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Abstract 

In this paper*, we study the weak-injective dimension and we characterize the global weak-injective dimension of rings. After 
we study the transfer of the global weak-injective dimension in some known ring construction. Finally we study the transfer of 
almost perfect property in pullback and D+M constructions.  
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1  Introduction 

Throughout this paper all rings are commutative with identity element and all modules are unital. For an R -module M , 

we use )(MpdR
 to denote the usual projective dimension of M . )(Rgldim  and )(Rwdim  are, respectively, the 

classical global and weak global dimensions of R . 

In 2006, Lee in [9] introduced the class of weak injective modules which are generalization of cotorsion modules.  

Definition 1.1 An R -module M  is said to be weak-injective if 0=),(1 MFExtR  for all R-modules F of flat 

dimension   1.  

After in 2009, Fuchs and Lee in [8] introduced the weak injective dimension of a module M  to be the smallest integer n  

such that 0=),(1 MFExt n

R


 for all R-modules F of 1)( Ffd . And they introduced also the global weak-injective 

dimension of ring R  to be the supremum of weak-injective dimension of all R -modules. 

On the other hand in 2003, the notion of almost perfect ring has been introduced by Bazzoni and Salce in [1]. 

Definition 1.2  A ring R  is almost perfect if IR/ is perfect for any proper ideal I of R .  

The main aim of this paper is to study the transfer of weak-injective global dimension of ring and almost perfect property to 
polynomial rings direct product of rings and pullbacks constructions. Also we study some properties of weak-injective 
modules and dimension. 

In Section 2 we study the class of weak injective modules, in Proposition 2.2 we show the behavior theorem of weak injective 
modules and we see that they are stable with direct product. After we see the definition and the characterization of weak 
injective dimension Theorem 2.1. 

In Section 3 we study weak-injective global dimension, in Proposition 3.2 we give its characterization. Also we see the 
relation between weak-injective global dimension and the global dimension and the cotorsion global dimension. In the end of 
this section we see the characterization of perfect and almost perfect rings using weak-injective global dimension. 

In Section 4 we give the main results of this paper in studying the transfer of weak-injective global dimensions in polynomial 

rings Theorem 4.1, direct product of rings 4.3 and MD  constructions Theorem 4.5. 

2  Weak-injective dimension of modules 

In this section we study the properties of weak injective modules. After we characterize the weak-injective dimension of 
module. 

We start by giving a characterization of weak-injective modules. 

Proposition 2.1 Let M  be an R -module. Then M  is weak-injective if and only if 0=),( MFExt i

R  for any 

0>i  and for R -module F  of flat dimension 1   

Proof: We prove by induction on i . If 1=i  it follows from the definition, suppose that it for 1i  and we prove it for i . 

Let F  be a R -module of flat dimension 1 . Applying the long exact sequence of the functor )(., MHomR  to the 

short exact sequence of R -modules 00  FLK  where L  is free and K  is flat,  

we have for any 0>i : 

0.=),(),(),(),(=0 11 MLExtMFExtMKExtMLExt iiii  
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Since K is flat and by induction 0=),(1 MKExt i
, then 0=),( MFExt i

. 

In the following proposition we show that weak-injective modules behave in short exact sequence and it is stable over direct 
product.  

Proposition 2.2  

1.  Let 00  BWA  be a short exact sequence of R -modules, such that W  is a weak-injective module. If 

A  is weak-injective, then so is B .  

 2.  Let IiiM }{  be a family of R -modules. Then iIi
M

 is a weak-injective module if and only if every iM  is 

weak-injective.   

Proof:     

1.  Suppose that A  is weak-injective and let F  be an R -module of 1)( Ffd , applying the functor ,.)(FHomR
 

to the short exact sequence 00  BWA , we get:  

 ),,(),(),(),( 22 WFExtAFExtBFExtWFExt RRRR   

since W  and A  are weak-injective we have 0=),(=),( 2 AFExtWFExt RR . Then also 0=),( BFExtR
 and B  

is weak-injective as desired.  

2.  Follows from the isomorphism ),(),( i

n

iii

n AFExtAFExt    (see [10, Theorem 7.14]).    

New we give the definition of weak-injective dimension introduced by Fuchs and Lee in [8]. 

Definition 2.3 The weak-injective dimension of an R -module M  is the smallest integer n  such that

0=),(1 MFExt n

R


 for all R-modules F of 1)( Ffd , denoted nMwid =)(   

This result is a characterization of weak-injective dimension 

Theorem 2.4  Let M  be an R -module, the following conditions are equivalent for a positive integer n:   

    1.  nMwid )( ;  

    2.  0=),(1 MFExt n

R


 for any R -module F  of 1)( Ffd .  

    3.  0=),( MFExt in

R


 for any 0>i  and for R -module F  of 1)( Ffd .  

           4.  For any exact sequence 00 110   nn WWWWM  , if 10 ,, nWW   are all        

weak-injective modules, then the R-module nW  is also weak-injective.  

Proof:   21  Follows immediately from the definition of weak-injective dimension. 

 32 . Let F  be a R -module of flat dimension 1 . Let 00 0  FLF  be an exact sequence, 

where L  is a free R -module, then 0F  is a flat R -module. Applying the functor ),( MHomR  , we get the exact 

sequence, for 0>i :  

 0=),(),(),(),(=0 11

0 MLExtMFExtMFExtMLExt iiii    

and by induction we get the desired result. 

43 . First, consider an exact sequence 00 10   nn IIIM  , where 10 ,, nII   are 

injective R -modules. We have ),(),(1

nR

n

R IFExtMFExt 
 for all R -modules F . If 1)( FfdR , then 

0=),(1 MFExt n

R


, and so 0=),( nR IFExt . Then, nI  is a weak-injective R -module. Now, since each iI  is 

injective R -module, with 10  ni , we get the following commutative diagram: 

0⟶M⟶W0⟶⋯⟶Wn⟶0 
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‖                ↓ 

0⟶M⟶I0 ⟶  ⋯ ⟶In⟶0 

 

This diagram gives a chain map between complexes: 

0⟶ W0⟶⋯⟶Wn⟶0 

↓            ↓ 

0⟶I0 ⟶  ⋯ ⟶In⟶0 

           

 

  

which induces an isomorphism in homology. Then, from [10, Exercises 6.13-6.15] its mapping cone is exact. That is, the 
following exact sequence: 

 01100   nnn IWIWIW   

Finally, decomposing this sequence on short exact sequences and using Proposition 2.2 we deduce that nW  is a 

weak-injective R-module. 

2.4  Consider an exact sequence: 

 

 0,0 10   nn III   

where 10 ,, nII   are injective R-modules. Then, by hypothesis, nI  is weak-injective. Then, 

0=),(=),(1

nR

n

R IFExtMFExt 
, as desired.   

Proposition 2.5 Let IiiA }{  a family of modules. Then: 

 }),({sup=)( IiAwidAwid ii

i

  

Proof: Follows from the isomorphism ),(),( i

n

iii

n AFExtAFExt    (see [10, Theorem 7.14]).   

3  Global weak-injective dimension of rings 

In this section we give definition the global weak-injective dimension of rings and we give its characterization. 

Definition 3.1 The global weak-injective dimension of R  is the supremum of weak-injective dimensions of all R
-modules, denoted:  

 })/({sup=)( moduleRMMwidRgldimWi   

The following proposition gives a characterization of global weak-injective dimension 

Proposition 3.2  Let R  be a ring and let n  be a positive integer. The following are equivalent:   

        1.  nRgldimWi  )( ;  

        2.  0=),(1 MFExt n

R


 for all R -module F  of 1)( Ffd  and M  an R -module.  

        3.  0=),( MFExt i

R  for any 1> ni  and for R -module F  of 1)( Ffd  and M  an R -module.  

        4.  nFpd )(  for all R -module F  of 1)( Ffd .  

        5.  nMwid )(  for R -module M .  

Proof: The proof is obvious it follows from the definition and Theorem 2.4.    
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The global cotorsion dimension of a ring R  is denoted )(RgldimC   is the supremum of cotorsion dimensions of all 

R -modules, denoted, })/({sup=)( moduleRMMcodRgldimC   (see [4]). In the following proposition we 

see the relation between )(RgldimWi   and )(RgldimC   and global dimension of R  )(Rgldim . 

Proposition 3.3 Let R  be a ring and let n  be a positive integer. Then: 

 )()()( RgldimRgldimWiRgldimC   

Proof: Suppose that )(RgldimWi  =n and let F  be a flat module, then since 1)( FfdR
 and from Proposition 3.2 

we have nFpdR )(  and then )(=)( RgldimWinRgldimC  . The second inequality is easy since 

})/({=)( moduleRMMpdsupRgldim R  .   

In [1] bazzoni and salce introduced the almost perfect rings which are the rings since IR/  is perfect for any proper ideal I  

of R . in the following proposition we see a characterization of perfect and almost perfect rings using weak-injective global 
dimensions. 

Proposition 3.4  Let R  be a ring. Then:   

    1.  0=)(RgldimWi  , then R  is perfect.  

    2.  If R  is an integral domain, then 1)(  RgldimWi  if and only if R  is almost perfect.   

Proof:     

 1.  Suppose that 0=)(RgldimWi  , and let F  be a flat module from Proposition 3.2 0=)(FpdR
, then F  is 

projective and R  is perfect.  

 2.  See [8, Theorem 6.3].   

4   Weak-injective dimension under change of rings. 

In this section we are interesting in finding some change of rings results for weak-injective global dimension in some known 
ring extension and ring constructions. 

We begin by the weak-injective global dimension of polynomial rings. 

Theorem 4.1  Let ],,,[ 21 nXXXR   be the polynomial ring in n indeterminates over a ring R . Then:  

 nRgldimWiXXXRgldimWi n  )(=]),,,[( 21   

Proof: By induction we can prove it only for 1=n , we prove that 1)(=])[(  RgldimWiXRgldimWi . 

The first inequality 1)(])[(  RgldimCXRgldimC  is same [7, Example (iv)]. 

Conversely, Assume that  <1=])[( nXRgldimC . Let F be an R-module such that 1)( FfdR
, then it is 

easy to see that 1])[(][ XFfd XR . Then, 1=])[(=])[(=)( ][ nXFpdXFpdFpd XRRR . This means that 

1)(  nRgldimWi . Assume that )(RgldimWi  =n+1. Then, there exists, from Theorem 3.2, an R -module F  

of 1)( FfdR  such that 1=)( nFpdR . Thus, there exists an R -module E  such that 1)( EfdR , such that 

0=),(1 FEExt n
. From [2, Example (7), page 9], the endomorphism FF : , defined by Xff =)( , is 

injective. Then, we may apply the Rees’s theorem [10, Theorem 9.37], which gives: 

 0),(])[,( 12

][   FEExtXFEExt n

R

n

XR  

Then, From [10, Exercice 9.20, page 258]  

0.]))[,((]))[,(],[(])[],[( 2

][

2

][

2

][   NXFEExtXFEExtXRHomXFXEExt n

XR

n

XRR

n

XR  

Then, 2=])[(][ nXFwid XR , which contradicts with 1=])[(  nXRgldimWi , so nRgldimWi =)(  

Example 4.2 Let R  be an integral domain which is not a field. Then from Proposition 3.4 ],,,[ 21 nXXXR   is 
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never almost perfect for any 1n .  

In this theorem we study the transfer of global weak-injective dimension in finite product of rings. 

Theorem 4.3 Let miiR 1,...,=}{  be a family of rings. Then:  

 }),1({=)( miRgldimWisupRgldimWi ii    

Proof: The equality follows by induction on m and using Proportion 2.5 and the following lemma.    

Lemma 4.4  Let 
21 RR   be a direct product of rings 

1R  and 
2R  , and let iF  be an iR -module for 1,2=i . 

Then, )}(),({=)( 2
2

1
1

21
21

FfdFfdsupFFfd RRRR  .  

Proof: Since 
1R  is a projective 

21 RR  -module, [3, Exercise 10, page 123] gives:  

 ).(0))()((0)( 21
21

121
1

1
1

FFfdRFFfdFfd RRRR    

Similarly, we obtain: )()(0 21
21

2
1

FFfdFfd RRR   . 

Thus )()}(),({ 21
21

2
2

1
1

FFfdFfdFfdsup RRRR   . 

Conversely, from [3, Exercise 10, page 123], we have: 

)(=0)(0)( 1
1

10
1

1
21

FfdFfdFfd RRRR    and 

)()(0 2
2

2
21

FfdFfd RRR  . 

Therefore, )}(),({)}(00),({=)( 2
2

1
1

2
21

1
21

21
21

FfdFfdsupFfdFfdsupFFfd RRRRRRRR   , as desired.   

Let MKT =  be an integral domain where K  is a field and M  is a maximal ideal of T . Let D  a subring of K
, and consider the ring MDR = . Now we study the transfer transfer of global weak-injective dimension in MD  
constructions. This construction have proven to be useful in solving many open problems and conjectures for various 
contexts in ring theory (see for example [5, 6]). 

Theorem 4.5  Let T  be a ring of the form MKT =  where K  is a field an M  a maximal ideal of T . Let D  be 

a subring of K  where KDfrac =)( . Consider MDR = , then:  

 )}(),({=)( DgldimWiTgldimWisupRgldimWi   

The proof of the theorem concludes from the following lemma.  

Lemma 4.6  Let T  be a ring of the form MKT =  where K  is a field an M  a maximal ideal of T . Let D  

be a subring of K  where KDfrac =)( . Consider MDR = , then for any R -module F  such that 

1)( FfdR  we have:  

 )}/(),({=)( MFFpdTFpdsupFpd DRTR   

Proof: Suppose that nFpdR =)(  and consider the following exact sequence of R-modules: 

0···0 01   FPPP nn , where iP  are projective modules. Since T  is flat, we obtain the 

following exact sequence of S -modules :  

 00 01   TFTPTPTP RRRnRn   

Then nTFpd RT  )( . On the other hand from [11, Proof of Theorem1.1], 0=),(1 FDTorR
, and since 

1)( FfdR , then 0=),( FDTorR

p  for any 0>p  and by [3, Prpopsition 4.1.3], for any D -module C  and for any 

intege 1>n  we have ),(),( 11 CDFExtCFExt R

n

D

n

R  
, so nMFFpdD )/(  and then  
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)()}/(),({ FpdMFFpdTFpdsup RDRT   

Conversely, suppose that nMFFfdTFfdsup DRT =)}/(),({  , for some positive integer n. And let the exact 

sequence of R -modules 00 011   FpPPP nn   such that 10 nPP   are projective. then, 

TP Rn   and nn MPP /  are projective T -module and D -module, respectively. Thus, from [11, Theorem 1.1] nP  is a 

projective R -module. Then nFpdR )( , so )}/(),({=)( MFFpdTFpdsupFpd DRTR   as desired.   

In this theorem we study the transfer of almost n -perfect ring in MD  constructions.  

Theorem 4.7  Let T  be a ring of the form MKT =  where K  is a field an M  a maximal ideal of T . Let D  

a subring of K  where KDfrac =)( . Consider MDR = , then: 

R  is almost perfect   D  and T  are almost perfect. 

Proof: Follows from Proposition 3.4 and Theorem 4.5 above.    
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