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1. Introduction 

Parabolic orbit is a Kepler orbit with the eccentricity equal to 1. It is also called escape orbit,Many instances ofparabolic orbits 
occur in the solar system and recently  among the space missions. 

The relation between the true anomaly f and the time in parabolic orbits is called Barker’s equation and is given as: 
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μ thegravitational parameter ,pthe  parameter  of the orbit 2q, qthepericenter  distance ,  t  the time, and τ is the time of 

passage  through pericenter 

We can write Equation (1) as 
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we get the following cases 

1-If 0τt  , the function  G is negative when 0f  ,and thatit increases continually  with  f until it equals infinity for 

πf  . Therefore ,there is  but  one  real  solution of Equation (1)  for 2 ftan , and it is positive. 

2-If 0τt   it is seen in a similar manner that there is one real negative solution. 

     In this present paper, simple and accurate algorithm was established for the solution of generalized Barker's equation 
of parabolic orbital motion.The algorithm based on the continued fractionexpansion theory. Numerical applications of the 
algorithm are alsogiven 

2 Generalized Barker's  equati 

   The generalized form of Barker's equation for the two epochs n,t,t n   is given as                          
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where
,

 ),( nn vr are the initial position and velocity vectors at the  initial time nt ,while 

),(  vr are the corresponding vectors at the finial time ntt  . The distance r could be 

obtained in terms of  n,  as 
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The solution of the  generalized form of  Barker's  Equation (1) is 

,nn. z p                                                          (5) 

where z is the solution of 

B2z3z3  (6) 

and 

http://en.wikipedia.org/wiki/Kepler_orbit
http://en.wikipedia.org/wiki/Orbital_eccentricity
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Finally if f the true anomaly, then  
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So ,to solve the  generalized Barker Equation (2), it is sufficient to solve Equation 6) for  z ,then 
n. from Equation (5). 

3. Solution of Equation  (6) by continued fraction  

From the known Cardin'smethod  (e.g.Battin 1999) ,the real root of Equation (6) is given as: 
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From Equation (9) we can write 

xsinhB  and  x
3

1
sinh2y  ,  

From the known continued fraction expansion of xsinh/
3

x
sinh (Wall 1948) we deduce that 
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4. Continued fraction evaluation 

In fact, continued fraction expansions are, generally far more efficient tools for evaluating the classical functions than the more 
familiar infinite power series. Their convergence is typically faster and more extensive than the series.  

4.1 Top- down continued  fractionevaluation 

 There are several methods available for the evaluation of continued fraction. Traditionally, the fraction was either computed 
from the bottom up, or the numerator and denominator of the nth convergent were accumulated separately with three-term 
recurrence formulae. The draw back of the first method is, obviously, having to decide far down the fraction to being in order 
to ensure convergence. The draw back to the second method is that the numerator and denominator rapidly overflow 
numerically even though their ratio tends to a well defined limit. Thus, it is clear that an algorithm that works from top down 
while avoiding numerical difficulties would be ideal from a programming standpoint . 

Gautschi[1967] proposed very concise algorithm to evaluate continued fraction from the top down and may be summarized 
as follows. If the continued fraction is written as in Equation (9) ,then initialize the following parameters 
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and iterate ( k=1,2,…) according to : 
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In the limit, the c sequence converges to the value of the continued fraction. 

5. Computational developments 

Consider random values of ]5,5[B  , the applications of  Gautschi's algorithm  of Section 4 for the solution z of Barker's 

equation with these values of B,n's and d's  of Equation (11) yield z as listed in Table 1. The accuracy of the computed values are 
checked by the condition that: 

B2z3zCH 3  , 

such that, The smaller the value of CH the more accurate solution will be.  
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Table 1:Continued fraction solution of Barker's equations 

 

 

In concluding the present paper, simple and accurate algorithmwas established for the solution of Barker's equation 
ofparabolic orbital motion.The algorithm based on the continued fractionexpansion theory. Numerical applications of the 
algorithm are alsogiven 
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No B z CH No B z CH

1 2.86599 1.25375 4.44089 1015 16 4.23471 1.55932 0.

2 3.48339 1.40256 1.77636 1015 17 3.59692 1.42777 1.77636 1015

3 1.12827 0.657455 4.44089 1016 18 0.118218 0.0786497 0.

4 1.01962 0.605684 8.88178 1016 19 1.56947 0.845113 8.88178 1016

5 2.61988 1.18787 0. 20 1.82399 0.939539 8.88178 1016

6 0.172316 0.114378 0. 21 0.349696 0.229121 1.11022 1016

7 2.61113 1.18545 8.88178 1016 22 3.76144 1.46327 1.77636 1015

8 3.05601 1.30186 2.66454 1015 23 1.56888 0.844884 4.44089 1016

9 3.93263 1.499 3.55271 1015 24 4.00733 1.51423 3.55271 1015

10 4.81672 1.667 3.55271 1015 25 2.48371 1.1495 0.

11 1.74856 0.912467 0. 26 4.72196 1.65016 5.32907 1015

12 1.45155 0.798188 0. 27 4.55939 1.62067 0.

13 4.53934 1.61697 0. 28 0.026959 0.0179707 6.93889 1018

14 3.46544 1.39852 5.32907 1015 29 0.103592 0.0689518 0.

15 4.31578 1.57496 1.77636 1014 30 0.105728 0.0703692 0.


