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ABSTRACT 

This paper defines some generalized Fibonacci and Lucas sequences which satisfy arbitrary order linear recurrence 
relations and which answer a problem posed by Jarden in 1966 about generalizing an elegant result for a connection 
between even and odd subscripted Fibonacci and Lucas numbers. 

Indexing terms/Keywords 

product sums, shift operators, basic sequences, primordial sequences, fundamental sequences, Fibonacci sequences, 
Lucas sequences, characteristic equations, Cauchy calculus 

Academic Discipline And Sub-Disciplines 

Mathematics: Number Theory 

SUBJECT CLASSIFICATION 

11B75, 11Z05, 11B65 

TYPE (METHOD/APPROACH) 

Properties of characteristic equations of arbitrary order difference equations are used to solve a long-standing question 
about generalizing a result which connects the second oreder recursive sequences whose elemenata are the Fibonacci 
and Lcas numbers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. INTRODUCTION 

 

Council for Innovative Research 

Peer Review Research Publishing System 

Journal: JOURNAL OF ADVANCES IN MATHEMATICS 
Vol .9, No 8 

www.cirjam.com , editorjam@gmail.com 

http://member.cirworld.com/
http://www.cirjam.com/


ISSN 2347-1921                                                           

 

2938 | P a g e                                                       J a n u a r y  0 7 ,  2 0 1 5  

Jarden [7, pp.87] extended the well-known relation between the second order Fibonacci and Lucas numbers, F2n = FnLn, 
to the third order case.  In doing so he showed “that third order sequences have another arithmetic than that of Lucas’ 
sequences” [7, p.88].  This paper explores some arbitrary order extensions of Jarden’s results. 

 

In order to generalize the sequences of Horadam[14] and Jarden[7, pp.30,114] we define r basic sequences of order r, 
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nsU , by the recurrence relation which we define formally after the initial terms for s = 1,2,...,r:  
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in which the r initial terms, n =0,1,2,...,r-1, are given by ns

r

nsU ,
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,   , the Kronecker delta. We also consider f(x) with 

zeros, i , assumed distinct, to be the associated r
th
 order characteristic polynomial.  Examples of (1.1) appear in a later 

table. We also define the special sequence with s = 0 }{ )(
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so that the first few values are, for example, .3,1, )(
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correspond to 

Lucas’ “primordial” and “fundamental” sequences respectively [14], while the other  )(

,

r

nsU
 
are “basic” sequences [8]. For 

notational convenience,  )(

,

r

nsU , s ≠ 0, 
)(

,

r

nsU =0, n ≤0. 

2.  A PROBLEM POSED BY JARDEN 

 

Jarden[7, p.88] posed the problem to determine the values of F2n - FnLn= 0 “for appropriate recurring sequences of higher 
order”, or in the notation of this paper: 
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since
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2,2 nnn UUU  “is of great importance for the arithmetic of Lucas’ second order recurring sequences”.  

 

In order to do this we consider the sequence  )(
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This can be illustrated with the bisection of the ordinary sequence of Fibonacci numbers with the auxiliary polynomial 
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which, in effect, is related to the second order recurrence relation 
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which, in turn, can generate the sequence {1,3,8,21,55,...}.  Similarly, with the bisection of the Tribonacci sequence [2]: 
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which, in effect, is related to the third order recurrence relation 
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which, in turn, can generate the sequence {1,7,21,71,241,...}, a bisection of the Tribonacci sequence as seen in the table 
which follows. In more general terms, then 
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When r = 2, the Y-sequence will be a first order sequence as expected, and when r = 3, it will also be a 3
rd

 order 
sequence.  For example, consider 
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The table below illustrates the foregoing, for the U-sequences r = 3, s = 0, (see Fielder [3]) and for r =3, s = 1,2,3 (see 
Emerson [1]).  Our choice of the initial conditions, while it emphasises the “basic” nature of these sequences, shifts the 
elements of the sequences from their normal subscript identifiers as we can see in the table. Thus, for instance, the usual 
form of the Fibonacci sequence is obtained in our notation from 
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and the original form of the Tribonacci sequence was [3] 
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which is similar to Jarden’s third order sequences, {Un} and {Vn}, with unit coefficients and initial terms 

,3,1,3,1,0 210210  VVVUUU respectively [7, p.86].  Note that Jarden’s subscripts also differ by one 

from those which we use.  This is why we have introduced the more familiar   ,3,2,)( rU r

n at this stage for notational 

convenience though they generally obscure the roles of the underlying basic sequences.
 

Table 1: Second and third order examples 

 n 1 2 3 4 5 6 7 8 9 10 11 12 

)2(

,0 nU  
1 3 4 7 11 18 29 47 76 123 199 322 

)2(

,1 nU  
1 0 1 1 2 3 5 8 13 21 34 55 

)2(

,2 nU  
0 1 1 2 3 5 8 13 21 34 55 89 

)2(

nU
 

1 1 2 3 5 8 13 21 34 55 89 144 

)1(

,2 nY  
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

)3(

,0 nU  
1 3 7 11 21 39 71 131 241 443 815 1,499 

)3(

,1 nU  
1 0 0 1 1 2 4 7 13 24 44 81 

)3(

,2 nU  
0 1 0 1 2 3 6 11 20 37 68 125 
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,3 nU  
0 0 1 1 2 4 7 13 24 44 81 149 

)3(
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1 1 1 3 5 9 17 31 57 105 193 355 

)3(

,3 nY  
0 1 -3 2 2 -7 7 2 -16 21 -3 -34 
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For the Y-sequences, each term is the homogeneous product sum of weight n of the roots of the auxiliary equation [9]; 
that is, the Y-sequences in the table satisfy the 1

st
 and 3

rd 
order recurrence relations respectively: 
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Jarden [7, p.87, Equation (20)] found in his notation that 
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which, because of the different initial values, is in our notation  
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with his recurrence relation coefficients a = b = c = 1 in his search for “the counterpart of the formula U2n – UnVn = 0”.  
Jarden’s (2.4) can be re-written as 
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when s = r = 3.  When r = s = 2, it can be similarly confirmed from the table that 
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that is, 
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2, nsnnsns YUUU   
  

as in Table 1. 

 

There are various other inter-relationships among these sequences in the table which the interested reader might like to 
unravel and then extend to the arbitrary order analogs.  For example, the following capture the initial terms of the 
sequences: 

 

)2(

,2

)2(

,1

)2(

,0 3 nnn UUU   
 

and 

)3(

,3

)3(

,2

)3(

,1

)3(

,0 73 nnnn UUUU  . 
 

3.  EXTENSIONS 

 

We next show that the ordinary generating function for the sequence when s = r, namely  )(
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If we take the derivatives of each side of (3.1) with respect to x, and use the double 
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in which we have also used the fact that 0)(
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as in [13].  When r = 2, and after replacing n by (n + 1), this can be written as 
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which, from the table, in turn can be reduced to the known result [6]: 
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For example, when n = 6, ,1361 nnF and  
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4.  CONCLUDING COMMENTS 
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The algebra associated with the ordinary generating function is sometimes known as the Cauchy calculus, whereas the 
algebra associated with the exponential generating function is known variously as the Blissard or umbral or symbolic 
calculus, depending on the context [4].  Further related research can similarly be built upon the relation in (4.1) between 
the ordinary and exponential generating functions for these arbitrary order sequences: 
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(4.1) 

 

The work can also be extended to generalizations of recurrence relations associated with some of the special functions 
[5,11]. 
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