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Abstract:This paper presents an exact penalty approach to solve the mathematical problems with equilibrium
constraints (MPECSs). This work is based on the smoothing functions introduced in [3] but it does not need any complicate
updating rule for the smoothing penalty parameters. Some numerical academic experiments are carried out to show the

efficiency and robustness of this new approach. Two generic applications are also considered : the binary quadratic
programs and simple number partitioning problems.
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Mathematical programs with equilibrium constraints (MPECs) represent an optimization problem including a set of
parametric variational inequality or complementary constraints. In this paper, we consider optimization problems with
complementary constraints, in the following form

f"=min f(x,y)
(P) 9<xy>=0 )
(x,y)eD

where f :R*" — R is continuously differentiable and D =[0,V]*". <.> denotes the inner product on R" .

We made this choice for D only to simplify the exposition, one can consider any bounded set D.

Due to the presence of complementary constraints, there is no feasible point satisfying all inequality constraints strictly so
that the usual nonlinear programming constraint qualification such as Mangasarian-Fromovitz constraint qualification
(MFCQ) is violated at any feasible point.

Many smoothing and relaxation methods for solving (P) have already been proposed in the literature [2, 5, 7, 8, 10]. In

this study, we propose a smoothing technique to regularize the complementary constraints based on [3], we replace each
constraint

XYy, =0
by
0.(x)+6,(y;) <1

where the parameterized function 6 : R, —>[0,1] is at least C* and satisfies :
~1 if x=0
R .
=0 if x=0

Then we define a penalty scheme to solve the problem. To avoid the updating parameter problem, we will consider £ as
some new optimization variable.

This paper is organized as follows. In section 2, we present some preliminaries and assumptions on the smoothing
functions and introduce the penalty method. We prove under some mild assumptions and exact penalty property in section
3 and present numerical experiments concerning academic MPECs of small sizes in section 4. The last section presents a
large set of numerical experiments considering binary quadratic programs and simple number partitioning problems.

2 Preliminaries

In this section, we present some preliminaries concerning the regularization and approximation process. We consider
functions @, (& > 0) with the following properties:

1. 67‘g is nondecreasing, strictly concave and continuously differentiable,
2. Ve>0,6.(0)=0,
3. VX>0,lim,-00,(X) =1,

4. 1im,006.(0) >0,
5. 3m> 0,3z, > 0vx €[0,V], Ve €0, £,1,] 8,6, (X) |< =
&

For £ =0, we set 6,(0)=0 and 6,(X) =1, V X # 0.Examples of such functions are:
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@) 0.0=——

@) 0.00=(-e ) for k<1
logy . — |Og(l+X)
(0:5): 0. log(1+ X +¢€)

Using function 6’8 , We obtain the relaxed following problem :

f* =min f(x,y)
(P.) 0.(x)+06.(y;))<1, i=1,...,n )
(x,y)e D

Remark 2.1 <xy>=0=Ve>0,0_(X)+6_.(y;) <1. Thus any feasible point for (P,) is also feasible for
(P) andthen Ve>0,f <f".

We first transform the inequality constraints into equality constraints, by introducing some slacks variables €; :

6.(x)+6.(y,)+e-1=0,¢2>0 i=1,..,n

(3)
The problem (P.) becomes:
min f(x,y)
(P)  160.(%)+6,(y,)+e-1=0, i=1,..,n )
(x,y,e) e Dx[0,1]"
Indeed each €; can not exceed 1.
Remark 2.2 The limit problem (|S£) for =0
min f (x,y)
(P.) 0.(x)+6.(y,)+e, —-1=0, i=1,..,n
e, €[0,1] ,i=1,...,n
®)

is equivalent to (P) .

Until now, this relaxation process was introduced in [3]. To avoid the updating of parameters problem, we define the
penalty functions f_ on Dx[0,1]x[0, £]:

f(X'Y) if 5=A(X,y,e,8)=0,
1 -
f oy =] VT AKyee) o) i >0,
o if e=0andA(x,y,ee¢)=0

where A measures the feasibility violation A(z,&) = |

G, (@) where (G,(2)); = (6,(x)+0,(y) +e—1); and
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z=(x,y,€).
The function A3 :[0, £] — [0, ) is continuously differentiable on (0,£] with 3(0)=0.

Remark 2.3 vz e D,A(z,0)=0<> z feasible for Peo (X, y) feasible for (P).

Then we consider the following problem:

min f_(x,y,e,¢&
(PU) o'( y ) ) _ (6)
(x,y,6,&) e Dx[0,1]" x[0, &]
From now on, we will denote
D =Dx[0,1]" )

Definition 2.1 we say that the Mangasarian-Fromovitz condition [9] for P, holds at Z€ D' if G_(z) has full rank

and there exists a vector p € R" suchthat G_(z)p =0 and
>0 if z=
Pl<o it g

with

W. =

v if ie{l...2n}
1 if ie{2n+1...3n}

Remark 2.4 This regularity condition can be replaced by one of those proposed in [11].

3 The smoothing technique

The following theorem yields a condition to find a solution for (PG) . It also proves a direct link to (P) R
Theorem 3.1 we suppose that Z € D' satisfies the Mangasarian-Fromovitz condition, and that

B(€)=p,>0 for O<e<e.

i) If O is sufficiently large, there is no KKT point of PU with £>0.

ii) For o sufficiently large, every local minimizer (2°,&),(z2° = (X", Y ,€")) of the problem (P,) has the
form (2",0), where (X', y") is alocal minimizer of the problem (P).
Proof:

i) Let (2,8) be a Kuhn Tucker point of PG , then there exist 4 and U E R such that:
() Vi(z,6)=Vf (z.6)+A-pu=0,
@) min(4,z,) =min(x,w, —z;) =0, 1=1...3n (8)
(i) 3. = Min(Zyy.0,6-) =0,

where Vf_ is the gradient of f_ with respectto (Z,¢).

Assume that there exists a sequence of KKT points (Z,,&,) of P"k with &, #0,VK and limy_... 0, = 40 .Since

D' is bounded and closed, up to a subsequence, we have
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lim &= &
k—+o0
lim .= Z
K—>+o0

(8.i) yields to 0, f“k (z,,&) + A3 — M3, = 0. Sothat O, fak (2., &) <0.

Then, if we denote A, = A(Z,,&,), we have

1 1 .
9,1, __4_8';2Ak +2—gkagAk +o,f (&)

= LA+ 0.0+ 0.(5) e +1)@.60, (%) +8,0,(3)) + 0, (6.) <O

2
k k

Multiplying by 4&°>, we obtain
4e¢(0.(%) +6,(¥i) +& —1)(0,6, (%) +0.6, (V) + A& f () < £A,
Since A, 6, and 828898 are bounded (by definition (v)), &}, —> o0 when k —>o0.wehave & =0.

(i) Let O sufficiently large and (Z ,& ) a local minimizer for (P ). If (Z ,&) satisfies the Magasarian-Fromovitz

condition, then (2", &) is a Kuhn-Tucker points for f_. By (i), we conclude that e =0.
Let V be a neighborhood of (2°,0), for any z feasible for P such that (2,0) € v we have

f (2,0)< f,_(z,0)= f(x,y) <+oo ©)
(since A(z,0)=0).

We can conclude that A(z",0) =0, otherwise f_(z",0) would be +0. Sothat <X,y >=0 and (X ,y) isa
feasible point of (P).

Backto (9) f(X',y)=f_(z",0)< f_(z,0)= f(X,Y) Therefore (X', y") is alocal minimizer for (P).
Remark 3.1 The previous theorem is still valid if we consider penalty functions of the form

f_(x,y,e,0)=f(X,y)+a(e)A(X Y, e ¢)+0p(e) (10)
with (&) > % :

4 Numerical results

In this section we consider some preliminary results obtained with the approach described in the previous section. We
used the SNOPT solver [6] for the solution on the AMPL optimization platform [1]. In all our tests, we use the same

function pdefined by B (&) 1= Ve.
We consider various MPECs where the optimal value is know [4]. Tables 1 and 2 summarizes our different informations

concerning the computational effort of the SNOPT, by using respectively (9W1 and 01 function:

* Obj.value : is the optimal value
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« it : correspond to the total number of iterations

* (Obj.) and (grad.) : correspond to the total number of objective function evaluations and objective function

gradient evaluations

* (constr.) and (jac.) : give respectively the total number of constraints and constraints gradient evaluations.

ISSN 2347-1921

Problem Data Obj.val. it Obj. grad constr. Jac
bardl no 17 331 193 192
desilva (0,0) -1 892 655 656 655 656
(2,2) -1 448 416 415 416 415
Df1 no 3.26e —12 3 28 27 28 27
Bilevell (25,25) 5 470 214 213
(50,50) 5 295 168 169
Bilevel2 (0,0,0,0) — 6600 232 55 54
(0,5,0,20) — 6600 180 56 55
(5,0,15,10) — 6600 —6599.9 331 97 96
flp4 flp4 —1.dat 1.9e — 29 66 9 8
flp4 — 2.dat 3.08e - 29 66 9 8
flp4 — 3.dat 1.1e—28 66 9 8
gauvin no 0 184 71 70
jrl no 0.5 1175 814 813
scholtesl 1 2 12 10 9 10 9
hs044 no 14.97 375 101 100
nashl (0,0) 0 0 2 1
(5.5) 1.72e -17 13 13 12
(10,10) 2.24e —12 12 12 11
(10,0) 4.29e —12 12 L1l 10
(0,10) 1.46e —-13 13 12 11
qpecl no 80 1249 443 442
liswetl—inv  liswetl—050 0.0929361 215 126 125
Stackl 0 —3266.67 27 26
100 —3266.67 7 17 16
200 —3266.67 7 17 16
Water —net Water — net.dat 931.1 2070 886 885 886 885

Table 1: usingthe §™ function
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Problem Data Obj.val. it Obj. grad constr. Jac
bardl no 17 433 248 247
desilva (0,0) -1 7 255 254 255 254
Df1 no 0 657 961 960 961 960
gauvin no 95e-05 164 82 81 82 81
Bilevell (25,25) 5 401 190 198
(50,50) 5 391 183 182
Bilevel2 (0,0,0,0) —6600 2458 487 486 487 486
(0,5,0,20) -6600 2391 727 721
(5,0,15,10) -6600 2391 727 721
hs044 no 17.08 617 261 260 261 260
jrl no 0.5 67 54 53
nashl (0,0) 3.35-13 203 111 110
(5,5) 6.7e—24 146 71 70
(10,10) 23e-17 133 85 84
(10,0) 8.1e-16 379 238 237
(0,10) 2.37e-18 1228 848 847
gpecl no 80 1895 518 517
liswetl—inv  liswetl—050 0.028 3559 462 461
scholtesl 1 2 51 106 105 106 105
Stackl 0 -3266.67 64 58 57
100 -3266.67 30 32 31
200 -326667 30 32 31

Water—net Water—netdat 931.369 919 282 281 282 281

Table 2: using the (91 function

W,
We remark that by considering @ 1 or (91 we obtain the optimal know value in almost all the considered test problems.

5 Application to simple partitioning problem and binary quadratic problems

In this section, we consider two real applications : the simple number partitioning and binary quadratic problems. These
two classes of problems are know to be NP hard. We use here our approach as a simple heuristic to obtain local solutions.

5.1 Application to simple partitioning problem

The number partitioning problem can be stated as a quadratic binary problem. We model this problem as follows.

We consider a set of numbers S :{Sl, S5,83,.- 4 Sm}. The goal is to divide S into two subsets such that the subset

sums are as close to each other as possible. Let Xj =1 if Sj is assigned to subset 1, 0 otherwise. Then sum , subset

m m

m
1’s sum, is sum= zijj and the sum for subset 2 is sum,= ZSJ- - ZSJ- X . The difference in the sums is then
= = =1
given by

diff:isj—ziijj :c—Ziijj. (c:isj).
=1 = = i=1

We will minimize the square of this difference
2 S 2
diff 2 := (c—2) s x;)?,
=t

We can rewrite diff 2as
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diff > = c® +4x" Qx,
where
i = S;(s; —¢©), Qi = S;S;-

Dropping the additive and multiplicative constants, our optimization problem becomes simply

UQP min x" Qx
x e{0,1}"

We rewrite the problem as the follows:

min x" Qx

g {x.(l— X)=0

With this formulation, the proposed algorithm can be used to get some local solutions for (UPQ).

We considered modest-sized random problems (IM = 25 and m= 75). Five instances of each size were generated with
the elements drawn randomly from the interval (50,100).

Table 3 summarizes Table the obtained results. For each instance, we used 100 different initial points generated

randomly from the interval [0,1]:

100

> (Q*round(x;)-0.5*c

i=1

* Best diff : corresponds to the best value of

+ Integrality measure : correspond to the max | round(x;) — X; |
I

* Nb: correspond to the number of tests such that the best sum is satisfied.

100

> (Q*round(x;) - 0.5*c

i=1

<10

3 Nb10 : correspond to the number of tests such that the sum :
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Problem Best diff Nb Integrality measure  Nb,,

6',0") (6",6™) 0',0") 6",60")
NP25.1  (1,0) (1,2) (0.011,0) (15,15)
NP25.2  (0,0) (2,2) (0.0055,0005)  (16,14)
NP25.3  (0,0) (1,1) (0,0) (16,14)
NP254  (0,0) (1,.2) (0,0) (22,22)
NP255  (0,0) (1,4) (0.008,0.0045)  (11,10)
NP75.1  (0,0) (1,2) (0.003,0) (14,14)
NP75.2  (0,0) (2,1) (0,0) (15,15)
NP75.3  (0,0) (1,1) (0,0) (17,17)
NP754  (0,0) (2,2) (0,0) (18,18)
NP755  (0,1) (1,1) (0,0) (17,17)

Table 3: Results on Partitioning Problem using the 8* and 6™ function
5.2 Application to binary quadratic problems

We consider some test problems from the Big Mac Library [12]. These problems are written in the simple following
formulation:

min y'Qy
y€{0,1}"

where Q is a symmetric matrix of order .
We used ten instances with N =100 for the Q matrix generated using the following restrictions:
« diagonal coefficients in the range [-100,100 ],

- off-diagonal coefficients in the range [-50,50 ],

» All coefficients are integers,

+seeds 1,2,...,10.

The third column (Nbop) of table 4 report the number of optimal realizations (times we obtained the known optimal value)
with 100 different initial points generated randomly from the interval [0,1]. The fourth column precise the obtained value
when it is different from the known optimal value.
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Problem Knowvalue Nbop(6*,0™) Foundvalue(6*,0™)

bel00.1  —19412 (17,14)

bel00.2  —17290 (14,12)

bel00.3  —17565 (9,13)

bel00.4 19125 (9,14)

bel005  —15868 (2,2)

bel00.6 17368 (31,31)

bel00.7  —18629 (0,0) (-18473-18475)
bel00.8  —18649 (1,1)

bel00.9 13294 (0,0) (-13248,-13248)
bel00.10  —15352 (11,4)

Table 4: Results on Big Mac test problems using the ¢* and 8™ functions

. W ) . . . .
Using @1 or 6" we obtain the optimal know value for almost all the instances. We obtain a local solutions for only two
examples. For each instance, the algorithm found a solution and needs <1§S for the resolution.

6 conclusion

In this paper, we introduced an exact penalty approach to solve the mathematical program with equilibrium constraints.
We proved a convergence result under suitable constraint qualification conditions and performed some numerical
experiments. We initially tested our approach on some tests from the library MaMPEC. Then, we considered some
examples from the Biq Mac Library and some randomly generated partitioning problems. We used two different smoothing
functions and our limited numerical tests gave very promising results (almost the same result for each one).
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