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Abstract. In the present paper an efficient algorithm based on the least squares method was developed for the 

determination of the constants A&B  of  the atmospheric refraction formula                                                                                

The principles of atmospheric refraction and the least squares method together with its error analysis were first developed 
and summarized together with its error analysis. The equations of condition for the problem were then established using N 
polar stars at their upper and lower culminations. Analytical formulae for the least squares solution of the equations of 
condition are given.  Analytical  formulae of the errors estimate are also established  ,of these are: the  standard error of the 
fit , the  standard errors for the least squares solutions, the probable errors ,finally, the average squared distance between 
the exact solutions and the  least squares solutions.  
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1. Introduction 

Atmospheric refraction was mentioned as early as the first century A.D. by Cleomedes 

independently by Ptolemy (discussed in his Optics),ca. A.D.150..   

The refraction is the bending of light while passing from transparent homogenous medium to another transparent homogenous 
medium whose density is different from the first medium. The refraction follows  some  basic roles ,of  these are : the incident 
ray,the refracted  ray ,and the normal to the surface separating two media  at the point O(say) ,all lie in  same plane. The relation 

between the incident and the refracted angles   and  respectively ,is given by :                                                                                                         

  

μ
φsin 

ψsin 
 , 

where   is called the refractive index for the two media,μ  is  a constant quantity depending on the optical properties of the two  

media and can be determined by laboratory experiment. The value of  changes for the same ray that is the refractive index for the 

blue light is different refractive index for the red light. This phenomenon is known in optics as light scattering and it is not important in 

studying the effect of  the refraction on astronomical observations. In the vacuum of space 1 .  The value of air depends on 

wavelength , temperature, and pressure as well .For example 000277.1  is for green light 
oA5500 ,for dry air for the 

conditions C15T o  and pressure Pa. 10013.1P 5  The value of    for the atmosphere at the Earth's surface, at 

temperature 0
o
C ,and at atmospheric pressure 760 mm Hg is around 1.0002927 for the yellow light where the human eye has 

maximum sensitivity                                              .     Atmospheric refraction plays  important roles in many applications of spherical 
astronomy ,of these as for example, in  topocentric phenomena  ,such as the time of rising and setting of the Sun and Moon, and in 
the prediction of local circumstances of eclipses. Also for observational reductions the effect of refraction on the equatorial 
coordinates of a star must be included . 

 In the present paper an efficient algorithm based on the least squares method was developed for the determination of the constants 
A&B  of  the atmospheric refraction formula                                                              Although the least-squares method is the most 
powerful techniques that has been devised for the problems of astronomy it is at the same time exceedingly critical. This is because 
the least-squares method suffers from the deficiency that, its estimation procedure does not have detecting and controlling 

techniques for the sensitivity of the solution to the optimization criterion of the variance 
2σ  is  minimum. As a result, there may exist  

a situation in which there are many significantly different solutions that reduce the variance 
2σ  to an acceptable small value.   

At this stage we should point out that (1) the accuracy of the estimators and the accuracy of the fitted curve are two distinct problems; 
and (2) an accurate estimator will always produce small variance, but small variance does not guarantee an accurate estimator. This 
could be seen from Equation (3) by noting that the lower bounds for the average square distance between the exact and the least-

squares values is min

2 λ/σ which may be large even if 
2σ  is very small ,depending on the magnitude of the minimum Eigen value ,

minλ ,of the coefficient matrix of the least-squares of the normal equations. Unless detecting and controlling this situation, it is not 

possible to make a well-defined decision about the results obtained from the applications of the least squares method. Consequently, 
we include error analysis to control as much as  we can the accuracy of the solutions    

2.Linear least squares fit 

Let   y  be represented by the general linear expression of the form: 

(x)φc i

n

1i

i


, 

where sφ'  are linear independent functions of x. Let  c  be the vector of the exact values of the c's coefficients and ĉ  the 

least squares estimators of c obtained from the solution of the normal equations of the form bcG ˆ .The coefficients 

matrix )nn( G is symmetric positive definite, that is ,all its eigen values n,1,2,i;λ i   are positive. Let E(z)  

denotes the expectation of z and
2  the variance of the fit, defined as: 

n)(N

q
σ n2


   ,                                                 ( 1.1) 

where  

μ
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)ˆ()ˆ(q TTT

n cΦycΦy  ,                                                (1.2) 

N is the number of observations, y is the vector with elements ky  and N)(nΦ  has elements )(xΦΦ kiik  . The 

transpose of a vector or a matrix is indicated by the superscript "T". 

According to the least squares criterion ,it could be shown that (Kopal and Sharaf 1980): 

1-The estimators ĉ  obtained by the least squares method gives the minimum of nq . 

2- The estimators ĉ  of the coefficients c , obtained by the least squares method, are unbiased; i.e. .)ˆE( cc   

3-The variance-covariance matrix )ˆVar(c of the unbiased estimators ĉ  is given by: 

,σ)ˆVar( 12  Gc                                                             (2) 

where  
1G  is the inverse of the matrix G . 

4-The average squared distance between ĉ  and c  is: 





n

1i i

22

λ

1
 σ)E(L .                                                        (3) 

Also it should be noted that, if the precision is measured by probable error e, then : 

σ 0.6745e  . 

3. Atmospheric refraction 

The starlight moves in straight line until it meets the outer surface of the  atmosphere ,then it suffers through its passage  in the 
Earth's atmosphere series of refractions called astronomical refraction. Since the air density of the upper layers of the Earth's 
atmosphere is very rarer, then its effect on the refraction is small compared with that of total refraction. Consequently, the effective 
layers on the refraction are those at few tens of kilometers from the Earth's surface  

and in  these  lyres , the ray is bending till it reaches the observer. So the star is observed in a direction  not  parallel to its true 
direction.  

For illustrating the above points, consider Fig.1 where  z is the zenith , O is an observer  on the Earth's surface  and: 

 

•
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Fig.1:The refraction of the starlight in the Earth's atmosphere   
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1-  The straight pass from the star S (say) till it enter the effective region of the Earth's  atmosphere at the point A. 

  2-After the entrance at the point A , the ray  continuously  bending till it reaches the observer at the point O. 

3-  The parallel line to SA is the position  of the star if there were no  atmosperical  refraction, and this is the true direction of the star. 

4-The observer will see the star in the direction TO  which  is  the direction of the tangent 

for the curve of the refracted ray at the point O and this is the  apparent (observed ) direction of the star. 

From the above ,it is clear that the refraction changes the true poison of the  zenith of the star, that is ; the zenith distance 
decreases due to the refraction. 

3.1 General theorem for the atmospheric refraction 

Assumptions of the theorem 

i-The Earth's is regarded as sphere . 

ii-The atmosphere made up of a large number of thin spherical layers, concentric with  

the Earth's center. 

       iii-  Each layer has its own optical properties and ,in particular, its own refractive index 

 The formula  

 The general formula for  the atmospheric refraction (Meeus 2000) is : 

ξ. tanBA tanξR 3  ,                                          (4) 

where    is the observed zenith distance.  

The present paper is devoted for establishing an algorithm  for the determination of the constants A&B and their error analysis. 

Clearly formula (4) is not valid when the observed zenith distance  equal to 
o90 . Also the formulae is  insufficient when the 

zenith distance exceeds
o75 .It appears that, at high altitudes, the refraction is proportional to the tangent of the zenith 

distance. 

4. Equations  of   condition 

The values of the constants A&B of Equation (4) could be determined by the least 

squares method. For the application of the method we need first to find the equations of condition 

In Fig 2 

 X : The true position of a polar star at the upper culmination. 

 Y: The true position of the same star at the lower culmination. 

 X1 : The observed position due to the atmospheric refraction  of the  star at the upper culmination. 

 Y1: The observed position due to the atmospheric refraction  of the  star at the lower culmination. 

 z: The true zenith distance of the star at the upper culmination. 
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Fig.2: Determinations of the constants A&B 
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  : The observed zenith distance of the star at the upper culmination (obtained from observations). 

 :z The true zenith distance of the star at the lower culmination. 

  : The observed zenith distance of the star at the lower culmination(obtained from observations). 

 : The latitude of the observer  

 : The declination of the star 

  R: The value of refraction corresponding to   

  :R : The value of refraction corresponding to   

Since 

  ,Rz    δ,-φφ)(90δ)(90PZPXXZz   

. Rξz  δ,-φ180δ)(90φ)(90PYZPYZz  

Consequently,             

ξ tanBA tanξξδφ 3 ,                                            (5) 

(6)                                   
.

ξ tanBξA tanξδφ-180 3  

Adding Equations (5) and(6) we get : 

).ξtanξB(tan)ξtan ξ(tan A ξξ2δ180 33 
               

(7) 

Noting  that, all the quantities  in Equation (7) are known except A&B. 

For N of  polar stars (like the star X),Equation (7) becomes   

(8)                                       N,,1,2,i;BγAβQ iii  

 are known for the N stars and are computed from  sQ' s,β' s,γ' where  the quantities  

(9)                                          ,ξξ2δ180Q iiii
 

(10)                                         ,ξtantanξβ iii
 

(11)                                          
i

3

i

3

i ξtanξtanγ  

Equations (8) are the required equations of condition.  

5. Least squares for solving the system (8) 

According to the least squares criterion  of Section 4 we have: 

(12)                                         , )/ΔTTT(TA 4325  

(13)                                            ,)/TTT(TB 1523  

where 

(14)                                           ,TTTΔ 14

2

2  

also 

,QβT                ,γβT           ,   βT i

N

1i

i3

N

1i

ii2

N

1i

2

i1 


                (15) 

      . Q   T             , QγT                    , γT            
N

1i

2

i6

N

1i

ii5

N

1i

2

i4 




      

(16) 
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(Note that 
6T  is not used in Equations(12),(13),(14) but it will be used latter)  

6. Errors estimate 

According to Section 4 we deduce the following errors estimate 

6.1 The  standard error of the fit 

1/22

iii

N

1i

i ])BγAβ(Q
2N

1
[σ 


 



 

Expanding, then using Equations(15) and (16) we get:  

               (17)                 , 
1/2

24

2

1

2

6 }]2ABTTBTA{T
2N

1
[σ 


 

If the precision is measured by probable error e, then : 

18)                        )                               .σ 0.6745e  

6.2 The  standard errors for the least squares solutions  

The  standard errors for the least squares solutions A&B are:  

22B11A gσσ          ;     gσσ  , 

Where
 11,22 gg are  the diagonal elements of the matrix 

1G ,where G is the matrix of the coefficients  of the system (8) 

,
TT

TT

42

21









G  

since   /ΔTg ;    /ΔTg 111122  ,then 

                      ,/ΔTσσ 4A                                              (19.1)    

./ΔTσσ 1B                                               (19.2) 

6.3The probable errors  

The corresponding probable errors are: 

,σ 0.6745e AA                                        (20.1) 

.σ 0.6745e BB                                        (20.2) 

6.4 The average squared distance between ĉ  and c   

According to Equation (3), the average squared distance between the exact solutions and the  least squares solutions is 

(21)                                            ,
λλ

λ  λ
σ)E(L

21

2 122 
 

where 21 λ,λ are the Eigen values of the matrix G. and its characteristic equation is 

0)TT(T)Tλ(Tλ 2

44141

2  

then 



ISSN 2347-1921 

   2982 | P a g e                                                     J a n u a r y  2 2 ,  2 0 1 5 





2

44121

4121

TTTλλ

TTλλ

 

Consequently )E(L2
 for the system (8) is: 

 (22)                                               .
2

B

2

A

2 σσ)E(L   

   

In concluding the present paper we stress that, an efficient algorithm based on the least squares method was developed for 
the determination of the constants A&B  of  the atmospheric refraction formula                                                                                                               

The principles of atmospheric refraction and the least squares method together with its error analysis were first developed 
and summarized together with its error analysis. The equations of condition for the problem were then established using N 
polar stars at their upper and lower culminations. Analytical formulae for the least squares solution of the equations of 
condition are given.  Analytical  formulae of the errors estimate are also established  ,of these are: the  standard error of the 
fit , the  standard errors for the least squares solutions, the probable errors ,finally, the average squared distance between 
the exact solutions and the  least squares solutions..  
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