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ABSTRACT 

In this paper, we introduce the preconditioned Explicit Decoupled Group (EDG) for solving the two dimensional 
Convection-Diffusion equation with initial and Dirichlet boundary conditions. The purpose of this paper is to accelerate the 
convergence rate of the Explicit Decoupled Group (EDG) method by using suitable preconditioned iterative scheme for 
solving the Convection-Diffusion. The robustness of these new formulations over the existing EDG scheme demonstrated 
through numerical experiments. 
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1. INTRODUCTION  

Consider the two dimensional Convection-Diffusion equation: 
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                                  (1.1) 

with initial and boundary conditions: 
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where , ,x y x   and y are positive constants, which can be solved numerically on a rectangular grid with constant 

spacing x and y in the x and y direction respectively, with 
0 0,i ix x i x y y j y     and nt n t  (for all 

0,1,2,..., ,i nx 0,1,2,..., ,j ny 0,1,2,...n  ), 
0 ,X x nx x   0 .Y y ny y   By using Crank-

Nicolson formulation, about any point ( , , )i j nx y t on the above Convection-Diffusion equation, the following formula is 

obtained: 
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Let the Courant and diffusion numbers be defined as 
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(1.4) 

Thus (1.3) can be written as 
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By rotating the x-y axis clockwise by 45
0
 and using Taylor series expansion, the rotated Crank-Nicolson formula for (1.1) 

can be shown as [1]: 
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(1.6)
 

It is well known that the application of either (1.3) or (1.6) at each time step will result in a large and sparse linear system, 

                                        1n nAu Bu 
                                                              (1.7) 

Where A and B are square nonsingular matrices, while un+1 and un are specific column matrices. The iterative methods are 

the suitable methods to obtain the solution of (1.7) compared to the other direct methods ([2], [3], [4], [5], [6], [7]). Among 

these iterative methods, the Explicit Group (EG) and Explicit Decoupled Group (EDG) can be formulated based on 

Equations (1.5) and (1.6) respectively. Abdullah [8] constructed the EDG method which was shown to be more efficient 

computationally than the EG method for solving two dimensional elliptic equation. The aim of this paper is to propose new 

preconditioned iterative scheme and  apply  it to the  (EDG) iterative method for solving the two dimensional Convection-

Diffusion equation. The paper is organized in five sections: The formulation of proposed preconditioned EDG iterative 

method will be given in section 2. Sections 3 discuss the truncation Error and Consistency. Stability Analysis for the 

proposed method will be justified in section 4. The numerical results are presented in Section 5 in order to show the 

efficiency of the new preconditioned method. Finally, the conclusion is given in Section 6. 

2. THE PROPOSED PRECONDITIONED EDG METHOD  

EDG scheme can be constructed by applying (1.6) to any group of four points on the solution domain at each time step. 
As a result of that, at any particular time level (n+1), a (4×4) system will be obtained with the form: 
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where 
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This system leads to a decoupled system of (2×2) equations which can be made explicit by imposing iteratively as follows: 
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Fig. (1-1) showed that the iterative evaluation of (2.4) at any time level involves points of type    only, while the 
evaluation of Equation (2.5) involves points of type   only(see Fig. (1-2)). Thus, the iterations may be chosen to involve 
only one type of points. If we choose to iterate on points of type , the EDG scheme corresponds to generation of 
iterations on these points using the group formula (2.4) until a convergence test is satisfied. After convergence is 
achieved, the solutions at the points of type  are evaluated directly once using the Crank-Nicolson formula (1.5) before 
proceeding to the next time level. 
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Fig.(1-1): computational molecule of Equation (2.4) 

 

 

 

 

 

 

  

 

 

Fig (1-2): computational molecule of Equation (2.5) 

This method was found to be much more superior to the existing Crank Nicolson scheme because of its lower 
computational complexity and yet it has the same level of accuracy [1]. 

Now, from the linear system of equations (2.1) which formed when heat equation is solved by EDG method, matrix A can 

be write as A D L U   where D is diagonal matrix A, L is strictly lower triangular parts of A and U is strictly 

upper triangular parts of A. A preconditioner ( ),I PU
 
where: 1 2P  is used to modify the original system (2.1) to 

                          
( ) ( )I PU Au I PU b  

                                                                             
(2.6) 

The resulted system of (2.6) called preconditioned EDG Iterative method (PEDG). 

 

3. TRUNCATION ERROR AND CONSISTENCY  

The local truncation for the Crank-Nicolson scheme may be obtained by using the Taylor series expansion about the point  
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(3.1) 

Let ,h x y    k t  , the local truncation error for this scheme is then 
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(3.2) 

As, , ,x y  0t  the truncation error CNT tends to zero. Hence, as the grid spacing , ,x y  0t   in the limit 

sense, the Crank-Nicolson formula (1.5)is equivalent to the convection-diffusion equation and thus is consistent. Explicit 
Group (EG) method is also consistent and its truncation error is similar with Crank-Nicolson scheme since it is derived 
from the same formula [?]. 

Assuming that x y     , the truncation error for the rotated Crank-Nicolson Scheme becomes: 

2 3 2 2 2 2 2 2

3 2 2 2 2 2, , 0.5 , , 0.5 , , 0.5
(

24 8
R CN xi j n i j n i j n

k u k u u u
T

t t x t x t x
     

      
    

      
 

2 2 4 4

2 4 2 2, , 0.5 , , 0.5 , , 0.5
...) (

2 12 2
y i j n i j n i j n

u h u u

t y x x y

 


  

   
   

    
 

4 3 3 3

4 3 2 3, , 0.5 , , 0.5 , , 0.5 , , 0.512 6 2 6

yx x

i j n i j n i j n i j n

u u u u

y x x y y

 
   

   
   

      

3 2 2 2 4 2 4

2 2 4 2 2 2, , 0.5 , , 0.5 , , 0.5
) ( 4

2 48 2

y

i j n i j n i j n

u h k u u

x y t x t x y

 


  

    
  

      
 

2 4 2 3 2 3

2 4 2 3 2 2, , 0.5 , , 0.5 , , 0.5
4

2
x xi j n i j n i j n

u u u

t y t x t x y


 

  

     
  

      
 

2 3 2 3

2 3 2 2, , 0.5 , , 0.5
4 ) ....y yi j n i j n

u u

t y t x y
 

 

   
  

    
 

Thus, 

2 2( ) ( )R CNT O k O h  
                                                                            (3.3) 

Therefore, the rotated Crank-Nicolson formula (1.6) is consistent. EDG is also consistent and its truncation error is similar 
with the rotated Crank-Nicolson scheme since it is derived from the same formula.  

4. STABILITY ANALYSIS  

Equation (2.1) can be written explicitly in difference form as: 

1n nu Tu 
         

:where     
1T A B

 . 

The matrix A is of the form: 
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Since  the amplification matrix    T = A
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for all , , , 0.x y x yC C S S  Therefore, the EDG iterative scheme is unconditionally stable. Furthermore, if we apply 

suitable preconditioner to these iterative scheme resulted from solving the Equation (1.1) with EDG method; we will get 
another iterative system which is unconditionally stable by using same manner above.  

 

5. NUMERICAL RESULTS  

As a model of 2 dimensional Convection-Diffusion equations, we consider the following example 

( 1x y x y       ): 

2 2

2 2

U U U U U

t x y x y

    
   

    
0 1,0 1,x y    0 t T   

with initial and boundary conditions satisfying its exact solution 

2 21 ( 0.5) ( 0.5)
( , , ) , 0.

4 1 4 1 4 1

x t y t
U x y t t

t t t

      
   

   
 

Several numerical experiments are made to justify our results and confirm the superiority of the proposed preconditioned 

method. Throughout the experiments, a tolerance of 
1010  was used as the termination criteria. The computer 

processing unit is Intel(R) Core(TM) i5 with memory of 4Gb and the software used to implement and generate the results 
was Developer C++ Version 4.9.9.2. Comparisons for Number of iterations at all the required time levels and Elapsed time 
of Explicit Decoupled Group (EDG) and Preconditioned  Proposed Explicit Decoupled Group (PEDG) methods are made 

for the particular mesh size with number of time step equals to 100 and t 0.01   shown in table 1.  
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Table 1. Comparison of Number of iterations at all the required time levels and Elapsed 

time of EDG and PEDG method for solving 2-D Convection-Diffusion Equation 

 

6.  CONCLUSION 

From the numerical results obtained in [1,2], it is apparent that the EDG method has the least computation time compared 
to Classical and rotated Crank-Nicolson. As the extension work of these results, new PEDG method to accelerate the 
convergence rate of the original EDG method. The results reveal that the proposed preconditioned method faster than the 
original EDG method due to the lowest Number of iterations at all the required time levels and Elapsed time. Therefore, it 
can be concluded that the PEDG scheme may be a good alternative to solve 2 dimensional Convection-Diffusion 
equations.  
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