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Abstract:This paper presents an exact penalty approach to solve the mathematical problems with equilibrium 

constraints (MPECs). This work is based on the smoothing functions introduced in [3] but it does not need any complicate 
updating rule for the smoothing penalty parameters. Some numerical academic experiments are carried out to show the 
efficiency and robustness of this new approach. Two generic applications are also considered : the binary quadratic 
programs and simple number partitioning problems. 
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Mathematical programs with equilibrium constraints (MPECs) represent an optimization problem including a set of 
parametric variational inequality or complementary constraints. In this paper, we consider optimization problems with 
complementary constraints, in the following form  

 















Dyx

yx

yxff

P

),(

0.

),(min

)(

*

 (1) 

 where  nf 2:  is continuously differentiable and 
nvD 2][0,= . >.<  denotes the inner product on 

n . 

We made this choice for D  only to simplify the exposition, one can consider any bounded set D .  

 

Due to the presence of complementary constraints, there is no feasible point satisfying all inequality constraints strictly so 
that the usual nonlinear programming constraint qualification such as Mangasarian-Fromovitz constraint qualification 
(MFCQ) is violated at any feasible point. 

Many smoothing and relaxation methods for solving )(P  have already been proposed in the literature [2, 5, 7, 8, 10]. In 

this study, we propose a smoothing technique to regularize the complementary constraints based on [3], we replace each 
constraint  

 0=ii yx  

 by  

 1)()(  ii yx    

 where the parameterized function [0,1]:   is at least 
2C  and satisfies :  
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Then we define a penalty scheme to solve the problem. To avoid the updating parameter problem, we will consider   as 

some new optimization variable.  

This paper is organized as follows. In section 2, we present some preliminaries and assumptions on the smoothing 
functions and introduce the penalty method. We prove under some mild assumptions and exact penalty property in section 
3 and present numerical experiments concerning academic MPECs of small sizes in section 4. The last section presents a 
large set of numerical experiments considering binary quadratic programs and simple number partitioning problems.  

2  Preliminaries 

In this section, we present some preliminaries concerning the regularization and approximation process. We consider 

functions 0)>(  with the following properties:   

    1.    is nondecreasing, strictly concave and continuously differentiable,  

    2.  0,=(0)0,>   

    3.  1,=)(lim0,> 0 xx    

    4.  0,>(0)lim
'

0    

    5.  
200 |)(|],]0,],[0,0>0,>


 

m
xvxm   

 For 0= , we set 0=(0)0  and 01,=)(0  xx .Examples of such functions are:  
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 Using function  , we obtain the relaxed following problem :  
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Remark 2.1 1)()(0,>0>=.<  ii yxyx   . Thus any feasible point for )( P  is also feasible for 

)(P  and then  
**0,> ff   .  

 We first transform the inequality constraints into equality constraints, by introducing some slacks variables ie :  

 .,1,=00,=1)()( nieeyx iiii     (3) 

 The problem )( P  becomes:  
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Indeed each ie  can not exceed 1 . 

Remark 2.2 The limit problem )
~

( P  for 0=  
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 is equivalent to )(P . 

Until now, this relaxation process was introduced in [3]. To avoid the updating of parameters problem, we define the 

penalty functions f  on ][0,[0,1] D :  
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 where   measures the feasibility violation 
2

)(=),( zGz   where ii eyxzG 1))()((=))((     and 
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),,(= eyxz . 

The function )[0,][0,:   is continuously differentiable on ](0,  with 0=(0) .  

Remark 2.3 zzDz  0=,0)(,'  feasible for ),(
~

yxP   feasible for )(P .  

Then we consider the following problem:  
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 From now on, we will denote  
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Definition 2.1 We say that the Mangasarian-Fromovitz condition [9] for P  holds at 
'Dz  if   )(' zG  has full rank 

and there exists a vector 
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Remark 2.4 This regularity condition can be replaced by one of those proposed in [11].  

3 The smoothing technique 

The following theorem yields a condition to find a solution for )( P . It also proves a direct link to )(P :  

Theorem 3.1 We suppose that 
'Dz  satisfies the Mangasarian-Fromovitz condition, and that  

 .<<00>)( 1

'  for  

 

i) If   is sufficiently large, there is no KKT point of P  with 0> . 

ii) For   sufficiently large, every local minimizer )),,(=(),,( ****** eyxzz   of the problem )( P  has the 

form ,0)( *z , where ),( ** yx  is a local minimizer of the problem )(P . 

Proof:  

)i  Let ),( z  be a Kuhn Tucker point of P , then there exist   and 
13  n  such that:  
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 where f  is the gradient of f  with respect to ),( z . 

Assume that there exists a sequence of KKT points ),( kkz   of 
k

P  with kk  0,  and  =lim kk  .Since 

'D  is bounded and closed, up to a subsequence, we have  
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 Multiplying by 
34 , we obtain  

 kkkkkkkkkkk yxeyx    )(4))()(1)()()((4 '32
 

 Since ,k  and  2  are bounded (by definition (v)), k  when k . We have 0=* . 

(ii) Let   sufficiently large and ),( ** z  a local minimizer for )( P . If ),( ** z  satisfies the Magasarian-Fromovitz 

condition, then ),( ** z  is a Kuhn-Tucker points for f . By (i), we conclude that 0=* . 

Let  be a neighborhood of ,0)( *z , for any z  feasible for 𝑃  such that ,0)(z  we have  

  <),(=,0)(,0)( * yxfzfzf   (9) 

 (since 0)=,0)(z . 

 

We can conclude that 0=,0)( *z , otherwise ,0)( *zf  would be  . So that 0>=,< ** yx  and ),( ** yx  is a 

feasible point of )(P .  

Back to (9) ),(=,0)(,0)(=),( *** yxfzfzfyxf   .Therefore ),( ** yx  is a local minimizer for )(P .  

Remark 3.1 The previous theorem is still valid if we consider penalty functions of the form  

 )(),,,()(),(=),,,(   eyxyxfeyxf  (10) 

 with 



2

1
>)( .  

4 Numerical results 

In this section we consider some preliminary results obtained with the approach described in the previous section. We 
used the SNOPT solver [6] for the solution on the AMPL optimization platform [1]. In all our tests, we use the same 

function 𝛽defined by β .:=)(   

We consider various MPECs where the optimal value is know [4]. Tables 1 and 2 summarizes our different informations 

concerning the computational effort of the SNOPT, by using respectively 1
w

  and 1  function:   

 

    • Obj.value : is the optimal value  
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    • it : correspond to the total number of iterations  

    • (Obj.) and (grad.) : correspond to the total number of objective function evaluations and objective function 
gradient evaluations  

    • (constr.) and (jac.) : give respectively the total number of constraints and constraints gradient evaluations.  
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Table  1: using the 1
w

  function 
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Table  2: using the 
1  function

 

We remark that by considering 1
w

  or 
1  we obtain the optimal know value in almost all the considered test problems.  

 

5 Application to simple partitioning problem and binary quadratic problems 

In this section, we consider two real applications : the simple number partitioning and binary quadratic problems. These 
two classes of problems are know to be NP hard. We use here our approach as a simple heuristic to obtain local solutions. 

 

5.1  Application to simple partitioning problem 

The number partitioning problem can be stated as a quadratic binary problem. We model this problem as follows. 

We consider a set of numbers },,,,{= 321 mssssS  . The goal is to divide S  into two subsets such that the subset 

sums are as close to each other as possible. Let 1=jx  if js  is assigned to subset 1 , 0  otherwise. Then sum 1 , subset 
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 We will minimize the square of this difference 

,)2(:= 2
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 We can rewrite 
2diff as  
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 ,4= 22 Qxxcdiff T  

 where  

 .=),(= jiijiiii ssqcssq   

 Dropping the additive and multiplicative constants, our optimization problem becomes simply 
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We rewrite the problem as the follows: 
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With this formulation, the proposed algorithm can be used to get some local solutions for (UPQ). 

We considered modest-sized random problems ( 25=m  and 75=m ). Five instances of each size were generated with 

the elements drawn randomly from the interval (50,100). 

 

Table 3 summarizes Table the obtained results. For each instance, we used 100 different initial points generated 

randomly from the interval [0,1] : 

    • Best diff : corresponds to the best value of 



100

1

*0.5)(*(
i

i cxroundQ  

    • Integrality measure : correspond to the |)(|max ii
i

xxround   

    • Nb: correspond to the number of tests such that the best sum is satisfied.  

    • 10Nb  : correspond to the number of tests such that the sum : 10*0.5)(*(
100
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
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Table  3: Results on Partitioning Problem using the 1  and 1
w

  function 

5.2  Application to binary quadratic problems 

We consider some test problems from the Biq Mac Library [12]. These problems are written in the simple following 
formulation: 

 n

T

y

Qyy

{0,1}

min

  

where Q  is a symmetric matrix of order n .  

We used ten instances with 100=n  for the Q  matrix generated using the following restrictions: 

    • diagonal coefficients in the range ]100,100[ ,  

    • off-diagonal coefficients in the range ]50,50[ ,  

    • All coefficients are integers,  

    • seeds ,101,2, . 

The third column (Nbop) of table 4  report the number of optimal realizations (times we obtained the known optimal value) 

with 100 different initial points generated randomly from the interval [0,1] . The fourth column precise the obtained value 

when it is different from the known optimal value.  
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Table  4: Results on Biq Mac test problems using the 1  and 1
w

  functions 

Using 1
w

  or 
1  we obtain the optimal know value for almost all the instances. We obtain a local solutions for only two 

examples. For each instance, the algorithm found a solution and needs s1<  for the resolution. 

6  conclusion 

In this paper, we introduced an exact penalty approach to solve the mathematical program with equilibrium constraints. 
We proved a convergence result under suitable constraint qualification conditions and performed some numerical 
experiments. We initially tested our approach on some tests from the library MaMPEC. Then, we considered some 
examples from the Biq Mac Library and some randomly generated partitioning problems. We used two different smoothing 
functions and our limited numerical tests gave very promising results (almost the same result for each one). 
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