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Abstract 

In this paper, ordinary least squares (OLS) method will be used to estimate the parameters of the auto-regressive model 
without constant of order two. Moreover, the convergence in probability (the consistency property) of the estimates is 
proved. 
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INTRODUCTION 

Mann and Wald (1943) showed that if a temporal stochastic process described by linear difference equations is damped 
without disturbances, it is stable (the expectations of the squares of all variables are uniformly bounded) with disturbances 
and the "maximum likelihood" estimates of the parameters involved are consistent. However, a system which is stable or 
explosive without disturbances is explosive with them. Rubin (1950) proved consistency in a simple example of the 
explosive case.  

He considered the first order autoregressive model without constant as:  

1t t ty y   ,            (1) 

Where, 
 

is a real number and t are real stochastic variables independently distributed with mean zero and 

variance
2 , and 0y is a given real number. The results derived here hold equally well if , t   and 0y are complex 

numbers, quaternions, or Cayley numbers. The maximum likelihood estimate ̂ is defined as: 
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In case of complex number, quaternions, or Cayley number, equation (2) will take the form: 
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Where, y denotes the conjugate of y and showed that
 

ˆlim   

White (1958, 1959) showed that, for 1  and
2

t  NID(0, ) , the distribution of ̂  normalized by a function of n 

has a Cauchy distribution in the limit. His result can also be used to demonstrate that  ˆ 1  normalized by 
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 has normal distribution in the limit although white obtained the limit moment generating functions for the case 

1,  1 and 1      . Anderson and Hsiao (1982) presented several estimation methods for various regression 

models with autoregressive of order one covariance structure using maximum likelihood method. Blundell and Bond 
(1998) proposed an alternative Generalized Method of Moments (GMM) estimator that imposed a restriction on the initial 

conditions 1iy . Lung and Jihai (2010), established asymptotic properties of quasi-maximum likelihood estimators for 

spatial autoregressive (SAR) panel data models with fixed effects and SAR disturbances. Youssef, et al (2011), suggested 
an OLS estimator for AR (2) with constant term and the properties of the estimated parameters of AR (2), have been 
studied. Also, closed form of the variance of the estimated parameters has been derived. El-Sayed, et al (2014), 
suggested an OLS estimator for AR (2) with and without constant in penal date. In this article, the estimators of AR (2) 
model without constant have been obtained and the consistency of the estimators has been proved. 

OLS Estimators of AR(2) Model 

Consider the second order auto-regressive process { t
y , t = 3, …,n } be defined as  

1 1 2 2t t t ty y y      ,            (4) 
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Where, t is a sequence of independent identically distributed random variables with mean zero and variance
2 . 

The values of 1 , 2 and the form of
ty  will determine the nature of the time series. The least square estimator 

for 1 2( , )  , can be obtained by minimized the error sum of squares as: 
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By equating the partial derivatives with respect to 1 2(  and )   of equation (5), the following estimators will be obtained: 
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and 2̂ will take the form: 
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Consistency ˆ ˆ
1 2ρ  and ρ  

Based on the OLS estimators of 1 and 2  of equations (6) and (7) , the estimate 1̂   can be rewritten as 

1 2 1 2

3 3 3

2 1 1 2

3 3

ˆ ,   

1 [ . ]

n n n

t t t t t t

t t t
i i n n

t t t t

t t

c c c y

c y c y

 

 


  

 

 



 



  

 
                       (8) 

Where, 
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     [Khalifa (2011)] 

Lemma: The OLS estimates 1̂  
and 2̂  

are consistent as n  . 

Proof 

We shall prove the consistency by showing that 
1

n


 time the numerator (denominator) converges to zero (constant) in 
probability respectively. 

Assume that, 
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According to the assumptions of the model, it can be seen that 
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It can be proved that, 
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 lim(  I) 0p Part   

By the same procedures, it can be easily prove that lim(  II) 0p Part  , where 
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By taking the expectation of the nominator the following result will be obtained  
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Based on equations (13) and (14), we find that, 
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By taking the limp  of equation (8), the consistency of 1̂  will be reached i.e. 

1 1
ˆ          p   

Similarly, by the same way, it can be proved that 2̂  is consistent estimator of 2 . 
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