame AB -wavelet.  
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1  Introduction and Preliminaries  

A collection of the form  

 },:{=)( n

kaA kAaTD ZA   

is an Affine system. If )(AA  is an orthonromal basis or, more generally a parsval frame for 

)(2 nL R , then   is called an A -wavelet or parsval frame A -wavelet, repectively. The Affine system 

)(AA  where 



 |=| , for some measurable set 


 nR , is called minimally supported in 

frequency (MSF) system. If   is a parsval frame A -wavelet for 
)(2 SL , the corresponding function 

  is called an MSF wavelet for 
)(2 SL  , in which }ˆ:)({=)( 22 SfsuppLfSL n  R , for some 

measurable set 


 nRS . Fang and Wang in [6] introduce the MSF wavelets, which are studied also 

in [12], [13]. In particular, Dai and Larson in [2] consider a special kind of MSF wavelets  , which 

satisfy 



 =  for some measurable sets   in 


R . They prove that such a )(x  is a wavelet with 

dilation set }:{2= ZD nn
 and translation set ZL =  if and only if   

    1.  The sets  }:{ Z    is a tiling of 


R .  

    2.  The sets  }:{2 Z nn
  is a tiling of  



R .  

The result is later extended to higher dimensions in [3] for 
nZL =  and }:{= ZD nAn

, where A  is 

any expanding nn  matrix. One can show in [10], [15], that   is an orthonormal basis A-wavelet 

for 
)(2 SL  if and only if )(= kR nk

n 




Z
 and )(= 1

  aS Aa  where the unions are disjoint up to 

a set of measure zero. Also this result explain in [16], for )(2 nL R . The construction and the study of 

orthonormal bases and parsval frames is of major importance in several areas of mathematics and 
applications, recently. The motivation for this study comes partly from signal processing, where such 
bases are useful in image compression and feature extraction. ([5], [8]).  

To be more precise, we need to fix some notation. Throughout this paper, we shall consider the 

points 
nx R  to be column vectors, i.e., 

















nx

x

x 
1

= , and the points 


 nR  of the frequency 

domain to be row vectors, i.e.,  n ,,= 1  . A vector x  multiplying a  on the left is a row 

vector. Thus, 
nax R  and 



 nRa . 

The Fourier transform of f  is defined as  

 ,)(=)(ˆ 2 dxexff xi

n

 

R  

where 


 nR , and the invers Fourier transform is  

 .)(=)( 2   defxf xin


R
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Let )(2 nL R  be the space of all squar integrable functions on 
nR . It is well known that a countably 

family }:{ Jje j  in )(2 nL R  is a frame if there exist constants  <<0   satisfing  

 
2

2

22

2
|,| feff j

j

 
J

   

for all )(2 nLf R . The family Jjje }{  is called a normalize tight frame or parsval frame if 1==  . 

Therefore , if Jjje }{  is a parsval frame in )(2 nL R  , then  

 
22

2
|,|= 



j

j

eff
J

   

for each )(2 nLf R . This is equivalent to reproducing formula  

 jj

j

eefv 


,=
J

 (1) 

 for all )(2 nLf R , where the series (1) converges in the norm of )(2 nL R . Equation (1) shows that 

a parsval frame provides a basis-like representation. In general, a parsval frame need not be a 
basis. For more detailes about frames see [4],[14]. 

For the reader’s convenience we recall some basic concept of tiling set and packing set. The 

subspace L  in 
nR  is a lattice if 

nAZL = , where )(RnGLA . Given a measurable set 
nR  and 

a lattice L  in 
nR , it to be said   tiles 

nR  by L  translation, or   is a fundamental domain of L  if 
the following properties hold :   

    1.  .,.=)( eal n

l R    

    2.  0=))()(( 'll   for any .L 'll   

It is called   packs 
nR  by L  translation if only (ii) holds. Equivalently,   tiles 

nR  by L  if and only 
if  

 ,..1=)( n

l

xeaforlx R
L





  

and   packs 
nR  by L  if and only if  

 ...1)( n

l

xeaforlx R
L





  

Clearly, |=|)( detA  if   tiles by L , and ||)( detA  if   packs by L . Furthermore, if   

packs 
nR  by L  and |=|)( detA , then   necessarily tiles 

nR  by L . We refer the reader to [11] 

for more detailes about lattice tiling. 

In general, Blanchard in [1] considers the deffinition of tiling sets, for an arbitrary group G . Let G  

be a group acting from right on a measurable set 
nS R . Then   is a G -tiling set for S , if   

    1.  ..= eaSgGg     

    2.  0=)( 21 gg   for Ggg  21 .  

 In this note, we construct an admissible wavelet  , that it arise from AB -multiresolution analysis. 

Also, we give, more generally, a parsval frame for )( 22 RL . 
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2  Main Result 

In this section our notation will be the same as before. We first recall an AB -affine system and 

AB -MRA. Then we construct some examples of AB -affine system, which are an orthononal basis 

or parsval frame of )( 22 RL . 

Let A  and B  be a countable subset of )(RnGL . A collection of the form  

 },,,:{=)( BbAakTDD n

kbaAB  ZA   

is called Affine systems with composite dilation, or AB -Affine system, where 

)(},,{= 21 nL L R   , and the operators kT  and D  are called the translations and dilations, 

respectively, and defined as follows:  

 ),(=)( kxfxfTk   

and  

 ).(|=|)( 11/2 xafdetaxfDa


 

If )(ABA  is an orthonormal basis (ON) or, more generally, a parsval frame (PF) for )(2 nL R , then 

  is called an ON AB -multiwavelet or a PF AB -multiwavelet, respectively. Let )(RC nGL  be a 

countable set contaning the identity matrix I  and let 


 nRS  be a mesurable set. The set C  is 

called S -admissible if tiling multiwavelets for 
)(2 SL  exist. In case 


nRS = , for simply C  is called 

admissible ( rather than 


nR -admissible ). 

Associated with the Affine system with composite dilation, is the following generalization of the 

classical Multiresolution Analysis, that will be useful to construct more examples of AB  
multiwavelets, as well as examples with properties that are of great potentional in applications. 

Let }:{= ZjbB j
 be a collection of invertiable 22  matrices with 1|=| jdetb , in which 

)(RnGLb , and A  be an invertiable 22  matrix with integer enteries. A sequence ZiiV }{  of 

closed subspaces of 
nR  is called an AB - Multiresolution Analysis ( AB -MRA) if the following 

holds :   

    1.  ,= 0VVTD okj
b

   for any  ,, 2ZZ  kj   

    2.  ,1 ii VV  for each ,Zi  where ,= o

i

ai VDV 
  

    3.  {0}=ii VZ  and ),(= 22 RZ LVii   

    4.  there exists )( 22 RL  such that },:{= 2ZZ  kjTD kj
b

B   is a semi- orthogonal 

Parsval frame for 0V  ; that is, B  is a parsval frame for oV  and in addition,  'k'j
b

kj
b

TDTD   for 

any .,,,,, 2ZZ  '''' kkkkjjjj   

 The space 0V  is called an AB  scaling space and the function   is an AB  scalling function for 0V . 

If in addition, B  is an orthonormal basis, then   is said an ON AB  scaling function. (see [7], [8], 

[9]). 

Now we need to explain a result by an elementary Fourier series argument.  
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Proposition 2.1  Let 


 nRI  be a measurable set, that 1|<| I  and I=


 . Then, the collection 

}:={ n

kk kMF Z


, is a parsval frame for )(2 IL , in which )(=)( 2  


 ki

k eM .  

Proof. First we show that kkk
FFff  

,=
Z

, for each )(2 ILf  . Indeed,  

 



 


nas

deefxfdeFfxfFFff ki

k

n

nk

ki

k

n

nk
IILkk

n

nk

0|,)(||)(,)(|=, 22

=

1

0

22

=

2

)(2

=

 


 

 we consider, AF
ILk =
)(2 . So we have:  

 
22

)(2
2

)(2)(2

2

)(2 |,|=|,|=,,,=,=  


k

k
ILkk

k
ILkk

k

kk

k
ILIL

FfAFFfFFfFFffff
ZZZZ

 

 After a normalization conclude that, the resteriction of the set }:{ 2 nki ke Z
 to I , is a parsval 

frame for )(2 IL .   

We show that, there exists a relationship between an orthonormal basis and a fundamental domain. 
Also, there exists a relationship between a parsval frame and packing set. Therefore, we have the 
following:  

Proposition 2.2  Let 


 nR , be a measurable set and 



 = , in )(2 L . Then, the collection 

}:=){( 2 nki

k keT Z

  
 is an orthonormal basis for )(2 L  if and only if   is a fundamental 

domain.  

Proof. Suppose that, the collection }:=){( 2 nki

k keT Z

  
, is an orthonormal basis for 

)(2 L . Then, 1=(.)
2

2

(.)2


 kie . On one hand,  

 ).(=)(=|)(|||=(.) 2222

2

(.)2     ddee nkinki


RR

 

Thus, 1=)( . Therefore,   is a fundamental domain. 

Conversely, assume that   is a fundamental domain. As, 0=))()(( 'kk  , conclude the 

measure of   cannot be larger than one. Thus, by proposition 2.1, the collection }:{ 2 nki ke Z


, 

is a parsval frame for )(2 L . On one hand,   is a fundamental domain. So, the measure of   is 

exactly one. Then, 1=(.)2


 kie . Therefore, the collection }:=){( 2 nki

k keT Z

  
 is an 

orthonormal basis for )(2 L .  

Proposition 2.3  Let 


 nR , be a measurable set and 


 = , in )(2 L . Then, the collection 

}:=){( 2 nik

k keT Z

  
 is a parsval frame for )(2 L  if and only if   is a packing set by 

translation of 
nZ , for 


nR . i.e. 0=))()(( 'kk   for 

n'kk Z .  
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Proof. First let us suppose   is a packing set by 
nZ  translation, for 


nR . So, the measure of 

the set   cannot be larger than one. Then, by the proposition 2.1, the collection 

}:=){( 2 nik

k keT Z

    is a parsval frame for )(2 L . 

Conversely, suppose that }:=){( 2 nik

k keT Z

    is a parsval frame for )(2 L . Then, the 

measure of  , cannot be larger than one. Since, by contradiction, if 1|>| , then the collection 

}:)({ 2 nki ke Z 
 cannot be a parsval frame. Thus,   is a packing set by translation of 

nZ , for 


nR .  

We need to stating some basic properties of the translation and dilation operators, that will be used 
throughout this paper.  

Proposition 2.4 Let  

 }.)(),(:={= n

nka GLkaTDUG RR   

G  is a subgroup of the group of unitary operators on )(2 nL R . We consider .)(=ˆ 


UffU  Then we 

have:  

    1.  ,= aakka DTTD  

    2.  ,=
2121

aaaa DDD   for each  ),(, 21 RnGLaa   

    3.  for  ,= kaTDU   then  ,= 1 ka
MDU 


  where ),(ˆ|=|)(ˆ 1/2

1 afdetafD
a

  

    4.  )(=)( 122 


SaLSLDa ,   for measurrable set  


 nRS ,  and 

}.ˆ:)(ˆ{=)( 22 SfsuppRLfSL n 


  

In the sequal we costruct an orthonormal AB -multiwavelet that arises from AB -

multiresolution analysis. Also, we give a parsval frame AB -wavelet. 

Example 2.5  Let 








20

02
=a , and 









 01

12
=b . Let },:),{(= 2ZZ  kjkbG j

, in 

which 












1

1
=

jj

jj
b j

. Then G  is a group with group multiplication:  

 ).,(=),)(,( mbkbkbmb jjljl    (2) 

The identity element of this group is ,0)(I , so we have ).,(=),( 1 kbbkb jjj 
 The multiplication (2) 

is consistent with the operation that maps 
2Rx  into 

2)( R kxb j
. This is clarified by introducing 

the unitary representation   of G , acting on )( 22 RL , defined by  

 ),)((=)(=)),((=))(),(( 1 xfTDkxbfxkbfxfkb k

j

b

jjj   (3) 

 for )( 22 RLf  . The observation that  

 ),(=))((
m

j
bk

jl

bk

j

bm

l

b TDTDTD 



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where 
2,,, ZZ  mkjl , shows how the group operation (2) is associated with the unitary 

representation (3). 

Let 1}|:|),(={= 12

2

210 


 RS  and define  

 }.ˆ:)({=)(= 0

22

0

2

0 SfsuppLfSLV  R  

For all Zj  and 2Zk , we have  

 ),(ˆ=)()(=)()),(( 2 jk
j

bi

k

j

b

j bfefTDfkb  


 (4) 

 and, ),(=),(= 22121121   jjjjbb jj
. Then the action of jb  maps the bias strip 

domain 0S  into itself. So the condition )(i  of AB -MRA has been proved. Thus the space 0V  is 

invariant under the action of the operators ),( kb j . 

Let  

 },2||:),(={== 12

2

210

ii

i RaSS 


  

and  

 }.ˆ:)({= 22

ii SfsuppLfV  R  

We can see that the space ZiiV }{  satisfy the following properties : 

Z  iVV ii ,(1) 1 ; io

i

a VVD =(2) 
; {0}=(3) ii VZ ; )(=(4) 22 R

Z
LVi

i
 . 

consider }:{= ZiaA i
, }:{= ZjbB j

, and 21= UUU  , where 1U  is a triangle with 

vertices at (0,1)1,0),((0,0),  , and }:{= 1

2

2 URU 


 . Define   by )(=)(  U



. A simple 

computation shows that U  is a fundamental domain of 
2Z  and a B -tiling region for 0S , too. That is, 

)(= 2

2 kUR
k






Z
 and )(=0

j

j UbS Z , where the unions are disjoint up to a set of measure zero. 

Therefore, },:{= 2Z kBbTD kbB   is an orthonormal basis of 0V  and   is a scaling function of 

0V . Since the dilation operator 
i

aD  is a unitary, thus the collection },:{ 2ZZ  kjTDD k

j

b

i

a  , Zi  is 

an orthonormal basis of iV . Thus ZiiV }{  is an AB -MRA with scaling function  . 

In order to have an orthonormal wavelet system, we must be obtained an orthogonal 

complement of 0V  in 1V . Let 0W  be an orthogonal complement 0V  in 1V , that is, 001 = WVV  . By the 

standard MRA wavelet construction, if we find an orthogonal basis for 0W  , then we have a wavelet 

system. Since 
)(= 0

2

0 SLV  and 
)(= 1

2

1 SLV  so we have  

 .)()\(=))\((=)(=)( 0

2

00

2

000

2

0

2

1

2   SLSaSLSSaSLaSLSL  

Then we define 
 )\(=)\(= 01

2

00

2

0 SSLSaSLW . We set :  

 2},||1:),(={=\:= 1221010 



  2RSSR  

then  
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 }.ˆ:)({= 0

22

0 RfsuppLfW  R  

We shall now explain how to construct an AB -multiwavelet generated by three mutually orthogonal 

functions 
321 ,,   of norm 1. To do this, define the following subsets of 010 \= SSR  :  

 ,=,=,= 333222111

  EEEEEEEEE  

where  

 

2},0,11:),(={=

1},10,1:),(={=

2},1,02:),(={=

121213

211212

121211































2

2

2

R

R

R

E

E

E

 

 and 1,2,3.=},:{= lEE ll

 



  2R  

 

We then define 1,2,3=,ll , by setting 1,2,3.=,=ˆ l
l

E

l   Notice that each set lE  is a 

fundamental domain of 
2Z , that is, the function }:{ 22 Z ke ki

, restricted to lE  form an 

orthonormal basis of ).(2

lEL  It follows that the collection }:)(ˆ{ 22 Z ke lki   is an orthonormal 

basis of 1,2,3=),(2 lEL l . A simple direct calculation shows that the sets 1,2,3}=,:{ ljbE j

l Z
 are 

a partition of 0R , that is,  

 ,= 0

3

1= RbE j

ljl



 Z  (5) 

 where the union is disjoint. 



ISSN 2347-1921                                                           

2772 | P a g e                                                     D e c e m b e r  1 0 , 2 0 1 4  

But the dilations j

bD  are unitary operators. Hence they maps an orthonormal basis into an 

orthonormal basis. Thus for each Zj , the set }:)(ˆ{ 22 Z kbe jlki   is an orthonormal basis for 

)(2 j

lbEL  . It follows from (5), that  

 ).(=)( 23

1=0

2 j

ljl bELRL 

 Z  (6) 

 Since, for each fixed Zj  , jb  maps 
2Z  into itself, the collection }:)(ˆ{ 22 Z kbe jlki   is equal 

to the collection }:)(ˆ{ 22 Z kbe jlk
j

bi 
. It follows from (6), that the collection  

 1,2,3}=,,:)(ˆ{=1,2,3}=,,:)(ˆ{ 2222 ljkbeljkbe jlk
j

bijlki ZZZZ      

 is an orthonormal basis of )( 0

2 RL . Thus, by taking the inverse Fourier transform, we have that 

1,2,3}=,,:{ 2 lkjTD l

k

j

b ZZ   is an orthonormal basis of 
)(= 0

2

0 RLW . In order to obtain the 

desired ON AB -affine system for )( 22 RL , we apply the dilations ZiDi

a ,  to the orthonormal basis. 

The dilations operators i

aD , for each Zi , maps 0R  into iR , in which  

 },2||2:),(={== 1

12210





 iii

i aRR  2R  

and we have 



 

2

Z R=ii R , where the unions are disjoint. Using the unitary operators 
i

aD , for each 

Zi , thus the set 1,2,3}=,,:),({ 2 ljkkbD lji

a ZZ   is an orthonormal basis of ii WRL =)(2  . 

Since the spaces )(2

iRL  (and thus the spaces iW ) are mutually orthogonal, it follows that the 

system  

 1,2,3}=,,,:{=1,2,3}=,,,:),({ 22 ljikTDDljikkbD l

k

j

b

i

a

lji

a ZZZZ    

 is an orthonormal basis of ,=)( 22

ii WL ZR   that is, },,{= 321   is an ON AB -multiwavelet.  

 The number of generators of this AB -multiwavelet is fixed. Infact, by the next proposition, if we 

could replace   by },{= 1 L  , then 3=L .  

Proposition 2.6 ([8], [9]): Let G  be a countable set and, for each Gu , let uT  be a unitary 

operator acting on a Hilbert space H . Assume that, for each uT , there is a unique Gu   such that 



 uu
TT = . Suppose },,{= 1 N   , H },,{= 1 M  , where }{, NMN . If 

},1:{ NkGuT k

u   and },1:{ MiGuT i

u   are each orthonormal basis for ,H  then 

MN = .  

 The following result establishes the number of generators needed to obtain an orthonormal MRA 

AB -wavelet.  

Theorem 2.7 ([8], [9]): Let },,{= 1 L   be an orthonormal MRA AB -multiwavelet for )(2 nL R , 

and let |/=| 1aBaBN  (= the order of quotient group 
1/ aBaB ). Assume that N|| deta . Then 

1||= detaNL .  

 By using this theorem, we can calculate the number of AB -multiwavelet. 
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Remark 2.8 In example (2.5), the set B  is considred as }:{= ZjbB j
 in which, 














1

1
=

jj

jj
b j

. By a simple calculation, we get jj baab =1 , thus, >=<1 baBa  and it is 

clearly >=< bB . Then 22

1/ 

 IaBaB ; , thus 1|=/=| 1aBaBN . Therefore, 

3=11.4=1||= detaNL  .  

Now we give a parsval frame wavelet with composite dilation from AB -MRA with a single 
generator.  

Example 2.9 Let 21= FFF  , where 1F  is a trapezoid with vertices 1,0)( , ,0)
2

1
( , )

2

1
(0, , (0,1) , 

and }:),(={= 1212 FF 



  2R . Suppose that ASi ,  and B  are defined in Example (2.5), and 

let 1}||
2

1
:),(={=\:= 122110 



  2RSSH . A simple direct computation shows that 

j

j FbH Z= , where the union is disjoint. It follows from the Plancherel theorem (using the fact that 

F  is contained inside a fundamental domain) that the function )(F  satisfies 
22(.)2

2
ˆ=|,ˆ| fef F

ki

k
 



Z
, for all )(ˆ 2 FLf  , and the collection  

 },:)({ 22 ZZ  jkeD F

kij

b 
 

is a parsval frame of )(2 HL . Similarly to the construction above, we have 
i

i HaZ

2R 



= , where the 

union is disjoint. Define   by setting F =


. It follows that the system  

 },,,:{ 2ZZ  kjiTDD k

j

b

i

a   

is a parsval frame of )( 22 RL . That is to say the function  , is a parsval frame wavelet with 

composite dilations.  
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