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ABSTRACT 

Thomas Robert Malthus Theory of population highlighted the potential dangers of over population. He stated that while the 
populations of the world would increase in geometric proportions, the food resources available for them would increase in 
arithmetic proportions. This study was carried out to find the trend, fit a model and forecast for the population growth rate 
of Nigeria.The data were based on the population growth rate of Nigeria from 1982 to 2012 obtained from World Bank 
Data (data.worldbank.org). Both time and autocorrelation plots were used to assess the Stationarity of the data. Dickey-
Fuller test was used to test for the unit root. Ljung box test was used to check for the fit of the fitted model. Time plot 
showed that the random fluctuations of the data are not constant over time. There was an initial decrease in the trend of 
the growth rate from 1983 to 1985 and an increase in 1986 which was constant till 1989 and then slight fluctuations from 
1990 to 2004 and a general increase in trend from 2005 to 2012. There was a slow decay in the correlogram of the ACF 
and this implied that the process is non stationary. The series was stationary after second differencing, Dickey-Fuller = -
4.7162, Lag order = 0, p-value = 0.01 at α= 0.05. The p-value (0.01) and concluded that there is no unit root i.e the series 
is stationary having d=2. Correlogram and partial correlogram for the second-order differenced data showed that the ACF 
at lag 1 and lag 5 exceed the significant bounds and the partial correlogram tailed off at lag 2.The identified order for the 

ARIMA(p,d,q) model was ARIMA(2,2,1). The estimate of AR1 co-efficient )( 1 =1.5803 is observed to be statistically 

significant but the estimated value does not conforms strictly to the bounds of the stationary parameter hence )( 1 was 

excluded from the model. )( 2 =-0.9273 is observed to be statistically significant and  conformed strictly to the bounds of 

the stationary parameter , hence was maintained in the model. 

The estimate of MA1 co-efficient )( 1 = - 0.1337 was observed to be statistically significant conformed strictly to the 

bounds of the parameter invertibility. For ARIMA (2, 2, 0) the estimate of AR1 co-efficient )( 1 =1.5430 was observed to 

be statistically significant and not conformed strictly to the bounds of the parameter stationary, hence excluded from the 
model. 

The estimate of AR 2 co-efficient )( 2 =-0.9000 is observed to be statistically significant and conformed strictly to the 

bounds of the parameter stationary, hence retained in the model. 
The ARIMA (2, 2, 0) is considered the best model. It has the smallest AIC. The Ljung test showed that residuals are 
random and implies that the model is fit enough for the data. The forecast Arima function gives us a forecast of the 
Population Growth Rate in the next thirty eight (38) years, as well as 80% and 95% prediction intervals for those 
predictions i.e up to 2050 
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 INTRODUCTION 
Nigeria is a country located in West Africa whose official name is the Federal Republic of Nigeria. It is known as the “Giant 
of Africa” because it is considered the most populous country in Africa and seventh most populous country in the world 
(Library of Congress-Federal Research Division, 2008). 
Nigeria is a high fertility country and there is evidence that its large population inhibit government‟s efforts in meeting the 
basic needs of the people. With a population that already exceeds 130 million people and growing roughly 3 percent 
annually (United Nations, 2004).Population growth rate is normally influenced by three main factors namely- birth, death 
and migration. The birth rate, low death rate and migration are the sources of high population growth in Nigeria. It has 
experienced a population explosion for at least the last 50 years due to high fertility rates. Growth was fastest in the 
1980s, after child mortality had dropped, and has slowed slightly. According to the 2012 revision of the world population 
prospects the total population was 159,708,000 in 2010, compared to only 37,860,000 in 1950.Over the years the birth 
rate and death rate of Nigeria had fluctuated and has affected its population growth. Nigeria population currently is 168.8 
million (2012). 

The population growth rate is the rate at which the number of individuals in a population increases in a given time period 
as a fraction of the initial population and is often expressed as a percentage of the number of individuals in the population 
at the beginning of that period. (2.8% annual change, 2012). A positive growth rate ratio indicates that the population is 
increasing, while a negative growth ratio indicates the population is decreasing. A growth ratio of zero indicates that there 
were same number of people at the two times.  

According to the United Nations Population Fund (UNFPA), formerly the United Nations Fund for Population Activities, 
estimates 31.10 in 2011. Global human population growth is around 75 million annually, or 1.1% per year. The global 
population has grown from 1 billion in 1800 to7 billion in 2012. It is expected to keep growing to reach 10 billion by the end 
of the century. 

Objectives of Study 
This research is aimed at finding the trend of the population growth rate within 1982-2012, fitting a model for the 
population growth rate and forecasting for the population total in the nearest future. 

Data                                                                                                                                                                                                             
The data collection was done from a secondary source. The data was obtained from the health profile of the World Bank 
Data (data.worldbank.org). It captures a time series data of 31 years i.e 1982 to 2012. 

Literature Review 
Nigeria‟s population total in 2006 was 140,431,790 according to the National population commission projections and UN 
projections. It was 168,833,776 in 2012. It was assumed the annual growth rate of 2.8% annual change in 2012. The 
1952/53 population census in spite of some technical difficulties was considered the best census conducted in Nigeria 
before 1991 census. (Phillips, 1997).The sex distribution is balanced, the population almost equally divided between the 
males and females with 71,345,488 males and 60,086,302 females. Thus about 50.8% of the populations are males and 
49.2% are females. (Phillips,1997).  
The Thomas Robert Malthus Theory of population highlighted the potential dangers of over population. In his famous book 
„An Essay on the Principles of Population‟ Malthus stated that while the populations of the world would increase in 
geometric proportions, the food resources available for them would increase in arithmetic proportions. Malthus theory was 
based on the assumption that the power of population is much greater than the power of the earth to provide subsistence 
to man. In his own words population would grow at such a high rate that it would outstrip food supply. 
According to Malthus, disease, food shortage and death due to starvation, were nature‟s way to control population growth. 
He proposed that human beings adopt measures like abortion, delay in marriage and celibacy to check population growth. 
By the end of the 19

th
 century, when living standards improved and birth rates dropped in the western countries. Concerns 

of overpopulation became irrelevant. However in underdeveloped countries which have agrarian economies. Malthus 
theory often finds credibility.  
Although economists before Malthus made some of the observations which Malthus made, it was his work that had great 
influence on the major classical economists that followed him. Perhaps the most important legacy of Malthus has been the 
treatment of population growth. These and other classical theory emphasizes the importance of both fertility and mortality 
in population growth.  
Modern time series forecasting methods are essentially rooted in the idea that the past tells us something about the future. 
How we are to extrapolate future events based on this information, constitute the main subject matter of time series 
analysis.  
Typically, the approach to forecasting time series is to first specify a model, although this need not be so. This model is a 
statistical formulation of the dynamic relationships between that which we observe (i.e. the so called information set), and 
those variables we believe are related to that which we observe. It should thus be stated immediately that this discussion 
will be restricted in scope to those models which can formulated parametrically.  
The “classical” approach to time series forecasting derives from regression analysis. The standard regression model 
involves specifying a linear parametric relationship between a set of explanatory variables (or exogenous variables) and 
the dependent (or endogenous variable). The parameters of the model can be estimated in a variety of ways, going back 
as far as Gauss in 1794 with the “Least Squares” method, but the approach always culminates in striving for some form of 
statistical orthogonality between the explanatory variables and the residuals of the regression. 
 Both Wiener (1949) and Kolmogorov (1941) were pioneers in the field of linear prediction, and while their approaches 
differed (Wiener worked in the frequency domain popular amongst engineers, while Kolmogorov worked in the time 
domain), it is clear that their solutions to the same basic geometrical problem were equivalent ( Priestley (1981) ch.10). 
Wiener‟s work, in particular, was especially relevant to modern time series forecasting in that he was among the first to 
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rigorously formulate the problem of “signal extraction.” That is, given observations on a time series corrupted by additive 
noise, what is the optimal estimator (in the mean-squared error (MSE) sense) of the latent or underlying signal (or state 
variable).  
Given the historical context of massive systems of equations models popular among macro econometric forecasters of 
1950‟s (Klein-Goldberger model (1955) or Adelmans (1959) for details) it quickly became apparent that forecasting models 
derived from a signal. These methods became popular due to their simplicity and ease of application for the general 
practitioner. However, these methods are considered ad hoc since they fail to incorporate theoretical considers into their 
decompositions of cyclical components and they are formulated without recourse to a well specified statistical model. 
Consequently, they also do not allow for prediction intervals since there is no accounting for predictive variance. In recent 
years, there has been an increasing emphasis by national statistical offices to include uncertainty in their official population 
projections so that the user community has a more realistic sense for what future might hold. For most national statistical 
offices this has involved the inclusion of several plausible (deterministic) projection variants based on assumptions 
regarding future fertility, mortality and migration in a cohort-component population projection framework. We focus on the 
issues and practicalities of including uncertainty from a probabilistic view point. Population forecasts are based on past 
patterns, where a long time series of data are very valuable for assessing our uncertainty for the future. 
With respect to the dimensionality of population projections, the simplest models rely on the extrapolations of population 
size, population growth rates or crude rates related to particular components of demographic change (fertility, mortality 
and migration). The adding of age and sex leads to the cohort-component framework of population accounting developed 
by Leslie (1945). 
According to the various project works that were considered, it can be concluded that the Least Square method and the 
Autoregressive Integrated Moving Average Model were mostly adopted for the forecasting of the future values. 

Methodology 

Box-Jenkins model identification 
Stationarity and Seasonality  
The first step in developing a Box–Jenkins model is to determine if the time series is stationary and if there is any 
significant seasonality that needs to be modeled.  

Detecting Stationarity  
Stationarity can be assessed from a run sequence plot. The run sequence plot should show constant location and scale. It 
can also be detected from an autocorrelation plot. Specifically, non-stationarity is often indicated by an autocorrelation plot 
with very slow decay.  
Finally, unit root tests provide a more formal approach to determining the degree of differencing such as Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) and Phillips-Perron Unit Root Tests are carried out employing the unit root testing 
procedures of Hamilton (1994). The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for the null hypothesis of a level 
stationary against an alternative of unit root together with the Philips-Peron test for the null hypothesis of a unit root 
against the alternative of a stationary series.  
The decision rule is that for the KPSS test if the p-value of its test statistic is greater than the critical value of say 0.05, 
then reject the null hypothesis of having a level stationary series and therefore conclude the alternate hypothesis that it 
has a unit root. The Philips-Peron Test on the other hand test for the null hypothesis of unit root against an alternative 
hypothesis of stationarity by rejecting the null hypothesis if its p-value is less than the critical value chosen. 

The Dickey-Fuller test: just like the Phillips Perron test, the null hypothesis is: H0: The series has a unit root (the 

process is not stationary) against H1: The series has no unit root (the process is stationary). Decision rule: reject H0 if p-
value is less than α. 

Differencing to achieve Stationarity  
Box and Jenkins recommend the differencing approach to achieve stationarity. However, fitting a curve and subtracting 
the fitted values from the original data can also be used in the context of Box–Jenkins models. 

Seasonal Differencing 
At the model identification stage, the goal is to detect seasonality, if it exists, and to identify the order for the seasonal 
autoregressive and seasonal moving average terms. For many series, the period is known and a single seasonality term is 
sufficient. For example, for monthly data one would typically include either a seasonal AR 12 term or a seasonal MA 12 
term. For Box–Jenkins models, one does not explicitly remove seasonality before fitting the model. Instead, one includes 
the order of the seasonal terms in the model specification to the ARIMA estimation software. However, it may be helpful to 
apply a seasonal difference to the data and regenerate the autocorrelation and partial autocorrelation plots. This may help 
in the model identification of the non-seasonal component of the model. In some cases, the seasonal differencing may 
remove most or all of the seasonality effect.  

Identify p and q  
Once stationarity and seasonality have been addressed, the next step is to identify the order (i.e., the p and q) of the 
autoregressive and moving average terms. These are determined by examining the values of the autocorrelations and the 
partial autocorrelations with their corresponding plots as explained below.  

Autocorrelation and Partial Autocorrelation plots  
The primary tools for doing this are the autocorrelation plot and the partial autocorrelation plot. The sample autocorrelation 
plot and the sample partial autocorrelation plot are compared to the theoretical behavior of these plots when the order is 
known. 

Order of Autoregressive Process (p)  
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Specifically, for an AR (1) process, the sample autocorrelation function should have an exponentially decreasing 
appearance. However, higher-order AR processes are often a mixture of exponentially decreasing and damped sinusoidal 
components.  
For higher-order autoregressive processes, the sample autocorrelation needs to be supplemented with a partial 
autocorrelation plot. The partial autocorrelation of an AR(p) process becomes zero at lag p + 1 and greater, so we 
examine the sample partial autocorrelation function to see if there is evidence of a departure from zero. This is usually 
determined by placing a 95% confidence interval on the sample partial autocorrelation plot (most software programs that 
generate sample autocorrelation plots will also plot this confidence interval). If the software program does not generate the 
confidence band, it is approximately, with N denoting the sample size. 

Order of Moving-Average Process (q)  
The autocorrelation function of a MA(q) process becomes zero at lag q + 1 and greater, so we examine the sample 
autocorrelation function to see where it essentially becomes zero. We do this by placing the 95% confidence interval for 
the sample autocorrelation function on the sample autocorrelation plot. Most software that can generate the 
autocorrelation plot can also generate this confidence interval.  
The sample partial autocorrelation function is generally not helpful for identifying the order of the moving average process. 

Parameter Estimation  
After identifying the order of the tentative model, the parameters of the model are estimated using the maximum likelihood 
estimation to determine the AR and MA parameters, as well as all other parameters reported in the study.  
Three other penalty function statistics namely the Akaike information criteria (AIC), the Schwarz Bayesian information 
criteria (BIC) as well as the corrected Akaike information criteria (AICc) are explained in penalizing fitted models based on 
the principle of parsimony. These statistics were one of the various checks used to verify the adequacy of the chosen 
models. Comparatively, models with the smallest AIC and BIC are deemed to have residuals which resembles a white 
noise process. Twice the number of estimated parameters minus two times the log likelihood gives the AIC value of a 

model i.e kLAIC 2log2   The BIC is computed as knInLIn )()(2  , where L is the likelihood, n denotes the 

number of residuals and k is the number of free parameters. 
Each parameter estimate reports standard error for that particular parameter. Using the parameter estimate and its 
standard error, a test for statistical significance (t-value) are then conducted. For statistically significant parameters, the 
absolute values of the t-ratios are expected to be greater than 1.96 or 2 in order for the parameters to be maintained in the 
model whereas parameters which are not significant are trimmed or removed from the model.  
Furthermore, the estimated AR and MA parameters must also conform to certain boundary condition that is they must lie 
between -1 and 1. If the AR and MA parameters do not lie within those bounds of stationarity then the parameters of the 
model are re-estimated or if possible a different candidate model is alternatively considered for estimation. All these 
checks when strictly adhered to would lead to obtaining reliable results from the model.  

Diagnostic Checking   

The diagnostic stage of the Box-Jenkins ARIMA process is to examine whether the fitted model follows a white noise 

process. This can be done by studying the autocorrelation values ( kr ) one at a time, and to develop a standard error 

formula to test whether a particular kr  value is significantly different from zero. Theoretically, it is envisage that all 

autocorrelation coefficients for a series of random numbers must be zero. However, because of the presence of finite 
samples, each sample autocorrelations might not be exactly zero. The ACF coefficients of white noise data is said to have 

a sampling distribution that can be approximated by a normal curve with mean zero and standard error of 
n

1
, where n 

gives the number of data points in the observed series. 
 For a white noise process, 95% of all sample autocorrelation values must lie within a range specified by the mean plus or 

minus 1.96 standard errors. In this case, since the mean of the process is zero and the standard error is 
n

1
, one should 

expect about 95% of all sample autocorrelation values kr  to be within the range of n96.1  or n96.1(  

< kr <1.96 n ) . If this condition does not hold, then the model fitted do not follow a white noise process, or the residuals 

are not white noise. The correlogram of the ACF would therefore show lines at the critical values n96.1  of for easily 

verification.  
The Ljung-Box test is a modified version of the portmanteau test statistic developed by Ljung and Box (1978) is also used. 
The modified Ljung- Box Q statistic tests whether the model‟s residuals have a mean of zero, constant variance and 

serially uncorrelated values kr  (a white noise check). The test statistic is given by;  
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Where n denote the number of data points in the series,
2

kr  is the square of the autocorrelation at lag k, and h is the 

maximum lag being considered. The hypothesis to be tested is formulated in the form;  
H0: The set of autocorrelations for residual is white noise (model fit data quite well)  
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H1: The set of autocorrelations for residual is different from white noise  

The test statistic (Q) is compared with a chi-square distribution written as
2

)( qph  , where   is taken to be 5% (0.05), 

h is the maximum lag being considered, and p and q are the order of the AR and MA processes respectively. The decision 

is to accept the null hypothesis (H0) if
2

)( qphQ    and to reject the alternative hypothesis if 
2

)( qphQ    . In other 

words, the residuals are not white if the test statistic Q lies in the extreme 5% of the right-hand tail of the chi-square 
distribution.  

Forecast 
In the forecasting stagewe use the FORECAST statement to forecast future values of the time series and the confidence 
interval.  

Discussion 
Time series analysis was used for the data analysis, the time plot of the sets of observation for the population growth rate 

above is shown below;   

Fig 1: time plot of the sets of observation for the population growth rate 

It can be seen from fig 1 that the random fluctuations of the data are not constant over time. There was an initial decrease 
in the trend of the growth rate from 1983 to 1985 and an increase in 1986 which was constant till 1989 and then slight 
fluctuations from 1990 to 2004 and a general increase in trend from 2005 to 2012. 

 

The slow decay in the correlogram of the ACF above implies that the process is non stationary. 
To confirm the result from the correlogram, a formal test for stationarity was performed using the Dickey-Fuller test for unit 
root and the following was observed; Dickey-Fuller = -0.173, Lag order = 0, p-value = 0.9898 
H0: there is unit root (not stationary) against H1: there is no unit root (stationary), at α= 0.05 
Since the p-value (0.9898) is greater than α, we cannot reject H0 and conclusion that there is unit root i.e the series is not 
stationary and there is need for differencing. 

 Differenced Population Growth Rate data 

After differencing, Augmented Dickey-Fuller test was carried out with the following results: 
Dickey-Fuller = -3.1225, Lag order = 0, p-value = 0.1415, at α= 0.05 
Since the p-value (0.1415) is greater than α, we cannot reject H0  and conclusion that there is unit root i.e the series is not 
stationary. This took us to further differencing and obtained the results, Dickey-Fuller = -4.7162, Lag order = 0, p-value = 
0.01 at α= 0.05. The p-value (0.01) is less than α, we reject H0. And conclusion that there is no unit root i.e the series is 
stationary. 
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 Since the data has been confirmed to be stationary at the second-order difference, we can go further to fit a model, 
having d=2. 

 

Fig 2: Correlogram and partial correlogram for the second-order differenced data. 

From the figure above, the correlogram shows that the ACF at lag 1 and lag 5 exceed the significant bounds and the 
partial correlogram tailed off at lag 2. Since the correlogram is zero after lag 1, and the partial correlogram tails off to zero 
after lag 1 and PACF tails off at lag 2,then the identified order for the ARIMA(p,d,q) model is thus ARIMA(2,2,1). The 
selected models are then compared with an over fitted model ARIMA (2, 2, 0). Hence we have the following table; 

ARIMA (2, 2, 1)                     

                                                        AIC=-201.48 

Co-efficient Estimate Standard error t-value 

AR1 1.5803 0.1130    13.9849 

AR2 -0.9273   0.0769    -12.0585 

MA1 -0.1337 0.2267 -0.5898 

Table 2: Parameter Estimation 

From table 2, the estimate of AR1 co-efficient )( 1 =1.5803 is observed to be statistically significant since its test statistic 

(13.9849) >2 but the estimated value does not conforms strictly to the bounds of the stationary parameter since1.5803 

does not lie between -1 and 1. Hence )( 1 =1.5803 must not be maintained in the model. 

Also )( 2 =-0.9273 is observed to be statistically significant since the absolute value of its test statistic (12.0585) > 2 but 

the estimated value conforms strictly to the bounds of the stationary parameter since -0.9273 lies between -1 and 1. 

Hence )( 2 =-0.9273 must be maintained in the model. 



ISSN 2347-1921                                                           

3573 | P a g e                                                         M a y  2 0 ,  2 0 1 5  

The estimate of MA1 co-efficient )( 1 = - 0.1337 is observed to be statistically insignificant since the absolute value of its 

test statistic (0.5898) < 2. The estimated value also conforms strictly to the bounds of the parameter invertibility, since -
0.1337 lies between -1 and 1. Hence  

1 =-0.1337 must not be maintained in the model. 

ARIMA (2, 2, 0)    

                                                        AIC=-203.15 

Co-efficient Estimate Standard error t-value 

AR1 1.5430 0.1088   14.182 

AR2 -0.9000 0.0881 -10.2157 

 

From the table above, the estimate of AR1 co-efficient )( 1 =1.5430 was observed to be statistically significant since its 

test statistic (14.182) > 2. The estimated value also conformed strictly to the bounds of the parameter stationary, since 

1.5430 does not lie between -1 and 1. Hence )( 1 = 1.5430 must not be maintained in the model. 

The estimate of AR 2 co-efficient )( 2 =-0.9000 is observed to be statistically significant since the absolute value of its 

test statistic (10.2157) > 2. The estimated value also conformed strictly to the bounds of the parameter stationary, since -

0.9000 lies between -1 and 1. Hence )( 2 = -0.9000 must be maintained in the model. 

The ARIMA (2, 2, 0) is considered the best model since it has the smallest AIC.  

 
DIAGNOSTIC CHECK 

Test type Chi-squared
 

Degree of freedom p-value 

Ljung -Box  32.8638 23 0.08347 

  
The Ljung test as presented in the table above tests the hypothesis below: 

H0: The residuals are random or white noise  agaist H1: The residuals are not random at 05.0  

The result from the table shows that p-value > H0 cannot be rejected, hence we conclude that the residuals are 

random.This implies that the model is fit enough for the data, hence the model can be used to forecast. 

FORECAST  

The forecast Arima function gives us a forecast of the Population Growth Rate in the next thirty eight (38) years, as well as 
80% and 95% prediction intervals for those predictions i.e up to 2050. 
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The forecasts are shown as a blue line, with the 80% prediction intervals as a dark blue gray shaded area, and the 95% 
prediction intervals as a light blue grey shaded area. 

CONCLUSION  
The Population growth rate has an upward increasing trend and hence it must be monitored. Therefore the Population of 
Nigeria is increasing rapidly and may explode to billions in the nearest 100 years. This study covered the population 
growth rate of Nigeria. The following were observed from the analysis; with the recent analysis performed Nigeria 
population may surpass that of the US by 2050. 
The Population growth rate was stationary at the second order difference. The appropriate model for the Population 
growth rate was ARIMA (2, 2, 0) . 
The model was the best fit model out of all other selected models because of it has the smallest AIC and the diagnostic 
test performed on the model using Box-pierce test shows the model is fit enough for the data and hence it  was used to 
forecast. 

Conclusion 
The time series components found in the model was Trend. Stationarity of the data was attained with differencing the time 
series plot. The model was then found fit for the study. Therefore forecast was found to have a gradual constant increase 
in trend of the Population growth rate up to year 2050. 
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