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ABSTRACT 

In the present paper, the characterizations of regional gradient strategic sensors notions have been given for different 

cases of regional gradient observability. The results obtained are applied to two dimensional linear infinite distributed 

system in Hilbert space where the dynamic is governed by strongly continuous semi-group. Various cases of regional 

strategic sensors are considered and analyzed in connection with regional gradient strategic sensors concepts. Also, we 

show that there is a various sensors which are not gradient strategic in usual sense for the considered systems, but may 

be regionally gradient strategic of this system. 
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1. NTRODUCTION 

The analysis of distributed parameter systems refers to a set of concepts such as controllability, observability, detectability 
[13-14, 18]. The study of these concepts can be made via actuators and sensors structures see [14-17], these concepts 
give an important link between a system and it’s environment [15-18], so that the concepts of actuators and  strategic 
sensors  for a class of distributed parameter systems are introduced in order that controllability and observability can be 
achieved [14-18]. The regional analysis is one of the most important notion of system theory [20-22], it consist to 
reconstruction the state observation on a sub-region 𝜔 of spatial domain Ω in finite time [19-23, 25-28], this concepts 
introduced and developed by El-Jai et al. An important extended to the asymptotic case for infinite time by El-Jai and Al-
Saphory in several works [1-7]. The study of regional gradient observability for a diffusion system has been given in [27-
28] where one is interested in knowledge of the state gradient only in a critical sub-region of the system domain without 
the knowledge of the state itself. Moreover, the applications are motivated by many real world see [10-12, 22]. Commercial 
buildings are responsible for a significant fraction of the energy consumption and greenhouse gas emissions in the U.S. 
and worldwide. Consequently, the design, optimization and control of energy efficient buildings can have a tremendous 
impact on energy cost and greenhouse gas emission. Mathematically, building models are complex, multi-scale, multi-
physics, highly uncertain dynamical systems with wide varieties of disturbances [10]. 
 

 

Fig. 1: Room control model with sensor, in flow and out flow 
 

In this paper we use a model problem to illustrate that distributed parameter control based on PDEs, combined with high 
performance computing can be used to provide practical insight into important issues such as optimal sensor/actuator 
placement (may be best or strategic sensors/ actuators) and optimal supervisory building control. In order to illustrate 
some of the ideas, we consider the problem illustrated by a single room shown in (Figure 1). This model one can 
reformulated [11] as spatial case of more general model of distributed parameter systems and represented in the next 
section (see Figure 2). In addition, the characterization of regional strategic sensors have been given for various types of 
regional  observability in [7].  
The purpose of this paper is to extended these results in [7] to the case of regional gradient sensors. Thus, we give a 
characterization of regional gradient strategic sensors for different cases of regional gradient observation. Therefore, we 
study and analyze the relationship between the regional gradient strategic sensors and the regional exactly gradient 
observability. So, the outline of this paper is organized as follows: 
Section 2 is present problem statement and basic definitions with characterization of the regional gradient observability. 

The mathematical concepts of regional gradient strategic sensors in a various situations are studied and developed in 

section 3. In the last section we gives an application about different sensors locations. 

2. REIONAL GRADIENT OBSERVABILITY 

In this section, we are interested to recall the notion of regional  gradient observability and give original results related to 

particular systems as in [27-28]. 

2.1 Problem Statement  

Let Ω be a regular bounded open subset of 𝑅𝑛 , with a smooth boundary 𝜕Ω and 𝜔 be a non-empty given sub-region of Ω. 

Let  0,𝑇 ,𝑇 > 0 be a time of measurement interval. We denoted 𝑄 =  Ω ×  0,𝑇   and  𝛴 = 𝜕Ω ×]0, T[. Consider the following 

distributed parabolic defined by 

           

𝜕𝑥

𝜕𝑡
 𝜉, 𝑡 = 𝐴𝑥 𝜉, 𝑡 + 𝐵𝑢 𝑡                       in 𝑄

 𝑥 𝜉, 0 = 𝑥0 𝜉                                             in Ω

𝑥 𝜂, 𝑡 = 0                                                      in 𝛴

                                                                                                                 (1) 

with the measurements given by the output function  

          𝑦  ∙ , 𝑡 = 𝐶𝑥  , 𝑡                                                                                                                                       (2) 

We have  

          𝐴 =  
𝜕

𝜕𝑥𝑗
(𝑎𝑖𝑗

𝜕

𝜕𝑥𝑗
)𝑛

𝑖 ,𝑗=1 , with 𝑎𝑖𝑗 ∈ 𝒟(𝑄 ).  
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Suppose that  -𝐴 is elliptic, i.e., there exists 𝛼 > 0 such that  

            𝑎𝑖𝑗 𝜉𝑖𝜉𝑗
𝑛
𝑖 ,𝑗=1 ≥ 𝛼  𝜉𝑗  

2
,𝑛

𝑗=1  almost everywhere (a.e) on 𝑄,∀𝜉 =  𝜉1,… , 𝜉𝑛 ∈ 𝑅𝑛 . 

This operator is a second order linear differential operator, which generator a strongly continuous semi-group  𝑆𝐴 𝑡  𝑡≥0
on 

the Hilbert space 𝑋 = 𝐻1(Ω) and is self-adjoint with compact resolvent. The operator 𝐵 ∈ 𝐿 𝑅𝑝 ,𝑋  and 𝐶 ∈ 𝐿 𝑋,𝑅𝑞 , 

depend on the structure of actuators and sensors [18]. The space 𝑋,𝑈 and 𝒪 be separable Hilbert spaces where 𝑋 is the 

state space, 𝑈 = 𝐿2 0,𝑇,𝑅𝑝  is the control space and 𝒪 = 𝐿2 0,𝑇,𝑅𝑞  is the observation space where 𝑝 and 𝑞 are the 

numbers of actuators and sensors (see Figure 2).  

 

Fig. 2: The domain of 𝛀, the sub-region 𝝎, various sensors locations 

Under the given assumption, the system (1) has a unique solution [24]: 

          𝑥 𝜉, 𝑡 = 𝑆𝐴 𝑡 𝑥0 𝜉 +  𝑆𝐴(𝑡 − 𝜏)𝐵𝑢 𝜏 𝑑𝜏
𝑡

0
                                                                                                         (3)                                           

The problem is to provide sufficient conditions to ensure that, how to extend the results in [7], so that to give a sufficient 

conditions of regional gradient strategic sensors which achieve the observability in sub-region 𝜔 using various regional 

gradient sensors. 

2.2 Definitions And Characterizations 

The regional gradient observability concept and reconstruction gradient state have been introduced by Zerrik E. et al. as in 

ref.s [27-28] and recently this concept is developed to the regional asymptotic case by Al-Saphory R [1-7]. Consider the 

autonomous system  to (1) given by  

           

𝜕𝑥

𝜕𝑡
 𝜉, 𝑡 = 𝐴𝑥 𝜉, 𝑡           in 𝑄 

𝑥 𝜉, 0 = 𝑥0 𝜉                 in Ω

𝑥 𝜂, 𝑡 = 0                        in 𝛴

                                                                                                                                       (4) 

The solution of (4) is given by the following form,   

          𝑥 𝜉 , 𝑡 = 𝑆𝐴 𝑡 𝑥0 𝜉 ,       ∀𝑡 ∈  0,𝑇                                                                                                                               (5) 

The measurements are obtained through the output function 

          𝑦 . , 𝑡 = 𝐶𝑥 𝜉 , 𝑡  

 We first recall a sensors is defined by any couple (D, f ), where D is spatial support represented by a nonempty part of Ω  

and f represents the distribution of the sensing measurements on D.  

Depending on the nature of D and f, we could have various type of sensors. A sensor may be pointwise if D = {b} with  

𝑏 ∈ Ω   and 𝑓 = 𝛿(.−𝑏), where 𝛿 is the Dirac mass concentrated at b. In this case the operator C is unbounded and the 

output function (2) can be written in the form [13-14]  

          𝑦 𝑡 = 𝑥(𝑏, 𝑡) 

 It may be zonal when 𝐷 ⊂ Ω  and 𝑓 ∈ 𝐿2(𝐷). The output function (2) can be written in the form    

          𝑦 𝑡 =   𝑥 𝜉, 𝑡 𝑓 𝜉 
𝐷

 

 Now, we define the operator  

          𝐾: 𝑥 ∈ 𝑋 → 𝐾𝑥 = 𝐶𝑆𝐴 .   𝑥 𝜖 𝒪                                                                                                                                      (6) 

Thus, we get that 

           𝑦 ∙ , 𝑡 = 𝐾 𝑡 𝑥(∙ ,0) 
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where K is bounded linear operator [8]. 

 We note that 𝐾∗:𝒪 → 𝑋 is the adjoint operator of K defined by  

           𝐾∗𝑦∗ =  𝑆𝐴
∗ 𝑠 𝐶∗𝑦∗ 𝑠 𝑑𝑠                          

𝑡

0
                                                                                                                      (7)

 

 Consider the operator 

          ∇:  
𝐻1 Ω       → (𝐿2( Ω))𝑛

𝑥 → ∇𝑥 = (
𝜕𝑥

𝜕𝜉1
,… ,

𝜕𝑥

𝜕𝜉𝑛
) 
                                                                                                                         (8) 

It's adjoint ∇∗ is given by 

          ∇∗:  
(𝐿2( Ω))𝑛 → 𝐻1(Ω)

𝑥            → ∇∗𝑥 = 𝑣
                                                                                                                                                 (9) 

where 𝑣 is a solution of the Dirichlet problem  

           
∆𝑣 = −div 𝑥    in Ω
𝑣 = 0                in  𝜕Ω 

  

 For a nonempty subset 𝜔 of  Ω, we consider the operators 

          𝜒𝜔 :  
(𝐿2( Ω))𝑛 → (𝐿2( 𝜔))𝑛

𝑥      →      𝜒𝜔𝑥 = 𝑥 ∣𝜔  
                                                                                                                                         (10) 

and 

          𝜒 𝜔 :  
𝐿2( Ω) → 𝐿2( 𝜔) 
𝑥 → 𝜒 𝜔𝑥 = 𝑥 ∣𝜔  

                                                                                                                                                  (11) 

where 𝑥 ∣𝜔  is the restriction of 𝑥 𝑡𝑜 𝜔 [9]. 

⋄ Their adjoints are respectively denoted by 𝜒𝜔
∗ and 𝜒 𝜔

∗  are defined by 

          𝜒𝜔
∗ : 

(𝐿2( 𝜔))𝑛    →       (𝐿2( Ω))𝑛

 𝑥 → 𝜒𝜔
∗ 𝑥 =  

𝑥 ∣𝜔 in 𝜔         
0     in Ω ∖ 𝜔

 
                                                                                                                                 (12) 

and 

          𝜒 𝜔
∗ : 

𝐿2( 𝜔) → 𝐿2( Ω)                   

𝑥 → 𝜒 𝜔
∗ 𝑥 =  

𝑥 ∣𝜔       in  𝜔
0     in Ω ∖ 𝜔

 
                                                                                                                      (13)  The 

idea of gradient observability is based on the existence of an operator 𝐻:𝒪 → (𝐿2( 𝜔))𝑛  such that 𝐻𝑦 = ∇𝑥0. This is a 

natural extension of the observability concept [8]. Then we defined the operator 𝐻 = 𝜒𝜔∇𝐾
∗ from 𝒪 into (𝐿2( 𝜔))𝑛  as in 

[27]. Now, let us denoted the system (4) together with the output (2) by (4)-(2). 

Definition 2.1: The system (4)-(2) is said to be regionally exactly observable on a sub-region 𝜔 (exactly 𝜔 - 

observable), if  

           𝐼𝑚𝜒 𝜔𝐾
∗ = 𝐿2( 𝜔) 

Definition 2.2: The system (4)-(2) is said to be regionally weakly observable on 𝜔 (weakly 𝜔- observable), if 

          𝐼𝑚𝜒 𝜔𝐾
∗(. )               = 𝐿2( 𝜔) 

Definition 2.3: The system (4)-(2) is said to be regionally exactly gradient observable on 𝜔 (exactly 𝜔𝐺  - observable), if 

          𝐼𝑚𝜒𝜔∇𝐾
∗ = (𝐿2( 𝜔))𝑛  

Definition 2.4: The system (4)-(2) is said to be regionally weakly gradient observable on 𝜔 (weakly 𝜔𝐺 - observable), 

if 

           𝐼𝑚𝜒𝜔𝛻𝐾∗(. )                = (𝐿2( 𝜔))𝑛  

We see that if a system is weakly 𝜔𝐺– observable then there is one to one relationship between the output and the initial 

gradient, viz., if 𝑦 is given and 𝑥0 satisfies 𝑦 = 𝐶𝑆 .  𝑥0, then ∇𝑥0  is a unique. 

Remark 2.5: We can deduced that, the definition 2.4  is equivalent to say  that the system (4)-(2) is weakly 𝜔𝐺 -

observable, if  
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          𝑘𝑒𝑟 𝐾 𝑡 ∇∗𝜒𝜔
∗ = {0} 

Then, the following characterization can extend to the regional gradient case as in ref. [26]. 

Proposition 2.6: The system (4)-(2) is exactly 𝜔𝐺-observable if and only if there exist 𝑐 > 0 such that for all  𝑥∗ ∈

(𝐿2(𝜔))𝑛 , such that, 

            𝜒𝜔𝑥
∗ (𝐿2(𝜔))𝑛 ≤ 𝑐 𝐾 𝑡 ∇∗𝜒𝜔

∗ 𝑥∗ 𝒪                                                               (14)  

Proof: The proof of this property is deduced from the usual results  on observability considering 𝜒𝜔∇𝐾
∗ [13]. Let  

𝑉,𝑊 and  𝑋  be a reflexive Banach space and let 𝐹 ∈ 𝐿 𝑉,𝑋 ,𝐺 ∈ 𝐿 𝑊,𝑋 , then the following conditions are equivalent  

1. 𝐼𝑚 𝐹 ⊂ 𝐼𝑚 𝐺. 

2. There exist  𝑐 > 0 such that  𝐹∗𝑥∗ 𝑉∗ ≤ 𝑐 𝐺∗𝑥∗ 𝑊∗          ∀𝑥∗ ∈ 𝐺∗ 

Now, by applying the above result  we obtain the equivalent condition for exactly 𝜔𝐺-observable as: 

Let  𝑉 = 𝑋 = (𝐿2(𝜔))𝑛 , 𝑊 = 𝒪, 𝐹 = 𝐼𝑑(𝐿2(𝜔))𝑛  and 𝐺 = 𝜒𝜔∇𝐾
∗. 

Now, since the system is exactly 𝜔𝐺-observable we have 𝐼𝑚 𝐹 ⊂ 𝐼𝑚 𝐺, which is equivalent to that fact there exist  𝑐 > 0, 

such that 

           𝐹∗𝑥∗ 𝐿2(𝜔))𝑛 ≤ 𝑐 𝐺∗𝑥∗ 𝑤 ∗          ∀𝑥∗ ∈ 𝐺∗.□ 

Remark 2.7: We have: 

(1) The regional state reconstruction will be more precise than the whole domain if we estimate the state in the whole the 

domain. 

(2) From (14) there exists a reconstruction error operator that gives the estimation 𝑥 0 of the initial state 𝑥0  in  𝜔, and then, 

If we put e = 𝑥0 − 𝑥 0, we have 

           e (𝐿2(𝜔 ))𝑛 ≤  e (𝐿2(Ω))𝑛  

          ⟹   𝑥0 − 𝑥 0 (𝐿2(𝜔))𝑛 ≤  𝑥0 − 𝑥 0 (𝐿2(Ω))𝑛  

Where  𝑥0 is the exact state of the system and 𝑥 0 is the estimated state of the system. 

Proposition 2.8: If the system is exactly -observable then it is exactly 𝜔𝐺-observable. 

Proof: Since the system is exactly 𝜔-observable there exist 𝛾 > 0 such that ∀𝑥0 ∈  𝐿2(𝜔), we  have 

            𝑥0 𝐿2(𝜔) ≤ 𝛾 𝐾𝜒 𝜔
∗ 𝑥0 𝐿2 0,𝑇,𝒪           ,   ∀𝛾 > 0 

since (𝐿2(𝜔))𝑛 ⊂ 𝐿2 𝜔 , then  

            ∇𝑥0 (𝐿2(Ω))𝑛 =  𝑥0 (𝐿2(𝜔))𝑛 ≤  𝑥0 𝐿2(𝜔),∀ 𝑥0 ∈  𝐿2(𝜔), where  

          𝐿2 𝜔 = {𝑥0 :   𝑥0 
2 

𝜔
< ∞},                                                                (15) 

and then 

  (𝐿2(𝜔))𝑛 =  ∇𝑥0 = 𝑔𝑖 :   𝑔𝑖 
2 

𝜔
< ∞, 𝑔𝑖 =

𝜕𝑥0

𝜕𝜉𝑖
 ∀𝑖 = 1,2,… . 

To prove   𝑥0 (𝐿2(𝜔))𝑛 ≤ 𝑐 𝐾∇∗𝜒𝜔
∗ 𝑥0 𝐿2 0,𝑇,𝒪  then from (15) and since a system exactly 𝜔-observable, then there exist 

𝛾 > 0 and 𝑐 > 0 such that 𝛾 =
1

𝑐
 . By choosing 

          𝑐 =
 𝐾𝜒 𝜔

∗ 𝑥0 𝒪

 𝐾∇∗𝜒𝜔
∗ 𝑥0 𝒪

                                                 (16) 

  Then, we can get  

           𝑥0 (𝐿2(𝜔 ))𝑛 ≤  𝑥0 𝐿2 𝜔 ≤ 𝛾 𝐾𝜒 𝜔
∗ 𝑥0 𝒪                                                  (17)  

And by substituting (16) in (17), we obtain 

           𝑥0 (𝐿2(𝜔 ))𝑛 ≤  𝐾∇∗𝜒𝜔
∗ 𝑥0 𝒪 

Therefore this system is exactly 𝜔𝐺-observable with 𝛾 = 1.  
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Remark 2.9: From the above proposition we can get the following result: 

If the system is exactly 𝜔-observable then it is exactly G-observable in 𝜔1  for all 𝜔1 ⊂ 𝜔 (exactly 𝜔𝐺
1 -observable). 

 

3. REGIONAL GRADIENT STRATEGIC SENSORS 
The purpose of this section is to give the characterization for sensors in order that the system (4)-(2) which is observable 

in 𝜔. 

3.1 𝝎𝑮-Strategic Sensors 

Definition 3.1: A sensor (𝐷,𝑓) is regional gradient strategic on 𝜔 (𝜔𝐺-strategic) if the observed system is weakly 𝜔𝐺-

observable. 

Definition 3.2: A sensor (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞 is 𝜔𝐺-strategic if there exist at least one sensor (𝐷1, 𝑓1) which 𝜔𝐺-strategic. 

We can deduce that the following result: 

Corollary 3.3: A sensor is 𝜔𝐺-strategic if the observed system is exactly 𝜔𝐺-observable. 

Proof: Let the system exactly 𝜔𝐺-observable, then , we have  

           𝐼𝑚 𝜒𝜔∇𝐾
∗ = (𝐿2( 𝜔))𝑛  

From decomposition sub-space of direct sum in Hilbert space, we represent (𝐿2( Ω))𝑛  by the unique form [13] 

           𝑘𝑒𝑟𝜒𝜔 + 𝐼𝑚𝜒𝜔
∗ 𝜒𝜔∇𝐾

∗ = (𝐿2( Ω))𝑛  

We obtain  

           𝑘𝑒𝑟 𝐾 𝑡 ∇∗𝜒𝜔
∗ = {0} 

This is equivalent to [9] 

            𝐼𝑚 𝜒𝜔∇𝐾
∗(. )                 = (𝐿2( 𝜔))𝑛  

Finally, we can deduce this system is weakly 𝜔𝐺- observable and therefore this sensor is 𝜔𝐺-strategic.□ 

Corollary 3.4: A sensor is 𝜔𝐺-strategic if and only if  the operator 𝑁𝜔 = 𝐻𝐻∗ is positive definite. 

Proof: Since a sensor is 𝜔𝐺-strategic this mean that the system is weakly 𝜔𝐺- observable, 

let 𝑥∗ ∈ (𝐿2(𝜔))𝑛such that 

          < 𝑁𝜔𝑥
∗,𝑥∗ >(𝐿2(𝜔))𝑛 = 0   then  𝐻∗𝑥∗ 𝒪 = 0 

 and therefore 𝑥∗ ∈ 𝑘𝑒𝑟𝐻∗, thus, 𝑥∗ = 0, i.e., 𝑁𝜔  is positive definite. 

 Conversely, let 𝑥∗ ∈ (𝐿2(𝜔))𝑛  such that 

          𝐻∗𝑥∗ = 0, then  < 𝐻∗𝑥∗,𝐻∗𝑥∗ >𝒪= 0 

and thus, 

         < 𝑁𝜔𝑥
∗, 𝑥∗ >(𝐿2(𝜔))𝑛 = 0 

Hence 𝑥∗ = 0 thus the system is weakly 𝜔𝐺- observable and therefore a sensor is 𝜔𝐺-strategic.□ 

Remark 3.5: From the previous results, we obtain that: 

(1) If the system is exactly 𝜔𝐺-observable then the system is weakly 𝜔𝐺-observable and therefore this sensor is 𝜔𝐺-

strategic. 

(2) A sensor which is regional gradient strategic sensor in 𝜔1 (𝜔𝐺
1 -strategic) for a system where 𝜔1 ⊂ Ω, is regional 

gradient strategic sensor in 𝜔2 (𝜔𝐺
2 -strategic) for any 𝜔2 ⊂ 𝜔1. 

(3) The concept of exact  𝜔𝐺-observability is more restrictive than weak 𝜔𝐺-observability. 

Now, assume that the operator 𝐴 has a complete set of eigenfunction in 𝐻1 Ω , denoted by 𝜑𝑛𝑗 , which is orthonormal in 

𝐿2(𝜔) and the associated with the eigenvalue 𝜆𝑛  of multiplicities 𝑟𝑛 , then the concept of regional gradient strategic on 𝜔 

can be characterized by the following result: 

Theorem 3.6: Assume that sup 𝑟𝑛 = 𝑟 < ∞, then the suite of sensors (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞 , 𝜔𝐺-strategic if  
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(1) 𝑞 ≥ 𝑟 

(2) 𝑟𝑎𝑛𝑘 𝐺𝑛 = 𝑟𝑛    ∀𝑛 ≥ 1,𝑤𝑒𝑟𝑒 

Where 𝐺𝑛 = (𝐺𝑛)𝑖𝑗   for   1 ≤ 𝑖 ≤ 𝑞, 1 ≤ 𝑗 ≤ 𝑟𝑛 , and 

           (𝐺𝑛)𝑖𝑗 =  
 

𝜕𝜑𝑛𝑗

𝜕𝜉𝑘
(𝑏𝑖)

𝑚
𝑘=1            in the pointwise case

 <
𝜕𝜑𝑛𝑗

𝜕𝜉𝑘
,𝑛

𝑘=1 𝑓𝑖 >𝐿2 𝐷𝑖  
 in the zonal case

  

Proof: We will discussed the case where the sensors are of pointwise type and located inside the domain Ω. The suite 

of sensors (𝑏𝑖 , 𝛿𝑏𝑖)1≤𝑖≤𝑞  is 𝜔𝐺-strategicif and only if 

            𝑥∗ ∈ (𝐿2(𝜔))𝑛  < 𝐻𝑦 , 𝑥∗ >(𝐿2(𝜔))𝑛   = 0,∀𝑦 ∈ 𝒪 ⟹ 𝑥∗ = 0. 

Suppose that the suite of sensors (𝑏𝑖 , 𝛿𝑏𝑖)1≤𝑖≤𝑞  is 𝜔𝐺-strategicbut for a certain  𝑛𝑁, 𝑟𝑎𝑛𝑘  𝐺𝑛𝑟𝑛 , then there exists a vector 

𝑥𝑛 = (𝑥𝑛1, 𝑥𝑛 2,… , 𝑥𝑛𝑟𝑛
)𝑡𝑟 ≠ 0, such that  𝐺𝑛𝑥𝑛 0. So, we can construct a nonzero 𝑥0 ∈ 𝐿2(𝜔) considering 

< 𝑥0 ,𝜑𝑝𝑗 >𝐿2(𝜔 )= 0 𝑖𝑓 𝑝 ≠ 𝑛 and 

          < 𝑥0 ,𝜑𝑛𝑗 >𝐿2(𝜔)= 𝑥𝑛𝑗  , 1 ≤ 𝑗 ≤ 𝑟𝑛 .  

Let  𝑥0 =  𝑥𝑛𝑗
𝑟𝑛
𝑗=1 𝜑𝑛𝑗   , 𝑥0 = (𝑥0 , 𝑥0,… , 𝑥0),  then 

           < 𝐻𝑦, 𝑥0 >(𝐿2(𝜔))𝑛  =  < 𝜒𝜔
𝑛
𝑘=1

𝜕

𝜕𝜉𝑘
 𝐾∗𝑦 ,𝑥0 >𝐿2(𝜔) 

                                                =  <𝑛
𝑘=1

𝜕

𝜕𝜉𝑘
(𝑥  𝑇 ),  𝜒𝜔

∗ 𝑥0 >𝐿2 Ω  

where x  is the solution of the following system: 

           

𝜕𝑥 

𝜕𝑡
 𝜉, 𝑡 = 𝐴∗𝑥  𝜉, 𝑡 +  𝛿𝑏𝑖𝑦𝑖 𝑇 − 𝑡          

𝑞
𝑖=1 in   𝑄

𝑥  𝜉, 0 = 0                                                                in   Ω

𝑥  𝜂, 𝑡 = 0                                                                in   𝛴

                                                                                                     (18)  

Consider the system: 

          

𝜕𝜑

𝜕𝑡
 𝜉, 𝑡 = −𝐴𝜑 𝜉, 𝑡                        in 𝑄  

𝜑 𝜉, 0 = 𝜒𝜔
∗ 𝑥0                                 in Ω 

𝜑 𝜂, 𝑡 = 0                                         in 𝛴  

                                                                                                                        (19) 

Multiply (18) by 
𝜕𝜑

𝜕𝜉𝑘
 and integrate on Q, we obtain 

           
𝜕𝜑

𝜕𝜉𝑘
 𝜉, 𝑡 

𝜕𝑥 

𝜕𝑡
 𝜉, 𝑡 𝑑𝜉

𝑄
𝑑𝑡 𝐴∗𝑥  𝜉, 𝑡 

𝜕𝜑

𝜕𝜉𝑘
 𝜉, 𝑡 𝑑𝜉

𝑄
𝑑𝑡 +  

          
Q   𝛿𝑏𝑖𝑦𝑖(𝑇 − 𝑡)

𝑞
𝑖=1  

𝜕𝜑

𝜕𝜉𝑘
 𝜉, 𝑡 𝑑𝜉𝑑𝑡. 

But we have 

           
𝜕𝜑

𝜕𝜉𝑘
 𝜉, 𝑡 

𝜕𝑥 

𝜕𝑡
 𝜉, 𝑡 𝑑𝜉

𝑄
𝑑𝑡  

𝜕𝜑

𝜕𝜉𝑘
 𝜉, 𝑡 𝑥  𝜉, 𝑡 𝑑𝜉 

0

𝑇

Ω
+ 𝐴

𝜕𝜑

𝜕𝜉𝑘
 𝜉, 𝑡 𝑥  𝜉, 𝑡 𝑑℥

𝑄
𝑑𝑡 

              
𝜕𝜑

𝜕𝜉𝑘
 𝜉, 𝑡 𝑥  𝜉, 𝑡 𝑑𝜉

Ω
 +  𝐴

𝜕𝜑

𝜕𝜉𝑘
 𝜉, 𝑡 𝑥  𝜉, 𝑡 𝑑𝜉

𝑄
𝑑𝑡 

then: 

          
𝜕𝜑

𝜕𝜉𝑘
 𝜉, 𝑡 𝑥  𝜉, 𝑡 𝑑𝜉

Ω
  𝐴

𝜕𝜑

𝜕𝜉𝑘
 𝜉, 𝑡 𝑥  𝜉, 𝑡 𝑑𝜉

𝑄
+ 𝐴∗𝑥  𝜉, 𝑡 

𝜕𝜑

𝜕𝜉𝑘
 𝜉, 𝑡 𝑑𝜉

𝑄
𝑑𝑡 

                                                      +   𝛿𝑏𝑖𝑦𝑖(𝑇 − 𝑡)
𝑞
𝑖=1  

𝜕𝜑

𝜉𝑘
 𝜉, 𝑡 𝑑𝜉𝑑𝑡

𝑄
 

integrating by parts we obtain 
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𝜕𝜑

𝜕𝜉𝑘
 𝜉, 𝑡 𝑥  𝜉, 𝑡 𝑑𝜉

Ω
 − 

𝜕𝑥 (ƞ,𝑡)

𝜕𝑣𝐴∗𝜋

𝜕𝜑

𝜕𝜉𝑘
 ƞ, 𝑡 𝑑ƞ𝑑𝑡    

      
𝜕

𝜕𝑣𝐴∗
 
𝜕𝜑

𝜕𝜉𝑘
 𝜂, 𝑡 𝑑ƞ𝑑𝑡 

𝜋
𝑥  ƞ, 𝑡 𝑑ƞ𝑑𝑡 +    𝛿𝑏𝑖𝑦𝑖(𝑇 − 𝑡)

𝑞
𝑖=1  

𝜕𝜑

𝜕𝜉𝑘
 𝜉, 𝑡 𝑑𝜉𝑑𝑡

𝑄
 

the boundary conditions give 

         
𝜕𝜑

𝜕𝜉𝑘
 𝜉, 𝑡 𝑥  𝜉, 𝑡 𝑑𝜉

Ω
   𝛿𝑏𝑖𝑦𝑖(𝑇 − 𝑡)

𝑞
𝑖=1  

𝜕𝜑

𝜕𝜉𝑘
 𝜉, 𝑡 𝑑𝜉𝑑𝑡

𝑄
. 

Thus 

          𝜑 𝜉, 𝑡 
𝜕𝑥 

𝜕𝜉𝑘
 𝜉,𝑇 𝑑𝜉

Ω
= −  

𝜕𝜑

𝜕𝜉𝑘
 𝑏𝑖 , 𝑡 

𝑇

0

𝑞
𝑖=1 𝑦𝑖(𝑇 − 𝑡)𝑑𝑡 

and we have 

          < 𝜒𝜔∇𝐾
∗𝑦, 𝑥0 >(𝐿2(𝜔))𝑛  =   

𝜕𝑥 

𝜕𝜉𝑘
 𝜉, 𝑡 𝜑 𝜉, 𝑡 𝑑𝜉

Ω
𝑛
𝑘=1  

                                                           = −   
𝜕𝜑

𝜕𝜉𝑘
 𝑏𝑖 , 𝑡 

𝑛
𝑘=1

𝑇

0

𝑞
𝐾=1 𝑦𝑖(𝑇 − 𝑡)𝑑𝑡. 

But 

          𝜑 𝜉, 𝑡 =  𝑒−𝜆𝑝 (𝑇−𝑡)∞
𝑝=1  < 𝑥°,𝜑𝑝𝑗 >𝐿2(𝜔)

𝑟𝑝
𝑗=1

𝜑𝑝𝑗 , 

Then 

           
𝜕𝜑

𝜕𝜉𝑘
 𝑏𝑖 , 𝑡 

𝑛
𝑘=1 =  𝑒−𝜆𝑝 (𝑇−𝑡)∞

𝑝=1  < 𝑥0 ,𝜑𝑝𝑗 >𝐿2(𝜔)
𝑟𝑝
𝑗=1

 
𝜕𝜑

𝜕𝜉𝑘

𝑛
𝑘=1  𝑏𝑖  

                                        =  𝑒𝜆𝑝  𝑇−𝑡 (𝐺𝑝𝑥𝑝)𝑖
∞
𝑝=1  

therefore 

          < 𝜒𝜔∇𝐾
∗𝑦, 𝑥0 >(𝐿2(𝜔))𝑛 = −   𝑒𝜆𝑝  𝑇−𝑡 (𝐺𝑝𝑥𝑝)∞

𝑝=1
𝑇

0

𝑞
𝑖=1 𝑦𝑖(𝑇 − 𝑡)𝑑𝑡                                                                          (20)      

Thus 

           < 𝜒𝜔∇𝐾
∗𝑦, 𝑥0 >(𝐿2(𝜔))𝑛 = −  𝑒𝜆𝑛  𝑇−𝑡 (𝐺𝑛𝑥𝑛)𝑖

𝑇

0

𝑞
𝑖=1 𝑦𝑖 𝑇 − 𝑡 𝑑𝑡 = 0 

This is true for all 𝑦  𝐿2 (0,𝑇;  𝑅𝑞), then 𝑥0 𝐾𝑒𝑟 𝐻∗  which contradicts the assumption that the suite of sensors is 𝜔𝐺-

strategic.□ 

We can deduced the following  result: 

Corollary 3.7: In  the one dimension case,  a sensor is 𝜔𝐺-strategic if and only if  𝑞 ≥ 𝑟 = 𝑠𝑢𝑝 𝑟𝑛  and 𝑟𝑎𝑛𝑘 𝐺𝑛 =

𝑟𝑛 ,∀𝑛 ≥ 1, where 𝐺𝑛  is given in theorem 3.6. 

Remark 3.8: From the previous results, we can get 

(1) The Theorem 3.6 implies that the required number of sensors is greater than or equal to the largest multiplicity of 

the eigenvalues. 

(2) By infinitesimally deforming the domain, the multiplicity can be reduced to one [19]. Consequently,  𝜔𝐺-strategic 

sensors can be achieved using only one sensor. 

Now, we can deduced that various sensors which are not strategic in usual sense for systems, but may be 𝜔𝐺-

strategic and achieve the 𝜔𝐺-observability. This is illustrated in the following counter- example. 

3.2 A Counter- Example   

Consider the system described by the parabolic equation 

           

𝜕𝑥  𝜉 ,𝑡 

𝜕𝑡
=

𝜕2𝑥

𝜕𝜉2
 𝜉, 𝑡   in ]0,1 × 0,𝑇[

𝑥 0,1 = 𝑥 1, 𝑡 = 0        in ]0,𝑇[

𝑥 𝜉 ,0 = 𝑥0 𝜉                    in ]0,1[  

                                                                                                                      (21) 

Suppose that the measurement is given by pointwise sensor located in 𝑏 ∈]0,1[ which is given by the following output 

function  



ISSN 2347-1921                                                           

3613 | P a g e                                                            M a y  2 5 ,  2 0 1 5  

             𝑦 . , 𝑡 =  𝑥 𝜉, 𝑡 𝛿 𝜉 − 𝑡 𝑑
Ω

𝜉 = 𝑥 𝑏, 𝑡 , 𝑡 ∈ (0,𝑇)                                                

(22) 

Where 𝜑𝑛 =  2 sin 𝑛𝜋𝜉  and 𝜆𝑛 = −𝑛2𝜋2. First, we must prove that the system (21)-(22) is not weakly observable in Ω, 

that means the sensors (𝛿𝑏 , 𝑏) is not strategic. For this purpose, we can write the system (21) as a state space one 

dimensional system 

          𝑥  𝜉, 𝑡 = 𝐴𝑥 𝜉, 𝑡  

          𝑥 𝜉 ,0 = 𝑥0 𝜉  

Where 𝐴 =
𝜕2

𝜕𝜉2 generate the continuous semigroup (𝑆 𝑡 )𝑡≥0 given by [17]. 

           𝑆 𝑡 𝑥0 =  𝑒𝜆𝑖𝑡 < 𝑥0 ,𝜑𝑖 >𝐿2(Ω )
∞
𝑖=1 𝜑𝑖  

Where,  𝜑𝑛 =  2 sin 𝑛𝜋𝜉 , 𝜆𝑛 = −𝑛2𝜋2 are the eigenfunctions associated with the eigenvalues of  𝐴. Then  from solution 

of (21), we have 

         𝑦 𝜉, 𝑡 =  𝑒𝜆𝑖𝑡 < 𝑥0 ,𝜑𝑖 >𝐿2 Ω  
∞
𝑖=1 𝜑𝑖 𝑏 = 𝐶𝑆 𝑡 𝑥0 = 𝐾(𝑡)𝑥0 

The system (21)-(22) is weakly observable if 𝑘𝑒𝑟 𝐾 𝑡 = {0}. 

 As proved in [27], if 𝑏 ∈ 𝑄 then system (21)-(22) is not weakly observable on Ω=(0,1) and a sensor (𝛿𝑏 , 𝑏) is not strategic.  

A sensor is 𝜔-strategic on (0,1)  ⇔ :𝑏 ∉ 𝑆 =   
𝑘

𝑛
 𝑘 ∈ [1,𝑛 − 1] ∩ 𝑁  ∞

𝑛=1 . Since sin 𝑛𝜋𝑏 = 0 ⇔ 𝑛𝑏 = 𝑘 ⟹ 𝑏 =
𝑘

𝑛
. 

Consequently, the system is weakly observable on (0,1).  And then,  it is G-strategic on (0,1) ⇔  𝑏 ∉ 𝑆𝐺 =   
2𝑘+1

2𝑛
 𝑘 ∈∞

𝑛=1

[0,𝑛−1 ∩𝑁. Since cos𝑛𝜋𝑏=0⇔𝑛𝑏=2𝑘+12⟹𝑏=2𝑘+12𝑛. Consequently, the system is weakly G-observable on (0,1).□ 

Corollary 3.9: If the system (21)-(22) is exactly 𝜔𝐺-observable, rank condition in theorem 

(3.6) is satisfied and a sensor is 𝜔𝐺-strategic. 

Now, assume that a sensor is not gradient strategic in whole the domain Ω and let  (𝜑 𝑖)𝑖∈𝑁𝑛  be a basis in (𝐿2 Ω )𝑛 . Let  

𝐼 ⊂ 𝑁𝑛  be such that 𝑘𝑒𝑟 𝐾𝛻∗ = 𝑠𝑝𝑎𝑛 {(𝜑 𝑖)𝑖∈𝐼} and 𝐽 = 𝑁𝑛\𝐼. 

Proposition 3.10: The following properties are equivalent: 

1. A sensor is 𝜔𝐺-strategic. 

2. 𝑠𝑝𝑎𝑛 {(𝜒𝜔𝜑 𝑖)𝑖∈𝐽 }                      = (𝐿2 𝜔 )𝑛  

3. If 𝑥 ∈ (𝐿2 𝜔 )𝑛  is such that < 𝑥,𝜒𝜔𝜑 𝑖 >(𝐿2 𝜔 )𝑛 = 0 for all 𝑖 ∈ 𝐽, then 𝑥 = 0. 

4. If  𝑎𝑖𝜑 𝑖𝑖∈𝐼 = 0 in Ω\𝜔, then 𝑎𝑖 = 0 for all 𝑖 ∈ 𝐼. 

Proof: 1⟹2 Since sensors are 𝜔𝐺-strategic this mean that  the system is weakly 𝜔𝐺-observable.  

Let 𝑥 ∈ (𝐿2 𝜔 )𝑛 . Then for 𝜀 > 0 ∃ 𝑦 ∈ 𝒪 such that  

         𝑥 − 𝜒𝜔∇𝐾
∗ (𝐿2 𝜔 )𝑛 ≤ 𝜀, but  

          ∇𝐾∗𝑦 =  < 𝛻𝐾∗𝑦,𝜑 𝑖 >(𝐿2 Ω )𝑛 𝜑 𝑖𝑖∈𝑁𝑛 =  < 𝑦,𝐾∇∗𝜑 𝑖 >𝒪 𝜑 𝑖𝑖∈𝐽 , and thus 

          𝜒𝜔∇𝐾
∗𝑦 =  < 𝑦,𝐾∇∗𝜑 𝑖 >𝒪 𝜒𝜔𝜑 𝑖𝑖∈𝐽 . Then   

           𝑥 −  < 𝑦,𝐾∇∗𝜑 𝑖 >𝒪 𝜒𝜔𝜑 𝑖𝑖∈𝐽  
(𝐿2 𝜔 )𝑛

< 𝜀  

and hence 𝑥 ∈  {𝜒𝜔𝜑 𝑖}𝑖∈𝐽             . 

2⟹3 Let 𝑥 ∈ (𝐿2 𝜔 )𝑛 . For any 𝜀 > 0 ∃ 𝛼𝑗 (𝑗 ∈ 𝐽) such that 

             𝑥 −  𝛼𝑗𝑖∈𝐽 𝜒𝜔𝜑 𝑗 (𝐿2 𝜔 )𝑛

2
< 𝜀,  with  

         < 𝑥,𝜒𝜔𝜑 𝑗 >(𝐿2 𝜔 )𝑛 = 0,∀𝑗 ∈ 𝐽  

we deduced that  

           𝑥 (𝐿2 𝜔 )𝑛
2 < 𝜀 . Thus, 𝑥 = 0. 

3⟹4 Let  𝑎𝑖𝜑 𝑖𝑖∈𝐼 = 0 in Ω\𝜔.  
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Now Consider 𝑥 = 𝜒𝜔( 𝑎𝑖𝜑 𝑖𝑖∈𝐼 ). For 𝑗 ∈ 𝐽, we have 

 

         < 𝑥,𝜒𝜔𝜑 𝑖 >(𝐿2 𝜔 )𝑛 =  𝑎𝑖 < 𝜑 𝑖 ,𝜑 𝑗 >(𝐿2 Ω )𝑛𝑖∈𝐼 = 0.  

Since 𝑥 = 0, we get 

             𝑎𝑖𝜑 𝑖𝑖∈𝐼 = 0 in Ω and 𝑎𝑖 = 0,∀𝑖 ∈ I. 

4⟹1 Consider  𝑥 ∈ (𝐿2 𝜔 )𝑛  such that   

        𝐾𝛻∗𝜒𝜔
∗ 𝑥 = 0. We have 𝜒𝜔

∗ 𝑥 ∈ (𝐿2 Ω )𝑛    

then  

        𝐾𝛻∗𝜒𝜔
∗ 𝑥 = 𝐾𝛻∗  < 𝑥,𝜒𝜔𝜑 𝑖 >(𝐿2 𝜔 )𝑛 𝜑 𝑖𝑖∈𝑁𝑛  = 𝐾𝛻∗( < 𝑥,𝜒𝜔𝜑 𝑖 >(𝐿2 𝜔 )𝑛 𝜑 𝑖𝑖∈𝑗 ) = 0. Therefore, 

            < 𝑥,𝜒𝜔𝜑 𝑖 >(𝐿2 𝜔 )𝑛 𝜑 𝑖𝑖∈𝑗 ∈ 𝑠𝑝𝑎𝑛{(𝜑 𝑖)𝑖∈𝐼}  

and then 

           < 𝑥,𝜒𝜔𝜑 𝑖 >(𝐿2 𝜔 )𝑛𝑖∈𝐼 = 0,∀𝑗 ∈ 𝐽. 

Therefore 

          𝜒𝜔
∗ 𝑥 =  < 𝑥,𝜒𝜔𝜑 𝑖 >(𝐿2 𝜔 )𝑛 𝜑 𝑖𝑖∈𝐼 = 0  in Ω\𝜔.  

From the assumption we have < 𝑥,𝜒𝜔𝜑 𝑖 >(𝐿2 𝜔 )𝑛 = 0,∀𝑖 ∈ 𝐼. Hence 𝑥 = 0.□ 

We can deduced the following result: 

Corollary 3.11: Under the hypotheses of Proposition 3.10, a sensors is 𝜔𝐺-strategic in all 

𝜔⊂ Ω such that < 𝜑 𝑖 ,𝜑 𝑗 >(𝐿2 𝜔 )𝑛   = 0, ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗. 

Proof: To deduce the result from previous Proposition 3.10, we take  𝑎𝑖𝜑 𝑖𝑖∈𝐼 = 0 in Ω\𝜔. Then we only need to show 

that 𝑎𝑖 = 0,∀𝑖 ∈ 𝐼. Let 𝑥 =  𝑎𝑖𝜑 𝑖𝑖∈𝐼  in  and 𝑖0 ∈ I. Then  

          < 𝑥,𝜑 𝑖0 >(𝐿2 Ω )𝑛 =<  𝑎𝑖𝜑 𝑖𝑖∈𝐼 ,𝜑 𝑖0 >(𝐿2 Ω )𝑛 =  𝑎𝑖𝑖∈𝐼 < 𝜑 𝑖 ,𝜑 𝑖0 >(𝐿2 Ω )𝑛 = 𝑎𝑖0                                                            (23) 

Since 𝑥 = 0 in Ω\𝜔, under the assumption of Corollary 3.11 we have 

            < 𝑥,𝜑 𝑖0 >(𝐿2 Ω )𝑛  =  𝑎𝑖∈𝐼 < 𝜑 𝑖 ,𝜑 𝑖0 >(𝐿2 𝜔 )𝑛 = 𝑎𝑖0 𝜑 𝑖0 (𝐿2 𝜔 )𝑛
2                                                             (24) 

From (23)-(24), we obtain 𝑎𝑖 = 0 ,∀𝑖 ∈ 𝐼 . 

4. APPLICATION TO SENSORS LOCATIONS 

In this section, we give specific results related to the different case presented in the above section. First we consider 

internal sensors (zonal, pointwise, filament in rectangular and  disk domain) the presented result give information on the 

structure of  𝜔. Consider the system 

            

𝜕𝑥

𝜕𝑡
 𝜉1, 𝜉2, 𝑡 = ∆𝑥 𝜉1 , 𝜉2, 𝑡                 in  𝑄,

𝑥 𝜉1, 𝜉2, 0 = 𝑥0 𝜉1, 𝜉2                       in   Ω,

𝑥 𝜂1 , 𝜂2 , 𝑡 = 0                                      in    𝛴 

                                                                                                                 (25) 

Let Ω = (0,1) × (0,1) and let 𝜔 = (𝛼1,𝛽1) × (𝛼2,𝛽2) be the considered region is subset of Ω, the eigenfunctions and the 

eigenvalue of the system (25) are given by: 

          𝜑𝑖𝑗  𝜉1, 𝜉2 =
2

  𝛽1−𝛼1  𝛽2−𝛼2 
sin 𝑖𝜋

(𝜉1−𝛼1)

 𝛽1−𝛼1 
𝑠𝑖𝑛𝑗𝜋

(𝜉2−𝛼2)

 𝛽2−𝛼2 
                                                             (26) 

Associated with eigenvalue  

            𝜆𝑖𝑗 = −
𝑖2

 𝛽1−𝛼1 
2 +

𝑗 2

 𝛽2−𝛼2 
2                                              (27) 

4.1 Internal Zone Sensor  

Consider the system (25) together with output function (2) where the sensor supports 𝐷 are located in Ω. The output (2) 

can by written by the form  

          𝑦 𝑡 =  𝑥
𝐷

 𝜉1, 𝜉2, 𝑡 𝑓 𝜉1 , 𝜉2 𝑑𝜉1𝑑𝜉2                                                                                                                          (28) 
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Where 𝐷 ⊂ Ω is location of zone sensor and 𝑓 ∈ 𝐿2(𝐷). In this case of (see Figure 3), the eigenfunctions and the 

eigenvalues (26) and (27). 

 

Fig. 3: Domain Ω, sub-region 𝝎 and location 𝑫 of internal zone sensor 

However , if we suppose that  

           
 𝛽1−𝛼1 

2

 𝛽2−𝛼2 
2
∉ 𝑄 

Then multiplicity of 𝜆𝑖𝑗  is 𝑟𝑖𝑗 = 1 and then one sensor (𝐷, 𝑓) my be sufficient to achieve 𝜔𝐺-observable of the systems (25) 

and (28) [19]. Let  the measurement support is rectangular with     

          𝐷 = [𝜉01 − 𝑙1 , 𝜉01 + 𝑙1] × [𝜉02 − 𝑙2, 𝜉02 + 𝑙2] ∈ Ω 

Then, we have the following result 

Corollary 4.1:   If   𝑓1 is symmetric about 𝜉1 = 𝜉01 and  𝑓2 is symmetric about 𝜉2 = 𝜉02, then the sensor  𝐷, 𝑓  is 𝜔𝐺-

strategic if 

          
𝑖(𝜉01−𝛼1)

 𝛽1−𝛼1 
and

 𝑗 (𝜉02−𝛼1)

 𝛽2−𝛼2 
∉ 𝑁 for some 𝑖, 𝑗. 

4.2 Internal Pointwise Sensor  

In this case the out put function is given by: 

         𝑦 𝑡 =  𝑥
𝐷

 𝜉1 , 𝜉2, 𝑡 𝛿 𝜉1 − 𝑏1 , 𝜉2 − 𝑏2 𝑑𝜉1𝑑𝜉2                   (29) 

With 𝑏 = (𝑏1  ,𝑏2)  is location of pointwise sensor as defined in (see Figure 4) 

 

Fig. 4: Rectangular domain, and location 𝒃 of internal pointwise sensor 

  If  
 𝛽1−𝛼1 

 𝛽2−𝛼2 
∉ 𝑄,  then 𝑟𝑖𝑗 = 1 and one sensor (𝑏, 𝛿𝑏) may be sufficient for 𝜔𝐺-observability of the systems (25)-(29) 

Corollary 4.2: The sensor  𝑏,𝛿𝑏  is 𝜔𝐺-strategic if  

           
𝑖(𝑏1−𝛼1)

 𝛽1−𝛼1 
and

𝑗 (𝑏2−𝛼2)

 𝛽2−𝛼2 
∉ 𝑁, for some 𝑖, 𝑗. 

4.3 Internal Filament Sensor 

Consider  the case  where the observation  is given on the curve 𝜎 = 𝐼𝑚 𝛾  with 𝛾 ∈ 𝐶1(0,1) (see Figure 5) 
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Fig. 5: Rectangular domain, and location 𝝈  of internal filament sensors 

Corollary 4.3: If the measurements recovered by filament sensor (𝜎, 𝛿𝜎 ) such that is symmetric with respect to the line 

𝜉 = 𝜉0. Then the sensor (𝜎, 𝛿𝜎) is 𝜔𝐺-strategic if  

          
𝑖(𝜉01−𝛼1)

 𝛽1−𝛼1 
 and 

𝑗 (𝜉02−𝛼2)

 𝛽2−𝛼2 
∉ 𝑁, for  𝑖, 𝑗 = 1,… , 𝐽. 

Remark 4.4: These results can be extended to the following: 

1. Case of Neumann or mixed boundary conditions [4-5]. 

2. Case of disc domain )1 (  D,  and )0(    , r  where   and 10  r     [1-3] . 

3. Case of boundary sensors where )  ,( qRXLC , we refer to see [13-14].  

4. We can show that the observation error decreases when the number and support of sensors increases [23, 25]. 

5. CONCLUSION 
We have been introduced a sufficient condition of regional gradient strategic sensors in order to achieves regional gradient 
observability. Many interesting results concerning the choice of sensors structure are given and illustrated in specific 
situations. Various questions still opened under consideration. For example, these result can be extended to the boundary 
case with parabolic and hyperbolic systems [8].  
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